
Secure and Privacy-Preserving DRM for Mobile
Devices with Web Service Security∗
– An Experience Report –

Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

Abstract Preserving the customer’s privacy has to be a major concern when im-
plementing a commercial DRM system. In [12] a privacy-preserving digital rights
management (DRM) architecture based on the widely used Open Mobile Alliance
(OMA) DRM [17] specification for mobile devices has been suggested. In this pa-
per the design of a possible implementation of the proposed architecture is explained
which uses Web Service Security (WSS). This choice has been made since the web
services originally designed in the architecture have to meet several security fea-
tures which are necessary for privacy-preservation. Thus specifically selected WSS
features facilitate validation of correctness of the security enhanced concept. This
validation is reflected by a detailed security assessment. Moreover a prototypical
implementation of privacy-preserving DRM by using a recent WSS implementation
(WSS4J) is briefly explained. Finally, along with the experiences from the imple-
mentation, a discussion of a potential extension of our suggested architecture and
implementation to other DRM systems is given. This discussion also reviews pri-
vacy and DRM, both mobile and stationary, in general from a technological point
of view. The conclusion is that a similar extension would be possible for all DRM
specifications that do not require an online on-access license validation.

1 Introduction

1.1 DRM and Privacy

Among the main issues for criticism of Digital Rights Management (DRM) nowa-
days are the unnecessary restriction of customers in their rights for fair use of digital

Carsten Kleiner and Lukas Grittner and Daniel Kadenbach
University of Applied Sciences & Arts, Faculty IV, Ricklinger Stadtweg 120, 30459 Hannover,
Germany e-mail: ckleiner@acm.org,daniel.kadenbach@fh-hannover.de

∗ This project has been funded by the Lower Saxony Ministry for Science and Culture under
grant no AGIP FA 2005.692.

1

ckleiner@acm.org, daniel.kadenbach@fh-hannover.de

2 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

content as well as privacy concerns regarding information about the user and its us-
age profile. This criticism is also valid for the currently leading DRM specification
which had originally been designed for mobile devices OMA-DRM ([17]).

Since content producers also have a legitimate right to control copyrights on
their content, the only solution of this dilemma seems to be designing a privacy-
preserving architecture for DRM. In an earlier paper ([12]) we have introduced an
architectural concept which is a natural extension to the standard DRM architecture
but greatly improves privacy for customers while maintaining the advantages for the
content issuers.

To be able to use DRM protected content the user requires licenses, which he can
purchase from the license issuer. Present DRM implementations assume a previous
registration of the customer at the issuer’s side. Thus the customer is forced to aban-
don private data to the issuer. Any type of misuse of this data when combined with
usage profile information by the license issuer is possible. In the DRM architecture
that we propose these possible misuse scenarios disappear by adding an interme-
diary between the customer and license issuer within the purchasing process. This
intermediary party is trusted by both the customer and the issuer and conducts the
purchase instead of the customer. The focus of our work is on providing a possible
technical solution for the privacy problems. We do not consider non-technical influ-
ences on the system such as political or legal pressure on the trusted third party to
reveal usage information. Preventing such influences is nevertheless a very impor-
tant issue in order to really preserve the customers privacy. But this is the focus of
other work whose results may be complemented with our solution to provide for a
fully privacy-preserving solution.

Since the architecture is defined independently of implementation concerns we
will propose an implementation via web services with Web Service Security (WSS)
enhancements (as specified by OASIS in [16]) that is based on a detailed security
assessment of our conceptual architecture in this paper. To proof the feasibility of
this approach we have implemented a prototype that will also be described in this
article. In addition to this proof-of-concept we will describe our experiences during
the implementation phase which will also be helpful for other projects using the
same WSS implementation techniques.

After a short description of the OMA DRM architecture which has been used
as foundation for our work we will briefly discuss other related work in section
1.3. Section 2 gives an overview of the context and the architecture of our privacy-
preserving DRM framework. After that section 3.1 introduces the underlying pro-
tocol and the security requirements of the system, followed by a detailed security
assessment of the architecture in section 3.2.

Section 4 covers the description of our implementation of the architecture with
web service technology using WSS enhancements, while section 5 goes into some
of the challenges we encountered. Finally section 6 covers our conclusion of using
WSS for the proposed architecture and mentions future work which has to be done
as well as future points of investigation.

Secure and Privacy-Preserving Mobile DRM 3

1.2 OMA DRM

The OMA (Open Mobile Alliance) is an association of leading service and product
providers in the mobile device sector which specifies interoperable mobile services
and tries to establish them as an industry standard. OMA DRM defines a quasi-
standard for DRM in the context of mobile devices, but it may in principle be used
for DRM on stationary devices as well. Currently the second edition of this specifi-
cation is the most recent one: OMA DRM v2.0. This enhanced specification is very
comprehensive and defines many different use cases.

An important parts of the specification is the definitions of the ROAP - Rights
Object Acquisition Protocol ([17]). It defines an XML-based communication pro-
tocol which is used for the communication between the customer’s device and the
rights issuer, e.g. to acquire rights objects. Users are purchasing permissions em-
bodied in so-called Rights Objects and the Rights Objects after being transferred to
the customer’s device need to be handled in a secure and un-compromising manner
on the device.

Certificates are used to identify the mobile devices as well as the issuer and hy-
brid encryption techniques are used to secure the licenses during transmission. For
this the public and private key corresponding to the certificate are used to secure
a symmetric content key which is then used to decrypt the content on access. The
device owner is neither allowed nor required to access the key for the content which
is encrypted within the rights object directly. On mobile devices supporting OMA
DRM this is controlled by a local DRM-management program (a so-called trusted
DRM user agent).

Licenses provided in rights objects are bound to a certain device or set of devices
and are thus not exchangeable. This is important for the privacy-preserving exten-
sion explained in this paper, since the content issuer may thus transfer the license
to the bank without knowing the final client without having to fear that the license
is misused (at least the danger is not bigger than it is nowadays without privacy
considerations). On current mobile devices trusted DRM agents exist; on stationary
hardware such a trusted agent is assumed to exist for OMA DRM to work, but this
is currently not the case. Work towards achieving such a software component is un-
derway (e.g. by using trusted computing techniques), but this is not the focus of our
work. In line with OMA DRM we base our work on the existence of a trusted DRM
agent on client side.

1.3 Related Work

In an earlier paper ([8]) we have already shown how to extend OMA DRM to use
web services for communication instead of the proprietary ROAP protocol.

A general introduction to WSS standards can be found in [19] or the well-known
original standards documents (e.g. [16]). Standards are a good foundation for build-
ing applications, but they have to be employed in a correct and reasonable way.

4 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

Our goal was to define all the required details for a DRM web services scenario to
prove that the WSS standard is in fact sufficient for these requirements. A security
architecture for DRM without web services has been described in [13].

In [6] it is shown how DRM may be used to share personal digital content among
a fixed number of well-known users. Since content is just shared in that setting there
is no purchase to be conducted which simplifies the process. process. The authors
assume that DRM is used to detect illegally published content on the sharing portals.

How SOAP messages can be secured against XML rewriting has been shown in
[18], but this security measure is not sufficient for our application. In a policy based
setting this has been described in [3]. Due to the work presented in [5] performance
problems by adding security to the given DRM scenario should not be expected.

Practical experiences with the technologies in our study are rarely reported so
far. In [2] aspect-oriented programming is used in conjunction with the web service
security for Java (WSS4J, for more details see section 4.2) implementation and in
[7] the technology is used for secure key exchange in web services which is part of
our DRM purchase scenario.

A process to incorporate security in general web service design has been de-
scribed in [10, 9]; these processes have not been used in our work, since we de-
signed the services for the specific DRM scenario only. In a future implementation
in an industrial setting the guidelines mentioned in these references should also be
considered additionally as well as the ones described in [11]. These guidelines can
be understood as complementing our service design.

2 Concept and Architecture

The architecture for a privacy-preserving DRM has been described in detail in [12]
already. Hence in this paper only a short description of the architecture is given.

The scenario contains three parties which communicate among each other. These
three are an online issuer of DRM secured digital content, a customer and a trusted
bank. The purpose of this system is to preserve the privacy and anonymity of the
customer towards the content issuer. In current DRM implementations (e.g. based on
OMA DRM [17]) customers are forced to register at the issuer to be able to buy the
offered digital content. In our implementation the purchasing activity is redirected
over a trusted third party. This trusted party is a bank in our case because this way
the customer does not have to expose additional private data since he already has
an existing account at the bank and also one can assume that the issuers will trust
financial institutions like banks.

We introduced a communication protocol which may be used for acquisition of a
license in a standard user buy process (i. e. a user purchasing a license for a specific
content object). The protocol consists of six messages required for communication
among the parties involved. Prerequisite for conducting this protocol is a successful
download of a protected (encrypted) content from the issuer’s online shop or through
some sort of super distribution like peer-to-peer networks. Super distribution refers

Secure and Privacy-Preserving Mobile DRM 5

to a process where a customer does not obtain the content from the provider directly
but rather from some other customer; this distribution mechanism is very important
for commercial success. A content object contains an ID which is later used to iden-
tify the content and acquire the corresponding licenses for this content. This is not
related to privacy issues since the download of the content may occur much earlier
than the acquisition of the license; also the content may have been obtained by super
distribution without ever contacting the issuer’s portal.

This is the starting point of our protocol: a user has obtained a protected content
object from some source and now wants to acquire a description of all available
licenses for this content object. Therefore he sends a message to the issuer by which
he acquires a description of all available licenses for the given content and receives
them within the response message. Details on message content have been described
in our previous work (see above). After choosing a license the customer transmits
a purchase order to his bank, which in return conducts the purchase at the issuer in
place of her/him. Because the issuer trusts the bank he provides the bank with the
acquired license and receives the corresponding amount of money transferred to his
account later on. The bank in turn forwards the license to the customer so he can
decrypt and use the content according to the license. During the purchasing action
the issuer did not get any information about the customer, but was sure to be paid
for her/his product. Figure 1 shows the described scenario.

Fig. 1 System architecture for privacy-preserving DRM

The anonymity of the customer towards the issuer may be preserved in many
ways in this architecture. Firstly the only information about the customer that the is-
suer could obtain is the IP address of the device that requests the different licensing
options. Thus any well-known approach to achieve anonymity of the IP address may
be used here as well, e.g. dynamic IP addresses and an access proxy that hides the

6 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

true address of the client from the provider. Since these techniques are not specific
to our scenario and also well-known we do not discuss these in more detail here.
Secondly the content issuer and license provider do not have to be the same party
in OMA DRM. The license issuer only knows the content ID, but possibly does
not know more about the content. Finally the time between obtaining the content,
obtaining the available licensing options and requesting the usage permission may
not be predicted by the issuer. Thus even if the downloads of content or licensing
options would be related to IP addresses (which would generate huge amounts of
mostly useless data due to usage of shielded IP addresses) the issuer is not able to
relate these to the actual license requests since the time lag between the first and sec-
ond events may not be predicted and during license requests the communication is
with the trusted thrid party. Actually in the cases of superdistribution (one customer
passes the encrypted content object to another) or license upgrade (a customer ob-
tains a new license because the old one has expired) the customer never downloads
the content directly from the issuer so that no correlation between the IP address for
download and requestor of a license may be guessed anyway.

The architecture and the defined protocol guarantee the protection of user privacy
and the reliability of the license orders. However, the authentication of the customer
towards the bank’s service or of the bank towards the issuer’s service, the confi-
dentiality and the integrity of the messages is not addressed by the protocol itself
and thus need to be guaranteed by the implementation which we describe later in
this article. Since we will implement the system with web services, we can utilize
enhancements like WSS to handle these requirements.

3 Security Issues

3.1 Security Requirements

In the previous section we have mentioned that the protocol per se preserves the
privacy of the customer, but the messages themselves are not secured against wire
tapping and other attacks during transmission. They could also be spoofed by any-
one. Thus they have to be protected against all possible attacks, a more detailed
security assessment is in section 3.2.

Figure 2 shows the exchanged messages and the chosen techniques for secur-
ing them. The message details are not relevant in this context, we can assume that
we just have these 6 messages we want to exchange. We keep in mind that our
implementation of the communication protocol will be done using web services.
The first communication between the customer and the issuer for the acquisition
of the license list should be protected by the use of the HTTPS protocol. As it is
well-known this protocol allows the authentication of one or both communication
partners, in our case the authentication of the issuer is sufficient and all we want.

Secure and Privacy-Preserving Mobile DRM 7

Fig. 2 Message flow in privacy-preserving DRM

Also the encryption of the communication is desired. A requirement is that the issuer
owns a certificate.

Not as simple as the requirements for this communication are the conditions for
the communication between the customer and the bank. At first the bank should
accept only requests from its customers and attacks or malformed messages should
be dropped efficiently without bothering the service. Therefore the customer has to
authenticate her before requesting a license acquisition. Moreover customers have
to encrypt the message in a way the bank and only the bank can decrypt. A solution
for this could be the use of certificates on both sides. In conjunction with WSS
these certificates can be used to sign and encrypt the exchanged SOAP messages
which would solve the security problems. Through the encryption the message is
only readable by the receiver and the signature ensures that the message’s sender
is the one he pretends to be. Additionally a timestamp can be used so that replay
attacks are not possible anymore. Using WSS in this way the customer can also be
sure talking to her bank and not to an attacker who pretends to be her bank.

Similar to this communication is the message flow between the bank and the is-
suer. It is important that the sender of a License-Acquisition message is really an
official bank. And the receiver of that message is a registered online issuer. There-
fore both communicating parties have to authenticate each other to be sure that the
transaction is correct. What we need in this case are also certificates that both parties
trust. WSS is then used to sign, encrypt and timestamp the SOAP messages similar
to the other case.

More detailed information about the requirements of the certificate and its gener-
ation is given in section 4.2. The initial setup of the system, i.e. the distribution of the

8 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

certificates required, is not any different from the initial setup of any system using a
PKI. The certificates should as usual be distributed over a different communication
channel than the DRM system they are used for. If additional security measures for
security token exchange and trusted web services are required (this should be con-
sidered application dependent in our opinion, but is probably desirable) additional
web services specifications such as WS-Trust [14] may be integrated.

3.2 Security Assessment

A discussion on user privacy has already been performed in section 2 since it is
already observed by the architecture itself. In order to ensure the desired security
of the overall system and to be sure that correct and sufficient security technologies
have been chosen for the prototype described later, a security assessment has been
conducted. Several threats to the aforementioned architecture are imaginable:

• Information about orders or customer-issuer relationships could be wire-
tapped The transferred information in all cases is encrypted with public keys
in a way so that only the verified receiver is able to decrypt it. Thus message
confidentiality is ensured. A relation between a customer and an issuer can only
hardly be constructed by traffic analysis as long as the bank is not compromised.
Obviously a compromised bank would make the whole system useless and thus
is extremely important here. But assuming a non-compromised bank seems suf-
ficiently reasonable here; see section 6 for a more detailed discussion. To make
it even harder for an observer the bank could behave like a Mix [4] and collect
a number of purchase orders, mix them and bring them to the same length and
then transmit them to the issuers.

• The customer’s authentication data could be stolen Similar to stealing the
PIN of a cash card this is a worst case scenario for the customer since an at-
tacker could buy as much as the customer’s bank account allows. Therefore the
following countermeasures are in place: The customer has the option to revoke a
stolen certificate at the issuing bank and thus make it worthless once he is aware
of the stolen authentication data. Since misuse might have already occured at
that time, even stronger security is used in our concept additionally: all com-
munication regarding the authentication process in our architecture is encrypted,
so that only the verified bank can decrypt the information. It is also protected
against replay attacks by inserting timestamps. Thus it is impossible for an at-
tacker to acquire the authentication credentials of the customer by wiretapping
the communication between customer and bank, as long as the encryption of the
messages cannot be broken. Since the encryption of Web Service Security relies
on well-known and tested encryption schemes, this is not a problem. Because
of the timestamp encrypted within the message an attacker would be unable to
perform replay attacks, thus pretending the customer wanting to execute a pur-
chase transaction several times. Finally, the attacker is unable to pretend to be
the bank and thus obtain authentication data of the customer, because certificates

Secure and Privacy-Preserving Mobile DRM 9

are used to authenticate customer and bank to each other. We can assume that it
is impossible for an attacker to acquire the required private key of the bank.
Apart from the communication path the attacker could also try to gain physical
access to the customers authentication data: steal customer’s certificate and pri-
vate key directly from the device. To additionally prevent this an additional pass-
word should be used, by which the authentication data is protected and which
has to be entered by the user any time the certificate or key is used. If desired this
feature is supported by our architecture and implementation.

• The orders could be manipulated To ensure the integrity of the transferred data,
all messages are signed by their senders, so without knowing the corresponding
private keys, which should be kept safe, it is impossible to manipulate the content
of the messages.

• License issuer could be spoofed by the bank by using a single license for
several customers Firstly the bank is used as a trusted third party, thus it is not
expected to spoof anyone in the system. But even if it would do so, since the
purchase order is transferred from customer to bank with a specific session key
issued by the customer which is later used by the issuer to encrypt the license
before it is transferred back to the bank, the bank never has access to the unen-
crypted license. Thus the bank can’t use a license for multiple different customers
without knowledge of the issuer or at least the licenses would be worthless since
the other customers do not know how to decrypt them.

• The customer could be spoofed by the license issuer by sending and billing
unrequested licenses The bank acts as trusted third party and fully controls the
billing process such that only valid requests from customers are processed. The
issuer does not have any influence on which license option is used and thus what
amount is billed. The license issuer cannot act as a customer by forging purchase
orders, since it would need the customer’s authentication data (see above).

• The bank could conduct purchases unknown to the customer This misuse
scenario is already handled properly by our architecture, because every purchase
order has to be signed by the corresponding customer, and the certificate genera-
tion for the customer certificates should be implemented such that only the cus-
tomers know their private keys. Since signed purchase orders have to be stored
by the bank as evidence, it cannot forge purchase orders of its customers. Also
the bank as trusted party should not act abusively anyway.

4 Prototypical Implementation

For the implementation we used the programming language Java, in particular the
JDK 1.6. As described above the messages have been translated to web services,
which allows the usage of web service enhancements like WSS for securing the
messages. For the web service part we used Apache Tomcat 6.0 as application server
with Apache Axis 1.4 as web service module. The WSS for Java (WSS4J) implemen-
tation in version 1.5.1 was the WSS implementation we used.

10 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

4.1 Implementation of Components

Bank The bank is acting as a mediator in the conceptual architecture. Technically
speaking the bank is divided into two components. The first component is the cus-
tomer web service which is contacted by the customer and accepts license requests.
The applied interface is shown in listing 3 (all listings are in the appendix).

The web service itself only accepts the requests from the customer and then deliv-
ers them to the main service running within the bank architecture, which is the sec-
ond component. Its duties are verifying the license order, checking the customer’s
account and conducting the license acquisition on behalf of the customer.

Issuer On the issuer’s side there are the two tasks license acquisition and license
list acquisition. Because of their independence they are separated into two services,
which can be hosted on different servers for several reasons (e.g. scaling) in practice.
The first one is the service for the customer modeled by the interface in listing 4.

For a given content ID a list of available licenses is delivered; the implementation
of class LicenceListAcquisitionResponse is shown in listing 2. The class
has two attributes, one with an array of License objects and one which contains
the issuers certificate encoded in bytes. This certificate can then be loaded on the
customer’s side and be checked for validity. If successful it can be used for verifying
the license offers which are signed by the issuers certificate.

Furthermore on the issuer’s side there exists the service for the bank, which is
modeled as shown in listing 5.

As would be expected by the designed architecture the exchanged parameters
LicenseAcquisitionRequest and LicenseAcquisitionResponse con-
tain the required attributes for conducting the acquisition of the licenses. This covers
the chosen license description signed by the bank and the issuer, the bank’s certifi-
cate and a session key which has been generated by the customer. The detailed
structure of the two messages is shown in listings 6 and 7.

Since we focused on the WSS part of the DRM architecture, the DRM system
itself was not implemented by us. We rather used an already available implementa-
tion of an OMA-DRM 2.0 conforming system as a backend for our license issuer.
This by itself is neither using web services, nor is secure or privacy-preserving.

Customer The implementation of the customer client application in our proto-
type works over the console like a stub only. In a real-world scenario a user-friendly
client application would be developed which would be installed on the customer’s
mobile device.

Our stub works as follows: beginning with the prompt for a content ID the pro-
gram performs a license list acquisition and verifies the issuer’s signatures. After
that it presents the available licenses to the customer. When the customer chooses to
initiate a concrete license acquisition, a session key for AES encryption is generated
and a license request is sent to the bank. If the request is successful, the encrypted
license is delivered to the device and then decrypted with the session key. Then the
license is ready to be used by the DRM client on the customer’s mobile device.

Secure and Privacy-Preserving Mobile DRM 11

4.2 WSS4J

WSS4J is an implementation of WSS [15] in Java. WSS offers several actions which
can be performed to the transmitted SOAP message. These are: Sign the message,
encrypt the message, authorize via username/token or just add a timestamp. These
actions may also be combined. The choice of the features and their configuration is
done via deployment descriptors already known from standard web services. These
descriptors are used to deploy a web service within an application server and de-
fine the available interfaces and how type mapping is done. For web services in
conjunction with WSS4J both client and server need such a deployment descriptor.

Chosen preferences: For our purpose we have chosen to use the possibilities
Encryption, Signature and Timestamp as actions. These three actions guarantee that
the transmitted message is secured against being read by unauthorized persons and
being manipulated unknown to the receiver during transmission. Finally the times-
tamp avoids the success of replay attacks. For more details see section 3.2.

PKI: WSS4J works with certificates to realize the necessary features. In section
5 we will generate two PKIs for the purpose of encryption and authentication. Those
PKIs can be used in WSS4J for the mentioned purposes. We will generate two PKIs
because in reality we have to distinguish between two different kinds of PKIs. In
the first case we want to sign the licence descriptions by the issuer to make the offer
reliable. For this reason the certification authority (CA) which issued the content
issuer’s certificate has to be trusted by the client. So the CA has to be a well known
and accredited company for such responsibilities. In a similar way the bank has
to prove the customer to be authentic and also it has to present evidence to the
issuer that he communicates with a real bank and will get the funds required for the
transaction. The second case deals with the communication between the customer
and the issuer, especially with the authentication of the customer towards the bank.
For this matter it is totally adequate to create a bank internal PKI. So the customer
certificates can be issued by the bank itself.

<requestFlow>
...

</requestFlow>
<responseFlow>
<handler type="java:org.apache.ws.axis.security.WSDoAllSender">

<parameter name="action" value="Signature Encrypt Timestamp" />
<parameter name="user" value="bank" />
<parameter name="passwordCallbackClass" value="common.PWBankCallback" />
<parameter name="signatureKeyIdentifier" value="DirectReference" />
<parameter name="signaturePropFile" value="bankServer_security.properties"/>
<parameter name="encryptionKeyIdentifier" value="SKIKeyIdentifier" />
<parameter name="encryptionSymAlgorithm"

value="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<parameter name="encryptionUser" value="useReqSigCert" />

</handler>
</responseFlow>

Listing 1 Part of deployment descriptor of the bank server

Deployment example: In order to use WSS for the communication between the
customer and the issuer we have to enhance the existing Deployment Descriptor of

12 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

the server side (bank). More precisely the existing element <service> has to
be enhanced with the two elements <requestFlow> and <responseFlow>
which (as the names suggest) specify the actions for the service request and service
response messages. In listing 1 part of the descriptor for the bank server is shown.

For the request messages, which are received by the bank server from the bank’s
customers, the actions Signature, Encrypt and Timestamp are specified as mentioned
in section 3.1 already. Within the file bankServer security.properties we specified
the keystore, keystore type and other similar properties.

Among the parameters for the outgoing messages the more interesting ones
are signatureKeyIdentifier and encryptionUser. The first parameter
specifies how the receiver will have to verify the signature. In our case the value
DirectReference means that the certificate is sent in conjunction with the message
to the receiver. The advantage is that the receiver does not have to have the sender’s
certificate within its keystore but only the issuers certificate. The value for the pa-
rameter encryptionUser is set to useReqSigCert meaning that for encrypting
a message the same certificate as the one signing the received message should be
used. The parameter passwordCallbackClass specifies the name of the class
used to acquire a password for the user’s private key specified in the deployment
descriptor; this class will retrieve the password out of a sufficiently secure place.

5 Challenges in Implementation

Apart from the typical problems with rather new software libraries such as lack of
documentation and tutorials or remaining bugs, we consider the extensive deploy-
ment scenario to deserve some attention. As it is known the services have to be de-
ployed to a web service capable web server. Therefore files have to be copied, stubs
to be generated, jarfiles to be created and so on. This process can be very fault-prone,
so we suggest to use a professional build environment (e.g. Apache Ant) containing
several targets to e. g. build the bank’s service, build both of the issuer’s services or
generate the web service description file for the particular services.

Crypto-Provider: There exist several libraries for handling security topics such
as symmetric and asymmetric encryption or signatures. Unfortunately there are in-
compatibilities between these libraries. While running the secured web services
some cipher algorithms did not work properly because the crypto-providers used on
client and server side were different. After configuring both to use the Bouncy Castle
(http://www.bouncycastle.org) implementation as the default provider
the ciphers worked well.

Certificate Generation: For our prototype we generated all required certificates
by ourselves. At first we generated a sample root certification authority, which we
then used to issue certificates for the bank and the issuer. Furthermore we generated
a second certification authority just for the purpose to issue customer certificates,
which are only valid within the communication of a bank and its customers. Figure
3 illustrates the connection between the several certificates.

Secure and Privacy-Preserving Mobile DRM 13

Fig. 3 Certificate hierarchy used for privacy-preserving DRM

For generation of the certificates we mainly used OpenSSL [20], which contains
tested C libraries for encryption and some command line tools to create symmetric
or asymmetric keys which may be used for encryption or signature; also the tools
may be used to generate certificates and sign certification requests in a comfortable
way. E.g. a certification request can be executed with the following command:
openssl req -x509 -newkey rsa:2048 -keyout cakey.pem -out cacert.pem

This command writes the request into the file cacert.pem and moreover a pri-
vate key into the file cakey.pem. Furthermore we imported the certificates which
were encoded in PEM-format to Java Keystores.

6 Conclusion & Future Work

6.1 Conclusion

By using web services in conjunction with WSS features we were able to fulfil the
security requirements for our privacy-preserving DRM architecture. The prototyp-
ical implementation underlines that such an architecture may be implemented. In
particular the following three steps were necessary: firstly transform OMA DRM to
use web services as communication protocol, secondly extend OMA DRM to use
a more privacy-preserving architecture and finally use WSS in addition to include
necessary security requirements. In the prototype we used only license acquisition.

At the time of building our prototype the WSS4J implementation used does not
seem to be fully mature. Since the WSS specification itself is nevertheless fully
sufficient, it will only take short time until WSS4J may be used in production.

Our architecture for privacy preservation builds on the straightforward idea of
incorporating a third trusted party into the scenario. This is a very natural fit for
the DRM situation in our view, since billing has to be taken care of in a DRM
context anyway and this is usually not part of the current specifications (e.g. OMA

14 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

DRM). Thus it would not only make the specifications more complete, but offer a
good chance to take care of privacy concerns in a DRM context in a very fitting and
helpful way, since the inclusion of the trusted bank provides advantages for both
customers (privacy) as well as license issuers (billing and reliability).

Of course our architecture only works if the bank can really be trusted. If there
is any chance that the bank might spoof any of the other parties the security of the
system is lost to a high degree. Also the privacy of users depends on the trustfulness
of the bank. If there is a chance that e.g. by legal pressure anyone might obtain
information that is usually only known by the bank, then the privacy of users would
be in danger. We feel that this is not a big restriction, since the trusted third party in
our scenario is probably a real bank. If pressure on a real bank may lead to privacy
concerns, there are more serious privacy issues than DRM usage profiles.

6.2 Future Work

Still work has to be done to drive our implementation from a prototypical proof of
concept to a real-world usable application scenario, so that it will become possible
to investigate the system and its usability, security, stability, scalability and other
aspects in further detail. Also, other DRM processes than license acquisition have
to be investigated in the same way to come up with a complete implementation.
Conceptually we expect to have solved all problems in our prototype already.

As always the case with prototype implementations they only reflect a snapshot.
Thus another interesting point would be to investigate more recent web service and
WSS implementations, which were not available at the time of our implementa-
tion, especially concerning their improved usability. For example the WSS4J 1.5.2
version or the promising Axis 2 [1] implementation.

Finally a possible extension and transfer of our privacy and security measures to
other DRM systems than OMA DRM would have to be examined. We expect that
as long as the communication in that system is carried out by web services (or a
different means which offers similar security features) the same approach should
also work for other DRM systems. This claim is valid for DRM which uses a trusted
agent on the customer side for license checking (such as OMA DRM or HDCP).

If a DRM specification requires a per use activation or online license checking
on access of the protected material, the architecture does not work directly any-
more. In these cases it is much more difficult to guarantee user privacy, since the
online checking also has to be executed in a privacy preserving manner. Thus this
step would also have to be performed by a party other than the issuer (maybe an-
other trusted party) making the whole scenario even more complex. Also the usage
information of customers would be much more valuable and thus in danger since
detailed usage profiles are possible. In OMA DRM only license acquisition but not
actual use might be monitored without privacy preserving extensions. Consequently
nowadays only DRM specifications based on trusted agents for license checking
seem to prevail which is good news from a privacy perspective.

Secure and Privacy-Preserving Mobile DRM 15

References

1. Apache Software Foundation: Axis 2, Version 1.2 (2007). http://ws.apache.org/
axis2/

2. Baligand, F., Monfort, V.: A concrete solution for web services adaptability using policies and
aspects. In: ICSOC ’04: Proceedings of the 2nd international conference on Service oriented
computing, pp. 134–142. ACM Press, New York, NY, USA (2004)

3. Bhargavan, K., Fournet, C., Gordon, A.D., O’Shea, G.: An advisor for web services security
policies. In: SWS05: Proc. of the 2nd WS on Secure web services, pp. 1–9. ACM Press (2005)

4. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms (1981).
http://world.std.com/˜franl/crypto/chaum-acm-1981.html

5. Chen, S., Zic, J., Tang, K., Levy, D.: Performance evaluation and modeling of web services
security. In: Proceedings of the International Conference on Web Services, ICWS 2007, pp.
431 – 438. IEEE Computer Society, Salt Lake City, UT, USA (2007)

6. Conrado, C., Petkovic, M., van der Veen, M., van der Velde, W.: Controlled sharing of per-
sonal content using digital rights management. In: E. Fernández-Medina, J.C. Hernández, L.J.
Garcı́a (eds.) WOSIS, pp. 173–185. INSTICC Press (2005)

7. Fang, L., Meder, S., Chevassut, O., Siebenlist, F.: Secure password-based authenticated key
exchange for web services. In: SWS ’04: Proceedings of the 2004 workshop on Secure web
service, pp. 9–15. ACM Press, New York, NY, USA (2004)

8. Grittner, L., Kleiner, C., Kadenbach, D.: Implementing oma drm using web services. In:
Proc. of the 2nd Int. WS on Mobile Services-oriented Architectures and Ontologies (MoSO).
Mannheim (2007)

9. Gutiérrez, C., Fernández-Medina, E., Piattini, M.: Web services enterprise security architec-
ture: a case study. In: SWS ’05: Proceedings of the 2005 workshop on Secure web services,
pp. 10–19. ACM Press, New York, NY, USA (2005)

10. Gutierrez, C., Fernandez-Medina, E., Piattini, M.: Pwssec: Process for web services security.
In: Proceedings of the International Conference on Web Services, ICWS 2006, pp. 213 – 222.
IEEE Computer Society, Chicago, IL, USA (2006)

11. Hepner, M., Gamble, M., Gamble, R.: Forming a security certification enclave for service-
oriented architectures. In: Proceedings of the International Conference on Web Services,
ICWS 2006, pp. 148 – 155. IEEE Computer Society, Chicago, IL, USA (2006)

12. Kadenbach, D., Kleiner, C., Grittner, L.: A drm architecture for securing user privacy by de-
sign. In: Proceedings of the 5th International Workshop on Security in Information Systems,
WOSIS 2007, pp. 188 – 195. IEEE Computer Society Press, Madeira, Portugal (2007)

13. Michiels, S., Verslype, K., Joosen, W., Decker, B.D.: Towards a software architecture for drm.
In: DRM05: Proc. of the 5th ACM WS on Digital rights management, pp. 65–74. ACM Press
(2005)

14. Nadalin, A., Gudgin, M., et. al.: Web services trust language (ws-trust) (2005). http://
www.ibm.com/developerworks/library/specification/ws-trust/

15. Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P.: Oasis web service security
(2006). http://www.oasis-open.org/committees/download.php/16790/
wss-v1.1-spec-os-SOAPMessageSecurity.pdf

16. OASIS: Web services security specification (2006). http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss

17. Open Mobile Alliance Ltd.: OMA DRM v2.0 (2006). http://www.
openmobilealliance.org/release_program/drm_v2_0.html

18. Rahaman, M.A., Schaad, A., Rits, M.: Towards secure soap message exchange in a soa. In:
SWS06: Proc. of the 3rd ACM WS on Secure web services, pp. 77–84. ACM Press (2006)

19. Soumeeh, R.E.: Web service security (2006). http://www.st.informatik.
tu-darmstadt.de/database/seminars/data/WS-Security.pdf?id=155

20. Young, E.A., Hudson, T.J.: OpenSSL Project (2004). http://www.openssl.org

http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://world.std.com/~franl/crypto/chaum-acm-1981.html
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.openmobilealliance.org/release_program/drm_v2_0.html
http://www.openmobilealliance.org/release_program/drm_v2_0.html
http://www.st.informatik.tu-darmstadt.de/database/seminars/data/WS-Security.pdf?id=155
http://www.st.informatik.tu-darmstadt.de/database/seminars/data/WS-Security.pdf?id=155
http://www.openssl.org

16 Carsten Kleiner and Lukas Grittner and Daniel Kadenbach

Appendix: Sample Listings of Prototypical Implementation

In this appendix some sample listings of the prototypical implementation are shown
for illustrative purposes. The listings are not meant to give a full reference to the im-
plementation; such a reference may be obtained by contacting the authors directly.

public class LicenceListAcquisitionResponse {
private Licence licenceList[];
private byte issuerCert[];
...

}

Listing 2 Structure of LicenceListAcquisitionResponse

public interface RequestLicenceInterface {
public LicenceDelivery requestLicence(

byte encSessionPublicKey[],
Licence licence, String timestamp,
byte licenceSignature[],
String issuerURL);

}

Listing 3 RequestLicense Service Interface

public interface LicenceListAcquisitionInterface {
public LicenceListAcquisitionResponse

licenceListAcquisitionRequest(String contentID);
}

Listing 4 LicenseListAcquisition Service Interface

public interface LicenceAcquisitionInterface {
public LicenceAcquisitionResponse

licenceAcquisitionRequest(LicenceAcquisitionRequest request);
}

Listing 5 LicenseAcquisition Service Interface

public class LicenceAcquisitionRequest {
private Licence selection;
private byte[] signature; // signature with the banks certificate
private byte[] publicKey; // certificate of the bank
private byte[] encSessionPubKey;
...

}

Listing 6 Structure of LicenceAcquisitionRequest

public class LicenceAcquisitionResponse {
private String status;
private byte[] encryptedLicence;
private String accountID; // account ID of the issuer
...

}

Listing 7 Structure of LicenceAcquisitionResponse

	Secure and Privacy-Preserving DRM for Mobile Devices with Web Service Security -- An Experience Report --
	Carsten Kleiner and Lukas Grittner and Daniel Kadenbach
	1 Introduction
	1.1 DRM and Privacy
	1.2 OMA DRM
	1.3 Related Work

	2 Concept and Architecture
	3 Security Issues
	3.1 Security Requirements
	3.2 Security Assessment

	4 Prototypical Implementation
	4.1 Implementation of Components
	4.2 WSS4J

	5 Challenges in Implementation
	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work

	References

