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Abstract  
A role for ontologies is key for the digital transformation of operational oceanography 

processes to the adoption of artificial intelligence and machine learning. Marine ontologies, a 

common concept among these tools, can lead to lower costs and more flexibility in identifying 

and classifying marine data. This study explores a demonstration that proves the potential of 

ontologies to fulfill the requirements outlined in the case of how to visualize computer datasets. 

A selective network of records, including visual and textual features that can be annotated from 

video and image sequences, with subsea parameters as the target of interest. The sample is 

divided into ontology and machine learning (ML) datasets to predict the importance of data 

visualization methods. The predicted suitability is strong with data classification that belongs 

to the machine learning dataset. However, the initial results from the study are encouraging, 

because ontologies' tools are proposed as automatic reasoning mechanisms. This proof of 

principle shows that it is almost guaranteed that marine ontologies can be built to make visual 

patterns for marine data usable by different communities, which could be used to identify 

"interesting" functions at the intersection of computer vision and machine learning in general. 
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1. Introduction 

An improved ontological representation of marine data as a paradigm for pattern analysis software 

development requires more work on combining different modes of inference (OWL, ML), the design 

of algorithms for data classification (DC) and visual data recognition (DR) for signal and image analysis 

[1]. This poses the problem of how should marine databases be represented. An ontology of a domain 

is an “explicit formal specification of the terms in the domain and relations among them” [2]. An 

ontology fully describes the subject area as a dictionary, in a way it is the ideal tool when we focus on 

the generation of contextual descriptions for images (in 3D shape retrieval for example [3]). Most of 

pattern analysis algorithms in oceanography, are to be used for object detection and recognition 

research, motivated by this challenge it can be proved that an ontology could be a relevant approach to 

the problem of marine data recognition and classification. 

The marine data received from wireless sensor networks are heterogeneous in nature. For instance, 

the existing marine acoustic data cannot meet the amount of data required for training models [4]. In 

particular, positioning and orientation systems, and other sensor technology, is based on multi-beam 

echo sounder system acceptance and quality assurance. An automated system producing multiple 

overlapping range images that was the first for correctly registered mapping of the ocean floor [5]. 

Whether data come from GIS technology, the Web or any other present or future approach they share 

common ground [6]. A role for ontologies is key in the development of application software for the 

acquisition, analysis and display of real time marine data, for the generation of model scenario databases 

for their retrieval, and display at the time of an event and for the decision support systems following a 
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standard procedure [7-8]. To define and develop intelligent systems, has been proposed in recent times, 

giving a rise in both precision and recall as well as facilitating system interoperability through data 

harmonization [9-12]. Ensuring interoperability between marine databases is a huge challenge. Terms 

and codes used to structure exploit the data comes from many sources and are continuously evolving. 

The problem pattern analysis (PA) is facing consists in finding an adequate visualization, a "good" 

figure, since humans are only capable of perceiving objects in at most three dimensions [13]. This 

means that pattern analysis has to find a method to reduce the heterogeneity of the set of data under 

study, thus allowing an analysis of the problem of stability of pattern. For practical reasons usually only 

recognition and classification of those data are allowed (best practices must be carried out by focusing 

on structure and naming consistency) [14]. Image recognition tasks are at the centre of the ongoing 

machine learning revolution, an approach that in the monitoring of coastal seas is focused on using 

automated classification algorithms based on random forest or deep learning approaches [15]. However, 

the field of marine image processing lacks the large numbers of annotations in images required [16]. 

The lack of correspondence between the visual representation of the image and its meaning calls for the 

performance of Machine Learning, expressed through semantic resources such as ontologies. 

The problem of trying to solve the visual parameters of images or videos focuses on tasks such as 

object detection, data recognition, and multi-level data classification. Such an example could be that of 

studying how the air and sea interact with each other during El Niño/La Niña onsets, by using pattern 

analysis with ocean data assimilation techniques [17]. This is an issue where content-based image 

retrieval is approached in terms of Machine Intelligence [18][19]. As such Pattern Analysis and 

Machine Intelligence (PAMI) is an element of scholarship proposed in the last thirty years and where 

it has been a continuous need to develop new data recognition and classification methods and advanced 

equipment for solving modern practical problems [20]. 

1.1. Pattern Analysis [and Machine Intelligence (PAMI)] and Marine 
Ontologies 

Rethinking pattern analysis of marine data means to investigate the rich variety of application 

scenarios offered by marine ontologies. While otherwise adding value to public data using semantic 

web axioms and machine learning to support annotation contribute to pose and solve issues involving 

ocean data classification. 

Application of ontologies in ocean data grows out of an Artificial Intelligence (AI) engagement with 

marine data metrics of interoperability and reuse. Ontologies serve as such a tool and method to assess 

the added value robotic technology brings into the marine environment (autonomous underwater 

vehicles (AUVs) or (ocean floor observation systems) OFOSs). From a pattern recognition point of 

view, ontologies for describing sensors and sensor networks work in the context of Sensor Web 

applications. Knowledge representation in the Internet of Things (IoT) presents a general architecture 

of Sensor Web applications. And that is why it provides huge numbers of interconnected data across an 

extended variety of various ocean regions, which classifications depend on the specific context and 

resources of LinkedData. 

By using ontological representation, the best of technical progress, undertaken by a community to 

unambiguously set definitions and interconnect concepts in various field, is captured. The use of 

ontologies for representing database entities has proven to be advantageous in the field of Pattern 

Analysis and Machine Intelligence (PAMI) (see Table 1). 
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Table 1 
The main features provided by ontologies in support of PAMI 

Ontology feature  Utility in PAMI 

Classes and relations   When ontology reasoning is applied to sensor data, 
rdf:type will be connected to a class name of an 
ontology 

Domain vocabulary  Ontologies provide a domain vocabulary that can be 
exploited to create a dense network of relationships 
among the entities, and serve 
software applications, and GIS 

Metadata and descriptions  Biodiversity data, especially in marine domain, have 
database entities represented as ontologies where 
these last are primarily used for metadata that 
describe raw data providing contextual information 

Axioms and formal declarations  Ontology axioms and applied reasoning on them are 
related to the recognition of object presence in a time 
interval 

 
 

The concept of marine ontologies may be the solution in developing systems and workflows that 

would meet the various possible marine data requirements and from them derive up to standard 

products/maps without human assistance except at the user interface. As shown in Figure 1, research 

on ontology topics can be followed from different perspectives. The index is the percentage of the 

publications in the ontology sub-areas of research. It covers semantic web, web services and so forth. 

Especially, the semantic web, data integration, and web service have attracted the attention of a large 

number of researchers in recent years while the research on the topics of data source, relation extraction 

and heterogeneous data seems less consistent. One element is the major cause of these problems, as far 

as a common ontology for marine data is necessary to enable exchange and integration of data. 

Terminology is used to describe similar data can vary between marine specialties or world ocean 

regions, which can complicate data searches and data integration. 

Figure 1: Ontology subareas of research (dependent variable: percent of publication in ontology sub-
areas) 

 

The ontology-based research illustrates especially how those involved with marine data should be 

informed about marine ontology developments. Opportunities to enhance their development will 

contribute to the success of ontology in the way that certain concepts and ideas start to unfold. It is 
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customary to consider emerging observational patterns making sense out of methods that captures 

concepts leading to finding out what is visible. To conduct this insight, for example in coastal web 

atlases (CWA), developers should intensify future efforts to improve data discovery, sharing, and 

integration on the base of ontologies. 

1.2. Ontologies and Marine Robotics 

Marine data classification has been studied widely in the field of marine robotics; while pattern 

recognition is a process of finding regularities and similarities in data using machine learning data which 

is the perspective of marine robotics. Marine robotics has undergone a phase of dramatic increase and 

its quantitative landscape, status quo and current workflow is shaped by its own pattern analysis, data 

recognition and classification issues. 

From the point of view of marine robotics key issues in ocean data management concern two 

different PAMI realities representing, detecting, and tracking features and the process of integrating 

real sensor data with a model of an ocean process. As a standard knowledge representation ontology 

can facilitate the development of these marine robotic applications in various ways: 

 

 Providing a consistent set of terminology (domain vocabulary), and concepts in the robot's 

knowledge representation (definitions, relations, domain axioms and taxonomy) 

 Enabling design pattern guidelines for content analysis of complex tasks, environment, etc. 

 Ensuring a common repository of knowledge that can be shared among various robotic 

systems 

 Highlighting more efficient new relations through the analysis of data generated using 

ontologies 

1.3. Contribution of this paper 

The purpose of this paper is to identify relevant pattern analysis research in marine data classification 

and recognition, and to review its intersection with the state-of-the art in marine ontologies. It focuses 

on the 3D modeling and analysis domain, computer vision and interactions are described for machine 

learning (ML) and marine ontologies. 

2. Method 

All the R&D efforts in pattern analysis, classification and recognition of data have been kept rising 

over the current period (1991 to 2021). To obtain a general understanding of this research question 

concerning marine data we systematically reviewed the IEEE Pattern Analysis and Machine 

Intelligence, IEEE Access, IEEE Journal of Oceanic Engineering, Sensors, and Information 

Visualization. Initially, we identified the appropriate subset of articles from these conferences and 

journals. We then conducted an in-depth qualitative analysis of the relevant work, re-removing and 

refining the characteristics of the marine data interaction of PA. The histogram theory inspired us to 

take a general approach to this analysis, which systematically analyzes the data until significant 

categories appear. This methodological approach is based on define and refine categories based on a 

representative set of qualitative data, here are documents that are then used to progressively build a 

theoretical model. This approach has been used in pattern analysis and related areas such as data 

classification and data recognition before, and recognized its role for the importance of establishing a 

much-needed theoretical framework for visualization. 

2.1. State-of-the-art of Pattern Analysis and data classification and 
recognition in marine data 
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We started our efforts with a carefully selected list of important publications in interactive machine 

learning and marine data. Using these candidate documents, we first tried an open approach to coding 

to identify "interesting" features at the intersection of computer vision and machine learning in general. 

Although this resulted in a high-level structure [19], it was impractical to make the analysis more 

concrete. Therefore, we decided to analyze a much larger set of sample articles, with two implications 

for our methodological options. (1) We understood the need to look at specific pattern analysis problem 

(in our scenario, intelligent driving, image synthesis, and object pose measurement) searching to make 

the research more focused, practical, and concrete. (2) We needed automated methods to narrow down 

the pool of potentially interesting articles. 

During this process, we repaired the retrieval practice in cleaning its criteria and coding selection 

multiple times. Our final workflow consisted of four main steps, shown in Figure 2: 1.) Obtaining 

ontology research trends, 2.) Reviewing the previous research and application of pattern analysis, 3.) 

Identifying marine data classification and recognition issues, 4.) Searching for pattern analysis and 

machine learning parameters to encode for a large part of the ontologies' semantic content. 

2.2. Sample network of records 

Our common goal was the ontology research developed and how its implementation interacts in the 

pattern analysis and marine data communities. We decided to take a representative sample of papers, 

made up of every paper ever published in a Web of Science (WoS) source titles in the marine pattern 

analysis community from 1991 to 2021. From the database (WoS), is defined a collection of pattern 

analysis (PA) and marine data records (6048), data classification (DC) and marine data papers (3242) 

and data recognition (DR) and marine data records (1214), for a total of 9,899 records. 

2.2.1. Paper metadata-based filtering 

Methodological options were driven by the idea that the state of the art of ontology (machine/deep 

learning) research could be determined by using metadata. By metadata, we refer to aspects of the 

words-in-title that were deemed essential to facilitate a meaningful analysis in a full-content context. 

The initial synthesis was accomplished by deciding on a uniform list of metadata and their distribution 

along the years, as found in Figure 1. Based on this metadata definition, we implemented metadata lists 

from the sets of records in PA and data classification and recognition. The final metadata lists and 

statistics from this metadata filtering process are provided in Figures 2a,b,c. 
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Figure 2: Comparison of metadata efforts in tracing WoS records to measure pattern analysis, marine 
data classification and marine data recognition shown in three log-scale histograms; 25 top metadata 
required with pattern analysis capture the data to detect, recognize and identify target of interests 
from physical, optical, fluid, and chemical underwater parameters (a); histogram estimated by image 
or video parameters with an emphasis on multilevel data classification is reported by its 25 top 
metadata (b); ranking title terms (metadata) of the documents on data recognition (c) 

 

We formed a set of primary papers in marine ontologies with and without the initial criteria on PA 

and machine intelligence for data classification and recognition. Not all of these metadata allow to 

express the semantic content of an image. The discrepancy between the visual presentation of the image 

and its meaning requires machine learning performance expressed in terms of semantic resources as a 

ontology. So from the data set, including records in PA and corresponding DC and DR values (9899) 

are extracted two test sets on ontologies (42) and machine learning (210). In this way, the use of marine 

ontologies as the data classification and recognition technique focuses on the viability of using 

ontologies to solve the problem of pattern analysis. 

2.2.2. Manual and automatic sample check 

The 42 ontological papers were manually checked using the following criteria. First, we checked if 

the paper is a theoretical and evaluative framework or if it deals with a combination of applied or 

technical visual methods; as we planned to build a theoretical model for visualization. Second, we 

checked whether the paper addresses the combination of pattern analysis (PA), data classification (DC) 

and data recognition (DR), and whether the interaction returns to the visualization area. This had the 

advantage to present an interesting one workflow for the multi-source, multi-format, multi-dimension 

characteristic of marine data. Moreover, there is a return to the visualization area in its framework 

design that considers underlying data patterns. Given our focus on visualization we include this model 

that even feedback to the analysis of the 3D marine data. One major advantage of this method is its 

ability to define a semantic model of the issue under scrutinize (PA, DC & DR) combined with the 

associated domain of visualization to list the data visualization theories brought by marine data and 

observations, that range from the digital transformation of operational oceanography processes to the 

adoption of artificial intelligence. On this basis, we manually analyzed the first 42 candidate relevant 

documents obtained. Table 2 provides a partial list of the 42 specific ontological contexts detected in 

the PA and DC and DR data sources, and the extent to which they provide the ontology tools they use. 
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Table 2  
List of the ontological contexts detected in the PA and DC and DR data sources (A/B: 
applied//theoretical; DV: data visualization feedback) 
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After an automated process, the set of 210 papers corresponding to machine learning was filtered 

based on the fact that one of the most frequently used data visualization techniques in machine learning 

is the histogram plot. ML-based data visualization techniques were approached through metadata 

generated from a base histogram and classified into four levels: disseminative, observational, analytical 

and model-developmental. That is to say, a theoretical framework, because a visualization technique 

that builds on machine learning therefore attests its power for interactive analysis of heterogeneous 

marine data, it can deliver relevant pattern analysis content in the appropriate mode. Table 3 lists these 

visualization levels. Through boxplot with the ontological and machine learning (ML) datasets, we 

found differential expression of how their values are spread out and detect schematically their outliers 

(Figure 3). The temporal analysis parameters for machine learning (ML) are listed in Table 4. 

 

 

Table 3 

Levels of data visualization in machine learning methods for pattern analysis (marine data) (metadata 

generated from a base histogram 

 
 

 

 

 

 

 
 

Figure 3: Differential expressions of relevance from the Ontological and Machine learning (ML) 
datasets (dependent variable: ln(cit)) 
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Table 4 

Machine learning for pattern analysis time statistics (marine data) 

 
 

3. Results and discussion 
3.1. Ontology research trends review 

The outputs of review using the ontology research trends are shown in Figure 1. As mentioned in 

Section 2.1, database entities represented as ontology terms result in a rich variety of scenarios that 

store in annotations their features and strengths. The ultimate goal is a system that combines visual and 

textual semantics to regularly annotate video sequences final aim is a system that will link the visual 

and text semantics in order to routinely annotate video sequences with the appropriate keywords of a 

domain expert. Most ontology-based cognitive vision promising results occurred in 2008. 

By 2015, heterogeneous marine data, believed by visualization techniques to be of strategic 

importance, had their top priority. It is also the subject of scientific research, as evidenced by a large 

number of research papers, books, and reports. Highlights were the initiative to create in marine systems 

well-founded ontologies embedding these domain semantic and logical frameworks in the underwater 

environments thus providing opportunities for intelligent observatory units. The details of 

communication ontology that can be used by Remotely Operated Vehicles (ROVs) to transmit data and 

commands between vehicles and operators is defined by OWL in SWARMs platform. SWARMs users 

can estimate the rate of spread of pollutants and determine the level of pollution and the estimated size 

of the polluted area. In marine biology, search engines do use ontologies like SWEET for engaging the 

coral reef research community via a cyberinfrastructure network. 

3.2. State of the art of pattern analysis in marine data classification and 
recognition 

The outputs selection was initially based on the idea that machine learning (ML) enhanced by the 

ontology is able to compare pattern analysis performances using marine data. But ontologies specific 

coverage statistics are few, and it is difficult to say what actually constitutes a significant part of the 

terms in an ontology. 

Typically, a generic ontology design pattern is developed for data from observations on the Semantic 

Web by unlocking the potential of compositional definitions, proposed to distinguish reliable relations 

for pattern analysis expression. These definitions are the necessary information to start with, because 

they are partitioned into mutually exclusive cross-products sets, many of which reference other 

candidate ontologies for chemical entities, proteins, biological qualities and zoological entities. An 

example of such a case is the Environment Ontology (ENVO) which, using the expressivity of OWL, 

grows in acceptance and participation in new user communities, thus offering an example of ontology's 

classes increased granularity in their logical definitions, allowing more flexibility in semantically 

advanced questions, inferences and analysis. 
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Ontologies such as the Extensive Observation Ontology (OBOE), Observations and Measurements 

(O&M), Semantic Sensor Network (SSN), and SWEET can be interconnected and expanded to include 

additional concepts more specific to the field of remote sensing, including the basic concepts that remote 

sensing professionals rely on to interpret remote sensing images (e.g., concepts, associated with spectral 

bands, spectra or texture indices). Examples of such a remote sensing ontology have already been 

applied, but have not yet been used in any upper ontology. 

In this sense, under a definition of data classification as a process of clustering these data into a 

series of groups or categories, regardless of the method used for this purpose, research on pattern 

analysis finds a framework for marine data based on ontologies as an active output for computer vision. 

From this framework for an ontology-based ocean image classification that describes how to create 

ontological models for low- and high-level features, classifiers and rule-based expert systems, a much 

larger set of sources appeared. 

3.3. Histograms to bridge the semantic gap between notions of content and 
similarity 

The results from the previous section are used to build a sample of filtered dataset (9,899 records). 

Firstly, such sample contains metadata from thousands of word-in-title terms that can capture both 

concrete and abstract relationships between salient visual properties. Subsequently, histogram analysis 

methods were employed to compare the semantic effort by considering the metadata weight as 

generated on the base of global citation scores. This result in three referential frames, is shown in Figure 

2a,b,c. 

Structure (292 records) and communities (199) have a significant score in pattern analysis, indicating 

that these two parameters cause a positive effect on modelling required to discriminate relevant from 

non-relevant images (Figure 2a). Basin has a weak score due to the indirect value it has with the general 

purpose retrieval of features constructs such as predicates, relations, conjunctions, and a specification 

syntax for image content (for instance, photographic images). 

The following is the histogram for data classification (see Figure 2b), which shows that mapping 

(221 records) is the main technique to classify marine data, while spatial (93) data are by now less 

rigidly circumscribed. The complete histogram of the attributes obtained for quantify the features in the 

data recognition domain is also shown Figure 2c. The importance of data recognition for evolutionary 

biologists (53 records) is enclosed within the scope of the study of species (67 records). The close 

relation with classification (61 records) ensures that a visual language can use an important mechanism 

for conscious control, limiting the range of possible configurations of functions that must be taken into 

account when performing a visual recognition task. 

3.3.1. A framework for interactive visual analysis of heterogeneous marine 
data 

The statistical quantized histogram metadata analysis was based on the available PA, DC & DR data, 

and focused on expressing the multi-dimension spatiotemporal marine data in one workflow. Based on 

the data we processed, two visualization methods are explored: ontology and machine learning (ML). 

The basic idea is shown in Fig. 3. 

In this way, according to the data value and methodological choice, two different data classification 

and recognition scenarios in pattern analysis can be compared. Under the first scenario ontology-based 

for image retrieval and annotation was used to derive marine data patterns. Owing to the substantial 

positive bias in ontological feedback to the domain of visualization (Y=85.7%; Table 2), subsequent 

approaches for visual events were larger than in the case of the second scenario (machine learning 

(ML)), but because citations were restricted to 70% of the available ML data, the resulting lower quartile 

of 0.45 reached a best score for ML than for ontologies (0.38). 

Therefore, machine learning (ML) decisions based on marine data assessment outperformed 

ontology-driven coding for image classification. And that, in spite of ontology mapping for underwater 

IoT (IoUT) supports better interoperability protocols in the context of computer vision. 
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3.3.2. PA, DC & DR identified through ontologies for marine data 

The Table 2 is built based on the 42 selected ontology records. This is a general-purpose scheme 

designed for filtering the typology of the data sources. As described by the PubMed database there is a 

strong proximity between applied (or technical) and theory (evaluative, comparative, lessons) contents 

when they are both expressed in percentage terms (47.61% vs. 52.35). This analysis is then extended 

utilizing the feedback of each source to the domain of data visualization. It is overly positive (85%), as 

estimated by subject headings including in MeSH for each source. 

For all the sources that have been used in this study, the ontology tools are listed in Table 2. 

Researchers proposed new models to cope with marine transcriptome/genome identification (80%; 

Table 2). They assumed Gene ontology (GO) approaches to model knowledge on the experimentation 

organisms. Some approaches focus on a data visualization package (Illumina sequencing technology) 

to provide refined descriptions of the whole scenario (1,5,18,19,24,36; Table 2). In one source (39; 

Table 2), the authors propose an automatic reasoning mechanism to deal with uncertainty in a quasi-

empirical model using KAAS automatic annotation server. A number of marine or environmental 

ontologies (MMI, ENVO, EMPO, SWEET) are found (9,11,12; Table 2), they are used as dictionary 

learning in microbial environments to find out unavailable variables. Other ontologies' tools are also 

used (BRENDA Tissue Ontology (BTO)(25; Table 2), Protein Annotation through Evolutionary 

Relationships (PANTHER) (17,41; Table 2). 

3.3.3. Machine learning levels of visualization and their temporal perspective 

In this section, it is investigated whether a data visualization level can give a prediction of its 

suitability for a particular machine learning task. There exists a spectrum of different steps of 

visualization ranging from high abstraction levels (e.g., model-developmental tools) to lower levels 

(e.g., operational aids) (see Table 3; 210 records). To enhance this theoretical framework performance, 

the ML-based data visualization techniques are used based on 20 metadata, assuming that the marine 

data papers are categorized from different histograms which are quite reliable. 

On Table 3, the level of visualization importance for suitability prediction is shown. As the first 

basic task of knowledge discovery, it proposes the use of data classification tools (33%); most visual 

analytics processes reported in PA, DC & DR literature operate at this level. The analyst knows or 

assumes the model to be correct only in 6% of the sources. Only in 16% human analysts need to use 

visualization to observe data routinely. Human analysts are able to observe input data in conjunction 

with the machine's "understanding" in many ways (33%). A line-up of model developmental tools gains 

a new understanding in terms of complexity (44%). 

We can further derive from Table 3 that deep learning is the main automated support of marine data 

analytics using machine learning (ML) techniques, perhaps this is caused by the success of deep 

learning in computer vision tasks (eg. image classification, object detection, instance segmentation). In 

data visualization most of the deep learning studies focus on model developmental aids (44%), followed 

by observational tools (30%), investigative (18%) and presentational (8%) aids. Analytical and model-

developmental visualization levels were shared equally among other ML techniques employed (transfer 

learning, ensemble methods, clustering). 

As shown in Table 4, a sequence has been used to encode the data sources as the number of papers 

published by year. Years 2020 (55) and 2021 (48) are peaks. We can see clearly that 50% of the papers 

were all published in the last two years. This is not strange since the idea that in machine learning (ML) 

pattern analysis is gaining future, is expressed again by the importance of the two last years for the four 

levels of visualization (relative importance of 69%, 70%, 44%, 43%). As expected from the results in 

Table 3, there are gaps in both disseminative and observational data sets (with 6 years breaks in 

between). 
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4. Conclusions 

This proof of principle study explores the potential uses of ontologies to encode for marine data 

pattern analysis literature. This study focuses on characterizing marine ontologies to select data 

visualization techniques. The underlying assumption is that the application of ontologies in marine data 

poses the problem of how should marine databases be represented. Therefore, the validation against 

pattern analysis in oceanography should be first put in terms of data interoperability. Using this 

approach could provide experts with a tool and method where they can rate ocean technologies and how 

they have been received in the communities where they have been placed. A data histogram approach 

has been adopted, which draws on the analysis of literature until significant categories appear. This has 

demonstrated its worth in pattern analysis, data classification and data recognition, and is regarded as 

an ingredient of the new generation of theoretical frameworks for data visualization. The results of the 

model to predict what the encoding for a large part of the ontologies' semantic content is going to look 

like in the future show that marine ontologies specific coverage statistics are few. It is acknowledged 

that the biomedical Gene Ontology (GO) currently represents the most successful implementation of 

ontologies in the domain of oceanography for pattern analysis applications including data visualization. 

It is recognized that, for machine learning data visualization, marine data scoring solutions were better 

than ontology-based coding for image classification. This approach has led to accurate predictions of 

the level of visualization importance for the example of data classification. Over the machine learning 

techniques most used for computer vision tasks with marine data, the result of the study outstands for 

it is clearly stated that deep learning is a promissory approach to gain new understandings in terms of 

data visualization tools. The results of this study show the potential use of marine data for pattern 

analysis assessment and prediction of the level of data visualization. This method shows the potential 

of ontologies to support the generation of model scenarios for image retrieval and annotation, and to 

aid for the empirical assessment of machine learning techniques. A single example data visualization 

was used as an application for indicating the potential value of ontologies to solve the issues of pattern 

analysis and taking a first step towards a theoretical model for visualization with marine data. It is 

recommended for future research that marine model developers should intensify their efforts to improve 

data discovery, sharing, and integration on the base of ontologies. 
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