
Grey wolf optimizer combined with k-nn algorithm
for clustering problem
Katarzyna Prokop

Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, Poland

Abstract
The clustering problem is an important task in machine learning. Clustering algorithms allow for the division of the set
into individual clusters on the basis of a specific measure. Such an idea is used for undescribed data, where its label must
be automatically assigned. One of the most popular algorithms is the 𝑘-nearest neighbors. In this paper, we propose a
modification of this algorithm by combining it with heuristics, i.e. the grey wolf optimizer. The idea assumes that individuals
in heuristic will be understood as a sample and unknown classes as victims in heuristic. Then the heuristic operation is used
for analyzing the set. The proposition was described in terms of original algorithms and proposed hybridization of them.
Then it was tested on Iris Flower Dataset and obtained results were discussed in terms of its advantages.

1. Introduction
Machine learning algorithms are known as data-hungry.
It means, that many of them need a large number of
samples to fit/train the model. However, in many cases,
collected data are not labeled and cannot be used in the
supervised training process. Therefore, the clustering
method can be used to split them into some classes/clusters.
An example of clustering visual features was presented in
[1]. Another solution is modifying a k-means algorithm
by introducing some dynamic changed conditions [2, 3].
Moreover, different approaches to clustering are mod-
eled and it can be seen in the example of deep spectral
clustering that uses an auto-encoder network [4].
Moreover, the optimization task is important in the

area of machine learning. Therefore, many newer algo-
rithms are modeled as an alternative and accurate ap-
proach [5]. Except for new models, the hybridization of
them is introduced. One such example is a cooperative
idea of many such algorithms [6]. The application of
these algorithms shows that it is a promising approach
and can help in different areas of artificial intelligence.
For instance, meta-heuristic algorithms were used in the
federated training process of convolutional neural net-
works [7, 8]. Also, it was combined to create a neuro-
swarm heuristic for dynamics of covid19 [9]. Interesting
solution was to use nature-inspired algorithms in im-
age analysis [10, 11]. Heuristic algorithms were used for
motion planning of aircraft [12], or others engineering
problems. In most cases, engineering problems can be
presented as an optimization task, where the best coeffi-
cients must be found to reach the best results [13]. Except
using heuristics in hybridization and optimization, these
algorithms are also used for feature extraction [14]. The

IVUS 2022: 27th International Conference on Information Technology
$ ktn.prokop@gmail.com (K. Prokop)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

extracted information can be used for describing an ob-
ject and used in further classification.
In this paper, a hybridization of 𝑘-nn and selected

heuristic algorithm was proposed. It is an alternative
way that indicates that these two solutions can be com-
bined and result in good accuracy. For the research the
Grey Wolf Optimizer was chosen. This is a fairly young
method [5], uses the hierarchy of units in the herd. This
heuristic algorithm shows competitive results compared
to other known metaheuristics for the function optimiza-
tion problem. The Gray Wolf Optimizer can be success-
fully used, for example, in industry [15] or smart home
solutions [16].

2. Methodology
The main idea is to combine the operation of k Nearest
Neighbors classifier with Grey Wolf Optimizer and test
the effectiveness of the method obtained as a result.

2.1. k Nearest Neighbors Algorithm
The k Nearest Neighbors classifier (𝑘-nn) is an example of
an algorithm that is used for finding the 𝑘 most closely
related items to the one that is considered, which makes
classifying this object enabled. This algorithm is used
for clustering, interpolation and even classification tasks
[17, 18]. Therefore this algorithm determines the similar-
ity between two objects using selected measures. Based
on the results a group of the items with the least differ-
ence i s created. This set contains eponymous 𝑘 elements.
Objects reminding the considered item are called “neigh-
bors”. By the “voice of majority”, they are responsible
for assigning the tested object to the appropriate class.
This means that obtained class is the most frequently
appearing label among neighbors.

The algorithm is also used in a clustering problem.
It is possible to create groups of elements with similar

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ktn.prokop@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

features applying 𝑘-nn. There are many different ways
of dividing the same dataset so various methods and their
variable elements can be customized for this purpose.

Records in a given database and tested elements can
be treated as vectors. Then the similarity between them
may be calculated by a distance function. In this paper
Euclidean metric and Manhattan metric were applied. As-
suming 𝑎 and 𝑏 are two records being compared, where
each of them consists of 𝑛 attributes, the following vec-
tors are obtained:

𝑎 = [𝑎1, ..., 𝑎𝑛],

𝑏 = [𝑏1, ..., 𝑏𝑛],

whichmeans that attributes should take numerical values.
Distance function between 𝑎 and 𝑏 for the Euclidean
metric is defined as below:

𝑑(𝑎, 𝑏) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2. (1)

For the Manhattan metric, distance function can be de-
scribed by:

𝑑(𝑎, 𝑏) =

𝑛∑︁
𝑖=1

𝑎𝑖 − 𝑏𝑖. (2)

Letmark every 𝑖𝑡ℎ database’s elementwith𝑛 attributes
as 𝑥𝑖 = [𝑥𝑖

1, ..., 𝑥
𝑖
𝑛], 𝑖 = 1, ...,𝑚. Thus𝑚 is the number

of all records in the dataset. Obviously, the number 𝑘 is
less than or equal to 𝑚. Tested item can be presented as
𝑦 = [𝑦1, ..., 𝑦𝑛]. By the pseudocode 1, with the selected
distance function 𝑑, the 𝑘 Nearest Neighbors Algorithm
is shown.

2.2. Grey Wolf Optimizer
The method proposed in this paper besides the classifier
also uses an optimizer. In detail, Grey Wolf Optimizer
was applied. This algorithm is an example of a heuristic
method of optimization which means that its aim is to
find an approximate solution to a given problem but
there is no guarantee of its correctness. Heuristics are
useful in case of high resource cost or high computational
complexity of classic methods.

Grey Wolf Optimizer was developed in 2014 [5] based
on the behavior of a pack of wolves. Wolves are predators
and live in herds where a hierarchy occurs. Every pack is
led by a leader, the so-called male wolf. This individual
is responsible for launching attacks. The male wolf is
also the strongest wolf in the pack and initiates all pack’s
actions. It is selected from the herd by victories in direct
battles with other wolves. An important role in the pack
is also played by the second strongest wolf. With the
male wolf, they complement each other. This individual

Algorithm 1: k Nearest Neighbors Algorithm.

Input: dataset with 𝑚 vectors 𝑥𝑖, unclassified
vector 𝑦, neighbors number 𝑘

Output: 𝑦 group
1 𝑖 := 1;
2 for 𝑖 ≤ 𝑚 do
3 Calculate the distance from 𝑦 to 𝑥𝑖 using

measure 𝑑;
4 𝑖++;
5 end
6 Sort the records in the database in ascending

order relative to the calculated distances;
7 𝑗 := 1;
8 for 𝑗 ≤ 𝑘 do
9 Make a note of the assigned group for 𝑥𝑗 ;

10 𝑗 ++;
11 end
12 Select the most popular group;
13 return 𝑦 group;

takes command of the herd when the leader is indisposed.
Further two groups of wolves are distinguished: the third
level in the hierarchy are individuals who are doing fairly
well and the last group consists of old and sick wolves.
The tasks undertaken by the pack include mainly search-
ing for food, i.e. hunting mammals. In nature, wolves
hunt in various configurations: alone, in pairs, or as a
whole pack.

Grey Wolf Optimizer uses a group hunting strategy.
The different levels of the wolf hierarchy can be repre-
sented by the symbols: 𝛼 – the male wolf, 𝛽 – the second
strongest wolf, 𝛿 – the third level of the hierarchy, and
𝜔 – old and sick wolves. In particular, the first three
levels have an impact on the operation of the algorithm.
Firstly, the pack consisting of a fixed number of wolves
is initiated. A wolf is treated like a vector 𝑥:

𝑥 = [𝑥1, ..., 𝑥𝑛],

the values of which determine the wolf’s location. The
number 𝑛 defines the dimension of a given problem that
is a number of variables of the function 𝑓(·) wanted to
optimize. In the initial pack, coordinates 𝑥1, ..., 𝑥𝑛 are
drawn from a given interval. Next, the three strongest
individuals are selected: 𝛼, 𝛽, 𝛿 (the best wolf in the third
level of hierarchy). This operation takes place by compar-
ing the values of the function 𝑓(·) for all individuals in
the herd. When a hierarchy is established, wolves move
around in relation to the victim they are hunting. Since 𝛼
is always the leader in the hunt, followed by 𝛽 and 𝛿, the
position of the other wolves depends on the movements
of the strongest individuals (because they are closest to
the victim).

Assuming being in the 𝑗𝑡ℎ time step, the location of
the wolf 𝑥 in the next moment can be defined by equation
3:

𝑥𝑗+1 =
𝑋𝐴 +𝑋𝐵 +𝑋𝐷

3
, (3)

where
𝑋𝐴 = 𝑥𝛼 −𝐴𝑗 ·𝐷𝛼, (4)

𝑋𝐵 = 𝑥𝛽 −𝐴𝑗 ·𝐷𝛽 , (5)

𝑋𝐷 = 𝑥𝛿 −𝐴𝑗 ·𝐷𝛿. (6)

𝑋𝐴, 𝑋𝐵 , 𝑋𝐷 are the coefficients depending on the posi-
tions of the best wolves at the moment (denoted as 𝑥𝛼,
𝑥𝛽 , 𝑥𝛿),
𝐴𝑗 is a parameter that updates in each iteration 𝑗:

𝐴𝑗 = 2 · 𝑎𝑗 · 𝑝, (7)

and 𝑝 is a random value from the range [0, 1]. The
value 𝑎𝑗 depends on the interval [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] set in
the beginning and is calculated for each moment 𝑗 =
0, 1, . . . , 𝑗𝑚𝑎𝑥 according to the formula:

𝑎𝑗 = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛

𝑗𝑚𝑎𝑥
· 𝑗. (8)

Usually, it is assumed that the 𝑎𝑗 value decreases from 2
to 0 [15]. Then 𝑎𝑚𝑖𝑛 = 0 and 𝑎𝑚𝑎𝑥 = 2. The values𝐷𝛼,
𝐷𝛽 ,𝐷𝛿 evaluate the distance from the given individual
𝑥 to the best adapted wolves:

𝐷𝛼 = 𝐶𝑗 · 𝑥𝛼 − 𝑥, (9)

𝐷𝛽 = 𝐶𝑗 · 𝑥𝛽 − 𝑥, (10)

𝐷𝛿 = 𝐶𝑗 · 𝑥𝛿 − 𝑥, (11)

where
𝐶𝑗 = 2 · 𝑟, (12)

which is recalculated for each iteration 𝑗 and 𝑟, like 𝑝, is
a random value in the range [0, 1].

The above operations are performed a certain number
of times (𝑗𝑚𝑎𝑥) to finally select the best-adapted wolf (𝛼)
that is closest to the victim, i.e. the wanted solution. The
scheme of the algorithm is presented in the pseudocode
2.

2.3. Hybridization
Let 𝑦 = [𝑦1, ..., 𝑦𝑛] be an 𝑛−dimensional vector of un-
known class as in the 𝑘 Nearest Neighbors classifier
model. Then 𝑦 is identified with the victim that wolves
hunt, while the pack consists of records from the database
with 𝑛 attributes, the values that are stored by wolves.
Therefore, the population consists of units of the follow-
ing form:

𝑥𝑖 = [𝑥𝑖
1, ..., 𝑥

𝑖
𝑛], (13)

Algorithm 2: Grey Wolf Optimizer.
Input: wolves number 𝑤, iterations number

𝑗𝑚𝑎𝑥, range of the arguments, range 𝑎
Output: individual 𝛼

1 Generate initial pack with 𝑤 individuals;
2 𝑗 := 0;
3 for 𝑗 < 𝑗𝑚𝑎𝑥 do
4 Calculate 𝑎𝑗 according to the equation (8);
5 Calculate 𝐴𝑗 according to the equation (7);
6 Calculate 𝐶𝑗 according to the equation (12);
7 Find the best individuals 𝛼, 𝛽, 𝛿;
8 ℎ := 0;
9 for wolves do
10 Calculate distances from the best

individuals 𝐷𝛼, 𝐷𝛽 ,𝐷𝛿 according to
the equations (9), (10), (11);

11 Calculate coefficients 𝑋𝐴,𝑋𝐵 ,𝑋𝐷

according to the equations (4), (5), (6);
12 Update wolf’s location according to the

equation (3);
13 ℎ++;
14 end
15 𝑗 ++;
16 end
17 Find the best individuals 𝛼, 𝛽, 𝛿;
18 return 𝛼;

where each 𝑖𝑡ℎ unit (wolf) stores information about the
𝑖𝑡ℎ 𝑛-dimensional record from the specified database.
Naturally, the pack is the same size of 𝑚 as the consid-
ered dataset. Next the strongest individuals 𝛼, 𝛽, 𝛿 have
to be selected. Due to the necessity of hierarchy estab-
lishment, the values of the function 𝑓(·) for individual
wolves have to be compared. The function 𝑓(·) corre-
sponds to the Euclidean distance function (1) or distance
for Manhattan metric (2). The strongest units are the
wolves closest to the victim at the moment. When a hi-
erarchy in the herd is established, the positions of the
wolves are updated. Being in the 𝑗𝑡ℎ time step, the loca-
tion of appropriate wolf in the next moment is described
by the formula (3), which uses coefficients𝑋𝐴,𝑋𝐵 ,𝑋𝐷

represented by the equations (4), (5), (6). Each of these
coefficients is a difference between location from one of
the best wolves (𝛼, 𝛽 or 𝛿) and product of the parameter
𝐴𝑗 defined by the formula (7) and corresponding𝐷 co-
efficient (𝐷𝛼,𝐷𝛽 or𝐷𝛿 described by the equations (9),
(10), (11)), respectively. The parameter 𝐴𝑗 is modified
in each iteration due to the variability of the parame-
ter 𝑎𝑗 (described by the equation (8)). Additionally, the
value of the 𝐷 coefficient is influenced by the value of
the changing 𝐶𝑗 parameter defined by the formula (12).
The above steps are repeated 𝑗𝑚𝑎𝑥 times. Then, the

best wolf from the pack is selected (𝛼). It is the record
that after 𝑗𝑚𝑎𝑥 iterations is at the shortest distance from
the considered vector 𝑦 out of the entire pack. Searching
for such an individual takes place in total 𝑘 times in
order to identify 𝑘 closest neighbors of the 𝑘 Nearest
Neighbors algorithm. Finally, according to the concept
of the 𝑘 Nearest Neighbors algorithm, the appropriate
class for the 𝑦 vector is selected based on the occurrence
of individual classes among neighboring records.
The pseudocode 3 shows the structure of solving the

classification problem using the Grey Wolf Optimizer.

Algorithm 3: Combination of 𝑘-nn with Grey
Wolf Optimizer.

Input: dataset of 𝑚 records (𝑥𝑖), unclassified
vector 𝑦, nearest neighbors number 𝑘,
iterations number 𝑗𝑚𝑎𝑥, range of 𝑎

Output: 𝑦 class
1 Generate initial pack consists 𝑚 records;
2 Create array 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 of length 𝑘;
3 𝑖 := 0;
4 for 𝑖 < 𝑘 do
5 𝑗 := 0;
6 for 𝑗 < 𝑗𝑚𝑎𝑥 do
7 Calculate 𝑎𝑗 according to the formula

(8);
8 Calculate 𝐴𝑗 according to the formula

(7);
9 Calculate 𝐶𝑗 according to the formula

(12);
10 Find the best individuals 𝛼, 𝛽, 𝛿;
11 ℎ := 0;
12 for wolves do
13 Calculate distances from the best

individuals 𝐷𝛼, 𝐷𝛽 , 𝐷𝛿 according
to the equations (9), (10), (11);

14 Calculate coefficients 𝑋𝐴,𝑋𝐵 ,𝑋𝐷

according to the equations (4), (5),
(6);

15 Update wolf’s location according to
the equation (3);

16 ℎ++;
17 end
18 𝑗 ++;
19 end
20 Find the best individuals 𝛼, 𝛽, 𝛿;
21 Assign to 𝑐𝑙𝑎𝑠𝑠𝑒𝑠[𝑖] the class of individual

𝛼;
22 𝑖++;
23 end
24 Choose the most frequently repeated class in

the array 𝑐𝑙𝑎𝑠𝑠𝑒𝑠;
25 return 𝑦 class;

3. Experiments
The hybrid method using Grey Wolf Optimizer and 𝑘-nn
was tested in a process of matching the class to the object
from a database. The database of iris flowers was used
for experiments. The author of this dataset, the British
biologist and statistician Ronald Fisher [19], shared data
in 1936.
The iris flowers dataset consists of 150 records describing
the appearance of these plants. Every record stores infor-
mation about 5 attributes: the length of the plot of the
flower cup, the width of the plot, the length of the petal
and its width, and also the name of the species. Thus
the first four characteristics are expressed by numerical
value and the fifth one constitutes a class label presented
in a text form. Three species of iris are included in the
collection: Iris setosa, Iris virginica, Iris versicolor.
In order to test the designed method, a program was

implemented. 20% of all records were checked whether
the appropriate class was matched. For calculations, the
program retrieved the first four attributes of each record
omitting the class labels. However, labels were stored
for later comparison to obtaining results with the actual
state. As it was earlier described, every record was treated
like a vector to use the created method. To determine
effectiveness of the method, the following coefficient 𝑎𝑐𝑐
was defined:

𝑎𝑐𝑐 =
𝑛𝑐

𝑛𝑡
· 100%, (14)

where 𝑛𝑐 is the number of correct matches and 𝑛𝑡 is
equal to the number of all tested records. The final result
was rounded to two decimal places.

The program was tested for four variants of iterations
number. A range of 𝑎 in all cases was assumed to [0; 2].
For each option effectiveness of the method was checked
for Euclidean distance function 1 and also for distance in
Manhattan metric 2 by launching the program five times
in both cases and calculating the arithmetic mean of the
obtained results. These operations were performed for
15 different values of 𝑘 parameter: 𝑘 = 1, ..., 15.

The first variant of i terations number was 𝑗 𝑚𝑎𝑥 =
100. For the Euclidean metric, the highest arithmetic
means of 𝑎𝑐𝑐 value was obtained for 𝑘 = 2 and reached
71.33%. This value did not fall below 34.00%. In the case
of Manhattan distance, the arithmetic means of the 𝑎𝑐𝑐
coefficient assumed values between 26.00% and 44.00%.
Detailed results are placed in Table 1.

In the second test, the number of iterations was modi-
fied to 25. The obtained results are presented in the table
2. It turned out that for Euclidean distance significant
improvement of effectiveness was achieved regardless of
the value of 𝑘. In this case, the arithmetic mean of 𝑎𝑐𝑐
was greater than or equal to 90.00%. It means that nearly
all of the tested records were correctly classified. For the
Manhattan distance, the results were similar to the first

Table 1
Arithmetic mean of the 𝑎𝑐𝑐 coefficient
for 𝑗𝑚𝑎𝑥 = 100, 𝑎 ∈ [0; 2].

k Euclidean distance Manhattan distance
1 55.33% 31.33%
2 71.33% 33.33%
3 62.00% 43.33%
4 44.00% 34.67%
5 34.00% 37.33%
6 41.33% 28.67%
7 64.67% 38.67%
8 70.67% 28.67%
9 47.33% 34.66%
10 53.33% 35.33%
11 65.33% 27.33%
12 53.33% 41.33%
13 58.00% 44.00%
14 58.67% 30.67%
15 48.00% 26.00%

Table 2
Arithmetic mean of the 𝑎𝑐𝑐 coefficient
for 𝑗𝑚𝑎𝑥 = 25, 𝑎 ∈ [0; 2].

k Euclidean distance Manhattan distance
1 96.67% 37.33%
2 93.33% 42.67%
3 91.33% 37.33%
4 94.67% 33.33%
5 92.67% 38.66%
6 91.33% 32.67%
7 94.67% 36.67%
8 90.00% 27.33%
9 92.00% 42.67%
10 92.00% 37.33%
11 94.67% 37.33%
12 94.67% 37.33%
13 92.00% 40.00%
14 97.33% 35.33%
15 93.33% 38.00%

test. The arithmetic mean between 27.33% and 42.67%
was obtained.

Another test was performed for 50 iterations. As in the
previous step, results for the Manhattan metric did not
improve noticeably. The highest arithmetic mean 38.67%
can be observed for 𝑘 = 4. 30.67% is the lowest obtained
value. For Euclidean metric results are not as good as
in the previous test but there were much more correctly
classified records than for 100 iterations, for example
when 𝑘 = 4 it was 72.00% in this variant (𝑗𝑚𝑎𝑥 = 50) and
44.00% when 𝑗𝑚𝑎𝑥 = 100. Other values are presented in
table 3.
The last test assumed 𝑗𝑚𝑎𝑥 = 1000 so the number

Table 3
Arithmetic mean of the 𝑎𝑐𝑐 coefficient
for 𝑗𝑚𝑎𝑥 = 50, 𝑎 ∈ [0; 2].

k Euclidean distance Manhattan distance
1 65.33% 35.33%
2 61.33% 34.67%
3 70.67% 30.67%
4 72.00% 38.67%
5 59.33% 36.00%
6 71.33% 36.00%
7 62.66% 34.00%
8 67.33% 36.66%
9 70.00% 31.33%
10 64.00% 30.67%
11 66.67% 34.67%
12 67.33% 36.00%
13 62.67% 36.00%
14 72.00% 34.00%
15 60.00% 30.67%

Table 4
Arithmetic mean of the 𝑎𝑐𝑐 coefficient
for 𝑗𝑚𝑎𝑥 = 1000, 𝑎 ∈ [0; 2].

k Euclidean distance Manhattan distance
1 36.67% 38.67%
2 32.00% 37.33%
3 38.00% 30.67%
4 42.67% 35.33%
5 42.00% 32.00%
6 47.33% 33.33%
7 30.67% 39.33%
8 34.00% 26.67%
9 57.33% 29.34%
10 44.67% 31.33%
11 71.33% 30.00%
12 61.33% 33.33%
13 60.67% 33.33%
14 56.00% 34.00%
15 40.66% 33.33%

of iterations significantly increased. Table 4 presents
the arithmetic mean of the 𝑎𝑐𝑐 coefficient in this vari-
ant. Again, the distance function for Manhattan brought
results similar to other tests. None of the values of param-
eter 𝑘 causes results markedly better than others. If the
Euclidean metric is applied, results depend on 𝑘 value.
For example, when 𝑘 = 7, the arithmetic mean of 𝑎𝑐𝑐
is equal to 30.67% and it is the lowest result. Simultane-
ously, for 𝑘 = 11 it is 71.33%. Thus the range of these
results is quite big – almost 40%.

4. Conclusions
The effectiveness of the method obtained from a combi-
nation of 𝑘-nn with Grey Wolf Optimizer depends on
established features. Using this method and appropriate
input parameters can bring satisfactory results – for ex-
ample as in the test for 𝑗𝑚𝑎𝑥 = 25 and the Euclidean
metric. Comparing other values, it can be observed that
with the problem described in this paper, the distance
function for the Manhattan metric is not very effective.
The correctness of matches using this metric is low. On
the other hand, in some cases, the value of 𝑘 parameter
also has an influence on results. The fourth performed
test proves it. In connection with the above, this hy-
brid method can be useful with appropriate assumptions.
However, it requires more experimentation for specific
cases.

References
[1] M. Caron, P. Bojanowski, A. Joulin, M. Douze, Deep

clustering for unsupervised learning of visual fea-
tures, in: Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 132–149.

[2] M. Z. Hossain, M. N. Akhtar, R. B. Ahmad, M. Rah-
man, A dynamic k-means clustering for data min-
ing, Indonesian Journal of Electrical engineering
and computer science 13 (2019) 521–526.

[3] K. P. Sinaga, M.-S. Yang, Unsupervised k-means
clustering algorithm, IEEE access 8 (2020) 80716–
80727.

[4] X. Yang, C. Deng, F. Zheng, J. Yan, W. Liu, Deep
spectral clustering using dual autoencoder network,
in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp.
4066–4075.

[5] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf
optimizer, Advances in engineering software 69
(2014) 46–61.

[6] M. Abd Elaziz, A. A. Ewees, N. Neggaz, R. A.
Ibrahim, M. A. Al-qaness, S. Lu, Cooperative meta-
heuristic algorithms for global optimization prob-
lems, Expert Systems with Applications 176 (2021)
114788.

[7] D. Połap, M. Woźniak, A hybridization of dis-
tributed policy and heuristic augmentation for im-
proving federated learning approach, Neural Net-
works 146 (2022) 130–140.

[8] D. Połap, M. Woźniak, Meta-heuristic as manager
in federated learning approaches for image process-
ing purposes, Applied Soft Computing 113 (2021)
107872.

[9] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed,
Y. Guerrero-Sanchez, Integrated neuro-swarm

heuristic with interior-point for nonlinear sitr
model for dynamics of novel covid-19, Alexandria
Engineering Journal 60 (2021) 2811–2824.

[10] D. Połap, M. Woźniak, R. Damaševičius,
R. Maskeliūnas, Bio-inspired voice evalua-
tion mechanism, Applied Soft Computing 80 (2019)
342–357.

[11] D. Połap, N. Wawrzyniak, M. Włodarczyk-Sielicka,
Side-scan sonar analysis using roi analysis and deep
neural networks, IEEE Transactions on Geoscience
and Remote Sensing (2022).

[12] Y. Wu, A survey on population-based meta-
heuristic algorithms for motion planning of aircraft,
Swarm and Evolutionary Computation 62 (2021)
100844.

[13] G. Dhiman, Ssc: A hybrid nature-inspired meta-
heuristic optimization algorithm for engineering
applications, Knowledge-Based Systems 222 (2021)
106926.

[14] M. Sharma, P. Kaur, A comprehensive analysis of
nature-inspired meta-heuristic techniques for fea-
ture selection problem, Archives of Computational
Methods in Engineering 28 (2021) 1103–1127.

[15] Ł. Knypiński, L. Nowak, Zastosowanie algorytmu
szarychwilków do rozwiązania zadań optymalizacji
urządzeń elektromagnetycznych, Poznan Univer-
sity of Technology Academic Journals. Electrical
Engineering (2019).

[16] S. N. Makhadmeh, A. T. Khader, M. A. Al-Betar,
S. Naim, An optimal power scheduling for smart
home appliances with smart battery using greywolf
optimizer, in: 2018 8th IEEE international confer-
ence on control system, computing and engineering
(ICCSCE), IEEE, 2018, pp. 76–81.

[17] M. Włodarczyk-Sielicka, N. Wawrzyniak, Problem
of bathymetric big data interpolation for inland
mobile navigation system, in: International Con-
ference on Information and Software Technologies,
Springer, 2017, pp. 611–621.

[18] D. Zhao, X. Hu, S. Xiong, J. Tian, J. Xiang, J. Zhou,
H. Li, K-means clustering and knn classification
based on negative databases, Applied Soft Comput-
ing 110 (2021) 107732.

[19] R. A. Fisher, The use of multiple measurements in
taxonomic problems, Annals of eugenics 7 (1936)
179–188.

	1 Introduction
	2 Methodology
	2.1 k Nearest Neighbors Algorithm
	2.2 Grey Wolf Optimizer
	2.3 Hybridization

	3 Experiments
	4 Conclusions

