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Abstract  
The work is devoted to the development of an on-board neural network classifier of helicopters 

turboshaft engines operational status. Proposed neural network classifier was developed based 

on an ensemble of neural networks, which consists of radial basis networks (RBF), perceptron, 

Kohonen network and hybrid neural network. The main task of the developed on-board neural 

network classifier is to determine defects in helicopters turboshaft engines units (air inlet 

section, compressor, combustion chamber, compressor turbine, free turbine, exhaust unit). It 

has been proven that to obtain the best result, it is advisable to use the following algorithms for 

training neural networks: a modified gradient algorithm for training an RBF network, a 

backpropagation method for training a multilayer perceptron, a competition method between 

neurons for training a Kohonen neural network, a hybrid algorithm – for training a hybrid 

neural network. The results of testing the developed on-board neural network classifier showed 

the ability to determine a compressor defect, a compressor turbine defect, and simultaneous 

compressor and compressor turbine defects. The effectiveness of the developed on-board 

neural network classifier for recognizing defects in helicopters turboshaft engines has been 

proven. A comparative assessment of the effectiveness of the developed on-board neural 

network classifier and existing methods for parametric diagnostics of the operational status of 

complex dynamic objects was carried out. The results of the studies showed that the developed 

on-board neural network classifier can identify defects in helicopters turboshaft engines 

components with an accuracy of up to 99.8%.  
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1. Introduction 

During the operation of aviation equipment such as aircraft and helicopters, a primary objective is 

to diagnose the parameters of their aircraft engines. The total count of monitored (diagnosed) 

parameters can extend to 500 or more. The existing methods and techniques for diagnosing gas turbine 

engines (GTE) demand substantial enhancements, particularly as new generations of aircraft GTE 

necessitate advanced intelligent computer diagnostic technologies founded on the principles of expert 

systems (ES), neural networks (NN), fuzzy logic (FL), and genetic algorithms (GA). These technologies 

should be capable of incorporating the accumulated experience from prior work in this domain and 

devising (generalizing) innovative methods and techniques for further exploration. This imperative 

applies equally to aircraft gas turbine engines with a free turbine, known as turboshaft engines (TE), 
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which form integral components of helicopter power plants. Among the intricate tasks that significantly 

enhance the efficiency of GTE diagnostics and elements of automatic control systems (ACS), there is 

a need to address several issues aimed at overcoming obstacles in identifying the operational status of 

GTE. These challenges are interconnected [1, 2]: 

– in the event of primary information sensor malfunctions, there is a risk of generating false alarms 

within the gas turbine engine (GTE) control system, leading to a considerable decline in failure 

identification reliability. To ensure the accurate operation of the GTE operational status monitoring 

system, it becomes essential to distinguish (classify) deviations stemming from alterations in power 

plant characteristics from deviations in measured parameters linked to sensor malfunctions. In essence, 

this involves concurrently identifying the engine status, the parameters of its gas flow duct, and the 

measurement system, all while simultaneously identifying the program regulation; 

– complications arise in distinguishing failures of engine components and sensor malfunctions 

during engine failures, including its subsystems. This challenge is particularly evident when facing 

minor deviations in gas-dynamic parameters, such as those occurring when individual turbine blades 

burn out, which are comparable to random errors in the measuring channels; 

– challenges arise in the automatic acquisition and extraction of essential, reliable information 

during each flight, encompassing both steady and transient operating modes. This involves obtaining 

independent measurements following each engine transition to a new steady-state mode and ensuring a 

distinct separation between transient and steady modes. Addressing these challenges is imperative for 

enhancing the reliability of monitoring and diagnosing the operational status of the engine and the 

elements of the ACS during flight, especially when dealing with slight deviations from the anticipated 

standard of the measured parameters. 

In such circumstances, the application of neural network technologies holds significant promise. A 

review of research in the domain of gas turbine engine operational status diagnostics utilizing neural 

networks [3, 4] indicates that ongoing work is underway. However, due to various reasons such as 

secrecy and the narrow specialization of the tasks at hand, most publications lack engineering 

methodologies, as well as theoretical and practical guidance for addressing such issues. 

Therefore, the objective of this study is to formulate methods and techniques for the comprehensive 

diagnostics of helicopters TE operational status during flight modes utilizing neural network 

technologies. 

2. Related works 

A novel and promising domain in the realm of automatic control for intricate dynamic systems, 

operational status diagnostics, and predictive tasks involves the utilization of intelligent control systems 

founded on artificial neural networks [5, 6]. 

However, prevailing approaches to employing intelligent diagnostic methods are constrained by the 

specificity of the tasks, the underdeveloped theory pertaining to the use of neural networks in gas turbine 

engine (GTE) diagnostics, the absence of universal and formalized approaches, and the inherent 

imperfections within neural network methods themselves [7, 8]. 

Investigations into the creation of automated systems for diagnosing the operational status of 

complex dynamic objects [9, 10], including aircraft GTE [11, 12], reveal the inadequacy of relying 

solely on one of the known diagnostic methods. This is because none of these methods is universally 

applicable and entirely reliable. Consequently, monitoring and diagnostics systems built on the 

foundation of a single classifier will likely fall short of meeting the escalating requirements for gas 

turbine engine diagnosis. To enhance the efficiency of on-board technologies for GTE operational status 

diagnostics, several directions are identified. The primary focus should be on intellectualizing 

information processing processes through the application of neural network methods [13, 14], which 

can enhance the quality of on-board algorithms for GTE operational status diagnostics. 

In this context, the development of neural network methods for diagnosing the operational status 

and identifying potential defects in helicopters' turboshaft engine units during flight modes remains 

pertinent. 

 

 



3. Proposed technique 

3.1. Problem statement 

Let an N-dimensional feature space be given, each point of which can be represented by an N-

dimensional vector X = X1, …, XN. Let's divide this space into Q regions, which correspond to one class 

or another. Let the training set {X, В} = (X1, B1), (X2, B2), ..., (XN, BN) be given, where Xi – point in the 

feature space, Bi – label of the class to which this point belongs. The job of the classifier is to indicate 

for each new point X that is not included in the training sample, under conditions of partial or complete 

uncertainty, which class this point belongs to, using the training sample {X, В} for this. Let the state of 

a complex dynamic object (CDO) (helicopter TE) X at each discrete time t be described by an N-

dimensional vector ( )1 2

t t t t

NX X ,X ,...,X= of variables satisfying N equations ( )1t t tX F X ,Q+ = , k = 1, 

2, …, M, where ( )1 2

t t t t

mQ q ,q ,...,q=  – reference (defect-free) vector the state of the CDO (helicopter 

aircraft TE). Changes in CDO operational status at any time can be described by the equation 
t tY H X=  , where ( )1 2

t t t t

RY y ,y ,...,y=  – operational status vector of real output parameters, H – 

transformation matrix. It is required to determine the diagnostic state vector of CDO (helicopter TE), 

minimizing the root-mean-square error between the reference (desired) Y and the real t

RY  outputs. 

The organization of complex diagnostics for helicopters TE is notably intricate due to the need for 

objective and comprehensive information about their operational status. This requires incorporating a 

substantial number of diverse physical quantities (parameters) into the diagnostic procedure to capture the 

behavior of various subsystems. The transition of a gas turbine engine from one state to another is marked 

by discernible changes in the controlled and diagnosed parameters. Fig. 1 provides a geometric 

representation of complex diagnostics for helicopters' turboshaft engines, which can be articulated as 

follows: based on a limited number of measurements of the object being diagnosed, an optimal decision 

must be made regarding its classification into one of several classes, specifically: S1 – the area of 

serviceable states; S2 – the area of critical states; S3 – the area of faulty states; P1, P2, P3 – classes (areas) 

of uncertain states. 
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Figure 1: Geometrical interpretation of helicopters TE complex diagnostics problem 
 

Geometrically, the operational status of helicopters TE can be visualized as an N-dimensional vector 

(XN) (fig. 1), where the spatial coordinates represent N input parameters of the engine (X1, X2, …, XN). 

The position of this state vector in space corresponds to a specific level of engine performance, and the 

establishment of standards involves creating separating hypersurfaces within this space. These 

hypersurfaces act as boundaries between different classes, determined by a decision rule that dictates 

their construction. Consequently, decision-making revolves around assigning the diagnosed object to a 

specific class. The input parameters X1, X2, …, XN refer to the thermogas-dynamic parameters of the 

working process of helicopters TE (Table 1). These parameters are either recorded on board the 

helicopter or computed using a comprehensive mathematical model of an aircraft engine with a free 

turbine [15]. The transition from the physical parameters of the engine to the specified values (and vice 

versa) follows a developed methodology [16, 17]. 



Table 1 
Fragment of the training sample 

Engine 
assembly 

Parameter Determination 

Air inlet 
section 

total air pressure behind air inlet section, PIN 
calculated analytically  

according to [15] 

total air temperature behind air inlet section, TIN 
calculated analytically  

according to [15] 

Compressor 

gas generator rotor r.p.m., nTC 
registered on board 

the helicopter 

air flow through the compressor, Gair 
calculated analytically  

according to [15] 

air pressure behind the compressor, PC 
calculated analytically  

according to [15] 

air temperature behind the compressor, TC 
calculated analytically  

according to [15] 

Combustion 
chamber 

total gas pressure behind the combustion chamber, PG 
calculated analytically  

according to [15] 

gas temperature in front of the compressor turbine, TG 
registered on board 

the helicopter 

fuel consumption, GT 
calculated analytically  

according to [15] 

Compressor 
turbine 

total gas pressure behind the compressor turbine, PTC 
calculated analytically  

according to [15] 

gas temperature behind the compressor turbine, TTC 
calculated analytically  

according to [15] 

Free turbine 

total gas pressure behind the free turbine, PFT 
calculated analytically  

according to [15] 

gas temperature behind the free turbine, TFT 
calculated analytically  

according to [15] 

free turbine rotor speed, nFT 
registered on board 

the helicopter 

Exhaust unit 
total gas pressure behind the exhaust unit, POUT 

calculated analytically  
according to [15] 

gas temperature behind the exhaust unit, TOUT 
calculated analytically  

according to [15] 

 

The output diagnostic parameters of helicopters TE are: degree of increase in the total pressure in 

the compressor *

C , compressor efficiency ηC, mechanical compressor efficiency ηMC, recovery factor 

of the total gas pressure in the combustion chamber σCC, combustion chamber cross-sectional area FCC, 

compressor turbine efficiency ηTC, compressor turbine operation ATC, degree of reduction of the total 

gas pressure in the compressor turbine *

TC , total pressure reduction ratio in the free turbine *

FT , power 

efficiency of a free turbine ηΣFT, total pressure reduction ratio in the free turbine and exhaust unit  *

FT 

, total gas pressure recovery factor in the exhaust unit  σEU. 

3.2. Neural network classifier development 

In addressing the intricate challenges of diagnosing helicopters' turboshaft engines, hybrid 

ensembles of neural networks [18] can serve effectively as dynamic repositories of expert knowledge. 

In comparison with traditional neural networks, these ensembles offer additional practical advantages, 



including: decomposition of complex dynamic objects (CDO) into simpler entities or subsystems; 

enhanced adaptability to changing external conditions, positioning them within the class of adaptive 

and self-adjusting systems; optimization of the neural ensemble's structure to cater to specific diagnostic 

tasks; superior speed and accuracy compared to classical fully connected networks; improved 

approximation of piecewise continuous functions by the neural ensemble [19, 20].  

To adapt the recognition of defects by a neural ensemble, as part of the training sample, we 

distinguish five generalized classes of engine status (table 2): S0 – serviceable (reference) status 

corresponding to the vector R = [0; 0; 0]; S1 – compressor defect corresponding to the vector R = [0; 1; 

0]; S2 – combustion chamber defect corresponding to the vector R = [0; 1; 1]; S3 – compressor turbine 

defect corresponding to the vector R = [1; 0; 0]; S4 – free turbine defect corresponding to the vector R 

= [1; 1; 0]; S5 – exhaust unit defect corresponding to the vector R = [1; 0; 1]. 

 

Table 2 
Diagnostic model input parameters 

Status number Neural ensemble binary outputs Defect localization 

1 0 0 0 Serviceable (reference) status (S0) 
2 0 1 0 Compressor defect (S1) 
3 0 1 1 Combustion chamber defect (S2) 
4 1 0 0 Compressor turbine defect (S3) 
5 1 1 0 Free turbine defect (S4) 
6 1 0 1 Output device defect (S5) 

 

To address the issue at hand, a neural network classifier was devised (fig. 2), utilizing a composite 

ensemble of neural networks. This ensemble incorporates radial basis networks (RBF), perceptron, 

Kohonen network, and a hybrid neural network. 
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Figure 2: Structure of the developed neural network classifier 
 

Opting for the radial basis function (RBF) architecture as the recognition neural network, as opposed 

to the perceptron neural network, is more advantageous. This preference stems from the fact that the 

determination of weight coefficients in the RBF network is accomplished more swiftly and accurately 

compared to adjusting the parameters of the perceptron. This efficiency arises because the utilization of 

gradient methods for parameter adjustment in the perceptron often leads to the attainment of local minima. 

3.3. RBF network algorithm training 

The structure of the RBF network entails a two-layer design, where the first layer executes a 

predetermined non-linear transformation without engaging in parameter tuning. This process maps the 

input space to a new space. In this context, considering the 16 input parameters of the helicopters TE 

(table 1), an optimal configuration, in terms of parameter decomposition, would involve six RBF 

architecture neural networks. These networks would align with the number of parameters at the input 

(state vector) based on the engine node (ranging from 2 to 4, depending on the node), and three output 



parameters in line with the binary classification of statuses (table 2). The training algorithm for the RBF 

neural network employs the modified gradient training of RBF networks, as developed in [16], with the 

block diagram illustrated in fig. 3, where n – number of parts in the first layer; x1, x2, ..., xn – input signals; 

m – number of elements in the second layer; ci1, ci2, ..., cin – coordinates of the center of the i-th element; 

σi – width of the radial function of the i-th element; θi – output signal of the i-th element; wi – weight 

coefficient of the initial connection of the i-th element; y – output signal of the RBF neural network. 
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Figure 3: Diagram illustrating the gradient training algorithm for an enhanced radial basis function 
neural network [16] 

 



The Gaussian function governs the output signal of each component within the radial basis function 

neural network [16, 21]: 
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The output signal of the radial basis function neural network is computed by aggregating the signals 

of its elements through a weighted sum: 

1

.
m
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i

y w 
=

=          (2) 

A gradient-based algorithm is employed to train the radial basis function (RBF) neural network by 

minimizing the network error objective function. This algorithm computes the adjustments for each 

element, including changes in the weight factor (wi), the element width (Δσi), and the element center 

coordinates (cij). 

Through experiments, certain drawbacks of the conventional gradient algorithm for RBF neural 

network training were identified: 

1. The RBF neural network training algorithm lacks specific guidelines for the initial assignment of 

network elements and their parameters, as well as rules for adjusting the element count during training. 

The uniform distribution of elements across the working area may not always be optimal, and there 

could be instances where the initially specified number of elements proves insufficient for achieving 

the required training quality. 

2. Throughout the training process, the parameters of all network elements undergo changes, 

resulting in an escalation of computational costs as the element count increases. 

3. The RBF network faces challenges in reaching a stable state during training when elements with 

closely positioned center coordinates (cij) and radial function widths (σi) exist. The occurrence of such 

situations is highly dependent on the chosen number of elements and their initial parameters. The 

degradation of training quality stems from the assumption in the gradient algorithm that the output value 

of the RBF neural network at any given point in the working area is primarily influenced by only one 

element. When multiple elements are present in a specific region of the working area, adjusting their 

parameters according to the gradient algorithm does not consistently lead to a reduction in training error. 

To identify instances where the parameters of certain elements converge, the notion of the mutual 

intersection coefficient of elements has been introduced. To compute this coefficient for a specific 

element within the RBF network, it is essential to identify a second element whose center is in closer 

proximity to the center of the analyzed element. The mutual intersection coefficient is determined by 

summing the initial value of the current element at the center of the second element and the initial value 

of the second element at the center of the current element: 
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where i – number of the element for which the value of the coefficient of mutual intersection is 

calculated; d – element number, the center of which is located closer to the center of the element with 

number i, which is determined according to the expression: 

( )
2

1

argmin .
n

ij kj
k

j

d c c
=

= −        (4) 

The coefficient of mutual intersection resides within the range (0; 2). It achieves its maximum value 

when the centers of the examined elements coincide. As the coefficient of mutual intersection surpasses 

1.95, it becomes imperative to cap the maximum value at 1.95 to attain optimal training quality for the 

RBF network. 

To address the deficiencies of the conventional gradient algorithm in training the RBF network for 

helicopter TE identification tasks, this study employs a modified gradient algorithm [16, 22], as 

illustrated in Fig. 3. Blocks absent in the classic algorithm are denoted by asterisks. The key distinctions 

from the classical algorithm are outlined as follows: 



1. Introducing regulations for altering the RBF network structure during training (block 2). At the 

onset of neural network training, the RBF network is devoid of elements. New elements are introduced 

as necessary, and unused elements are eliminated. 

2. A reduction in the computational costs associated with each training cycle is achieved by 

modifying the parameters not for all elements, as in the classic algorithm, but exclusively for elements 

whose initial value at the specified point surpasses the value of θzm (blocks 4 and 5). 

3. The likelihood of a scenario where the parameters of certain elements closely align is mitigated. 

To achieve this, the calculated values Δcij and Δσi are diminished if the coefficient of mutual intersection 

among elements surpasses the threshold value ρgr, set at 1.95 (blocks 7, 8, 12, 13). 

Altering the configuration of the RBF network through the addition or removal of elements results 

in a modification of the RBF network's output value solely in the proximity of the added or removed 

element’s center. This effect is localized and does not impact the entire working area, unlike the 

alteration of a multilayer perceptron's structure. Consequently, the addition and removal of elements in 

the RBF network can be executed during the training process without the necessity of restarting the 

training process from the beginning. 

3.4. Perceptron neural network algorithm training 

Within the hybrid ensemble, the perceptron neural network serves as a focal field, amalgamating the 

outputs of six RBF-architecture neural networks, each with three outputs. In the experimental phase of 

this neural network, following the contrasting process, its architecture manifested as a six-layer 

perceptron: the initial input layer contained 18 neurons, succeeded by a second hidden layer with 15 

neurons, a third hidden layer with 12 neurons, a fourth hidden layer with 9 neurons, a fifth hidden layer 

with 6 neurons, and a final output layer comprising three neurons. The perceptron neural network 

contributes to the enhancement of defect recognition quality by "fine-tuning" its weight coefficients. 

General equations describing the operation of the perceptron: for the input layer (k = 1) – U1 = X (input 

vector); for the first hidden layer (k = 2) – 
2

2 1 1

1

n

j ij i

i

U f w U
=

=  ; … ; for the sixth output layer (k = 6) – 

6

6 6 6

1

n

j j ij i

i

Y U f w U
=

= =  . Table 3 shows a comparative analysis of the perceptron training results, on the 

basis of which the error backpropagation algorithm is selected as the perceptron training algorithm. 

 

Table 3 
Perceptron neural network training results 

Training algorithm Perceptron 
recognition error 

Number of training 
steps 

Back propagation 0.00011731 700 
Conjugate gradient 0.00019935 800 
Quick propagation 0.00018364 750 

Quasi-Newton 0.00016997 800 
Lewenberg-Marquardt 0.00014133 850 

Delta bar delta 0.00015702 750 

3.5. Kohonen neural network algorithm training 

The Kohonen neural network, functioning as a classifier with three inputs and six outputs, exhibits 

a high level of precision in categorizing (identifying) the operational status of helicopter TE. This 

includes accommodating the partial or complete uncertainty of its parameters. Simultaneously, the 

Kohonen neural network serves the purpose of initial sorting and clustering of incoming values, 

contributing to the structuring of the initial data for the hybrid neural network. As per [23], the training 

foundation for the Kohonen neural network involves a competitive process among neurons. In this 

scenario, the Kohonen network features three inputs and six outputs (R1...R6, corresponding to the 



number of generalized state classes). The weight coefficients of synaptic connections for each i-th 

neuron in the output layer of the Kohonen neural network collectively form a vector 

( )
1 2 10
; ;...;

T

i i i iw w w w=  at i = 1, 2, ..., n. When the Kohonen neural network is activated by the input 

vector ΔY, the neuron whose weights are the least different from the corresponding components of the 

input vector wins the competition, i.e., for the winning neuron wp, the relation is holds: 

d(ΔY, wp) = mind(ΔY, wi), 1 ≤ i ≤ n.       (5) 

In equation (5), d(ΔY, wi) represents the distance (as per the chosen metric) between the vectors ΔY 

and w = (w1, w2,…, wn)
T, where n – number of outputs in the neural network’s output layer (in this 

instance, n = 6). The victorious neuron establishes a topological neighborhood Sp(k) around itself, 

characterized by a specific energy. All neurons situated within this neighborhood undergo adaptation, 

wherein their vectors of weight coefficients undergo changes in the direction of the vector ΔY, following 

a prescribed rule: 

( ) ( ) ( ) ( )( )1 ;i i i iw k w k k Y w k+ = +  −       (6) 

where ηi(k) – communication coefficient of the first neuron from the neighborhood Sp(k) at the k-th 

moment of time. The training coefficient diminishes as the separation between the i-th neuron and the 

victor expands, and the weights of neurons beyond the confines of the Sp(k) neighborhood remain 

unchanged. 

The objective of training the Kohonen neural network through neuron competition is to arrange the 

neurons (determine the values of their weight coefficients) in a manner that minimizes the expected 

distortion value. This distortion is gauged by the approximation error of the input vector ΔY relative to 

the weight coefficients of the winning neuron. In the context of L input vectors (ΔY)j, where j = 1, 2, ..., 

L, and utilizing the Euclidean metric, this error can be formulated as: 

( ) ( )
2

1

1
;

L

i pj
j

E Y w j
L =

=  −       (7) 

where wp(j) – weighting coefficients of the winning neuron when the vector network is presented (ΔY)j. 

The results of the training process of the Kohonen neural network (after 700...800 training cycles) are 

presented in table 4. 

 

Table 4 
Kohonen neural network training results 

Neural network 
outputs 

Number of status (winning 
frequencies) 

Operational status 

R1 6 Compressor defect 
R2 5 Combustion chamber defect 
R3 1 Compressor turbine defect 
R4 2 Free turbine defect 
R5 3 Output device defect 
R6 4 Serviceable condition 

 

3.6. Hybrid neural network algorithm training 

The hybrid neural network enables the assessment of the membership level of the input set of 

indicator values to a predetermined class, indicative of the operational status of helicopter TE. 

As previously mentioned, the conclusive step in diagnostics involves determining the type of failure 

in helicopter TE based on the analysis of the numerical vector R. Consequently, the graphical 

representation of the task (see Fig. 1) undergoes modification to the format depicted in Fig. 4. In this 

representation, the vertices of the cube align with the centers of clusters (reference engine states) as 

outlined in table 2, that is, S0 – center of the cluster (precedent) corresponding to the serviceable 

(reference engine status); S1 – center of the cluster corresponding to a defect in the compressor; S2 – 



cluster center corresponding to a defect in the combustion chamber; S3 – center of the cluster 

corresponding to a defect in the compressor turbine; S4 – cluster center corresponding to a defect in a 

free turbine; S5 – cluster center corresponding to a defect in the exhaust unit. The actual engine status 

vector S can take on a value at any point inside the given cube S = (R1, R2, R3)
T, 0 ≤ Ri ≤ 1. 
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Figure 4: Modified graphical interpretation helicopters aircraft TE operational status diagnostics 
process 
 

The assessment of the operational status of helicopter TE follows the "nearest neighbor" rule, 

wherein the engine is categorized into the class that includes its closest neighbor (or the majority of its 

closest neighbors). The decision rule, governing the decision-making process (diagnosis), is formulated 

as follows: 

S → Sp, if d(S, Sp) → min;       (8) 

where d – distance to the center of the nearest (p-th) cluster (precedent), which is calculated, for 

example, using the Euclidean metric. 

The hybrid training algorithm devised for the hybrid neural network relies on the backpropagation 

algorithm as its foundation. Over a specified number of epochs, the neural network undergoes training 

employing a modified backpropagation algorithm. Simultaneously, the residual for neurons in the 

output layer is computed in a manner consistent with the backpropagation approach. The inconsistency 

of the hidden layers is derived from the inconsistencies across all variations of the preceding layer, as 

described in [16, 24]: 

( )1n n n i

i i l ,k ,i l ,k

l k

f S w . − =          (9) 

Utilizing the residual outlined, akin to the backpropagation algorithm, the weights are incremented 

in the direction opposite to the gradient. However, in this instance, the gradient takes the form of a 

matrix rather than a vector. Consequently, the adjustments to the weights are made to minimize errors 

across all directions (fig. 5). The objective is to take steps that effectively diminish the disparities 

between the neural network outputs and the target values at various points. 

 
Figure 5: Diagram of weights change direction [16, 24] 
 



The average accumulated error, which is calculated for each variant of the previous layer, is 

determined according to the expression: 

;k
l

k n


 =       (10) 

where n – number of neurons in the previous layer. The offset increment is a random variable that takes 

any value from a series of residuals of the previous layer options with a probability equal to 1 – εl, where 

εl – average accumulated error of the previous layer option, which is determined according to the 

expression: 

x = ε(x); Pε(B) = 1 – εl;      (11) 

where x – offset increment. 

When crossing over neurons during training steps using a genetic algorithm, the function is used as 

a fitness function ( ) 1f x
m


= − , where ε – accumulated error of the neuron of the output layer (in this 

case, after the training step using the genetic algorithm, it is reset and takes on a zero value), m = o ∙ l, 

where l – number of training sets, o – number of training epochs. 

Block diagram of the developed hybrid training algorithm for hybrid neural networks is shown in 

fig. 6, information of the blocks of which is given in table 5. 
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Figure 6: Block diagram of the developed hybrid training algorithm for hybrid neural networks [16, 24] 
 



Table 5 
Block comments of the developed hybrid training algorithm for hybrid neural networks [16, 24] 

Block number Comment 

1 neural network is created with one input layer option and several inner and 
output layer options 

2 initialization of neurons weights of the first layer is performed by equating them 
to 1 

3 initialization of neurons weights of the hidden and output layers is carried out by 
random small values from 0 to 1, and you need to use different ranges of 

weights for different versions of the layers (for example, all the weights of the 
first version of the layer should be made in the range 0 ... 0.5, and the second 

version of the layer – in the range of 0.6…0.9 
4 initialization of the shift weights of the first layer is carried out by equating them 

to 0 
5 initialization of the shift weights of the hidden and output layers is carried out by 

random small values from 0 to 1, and you need to use different ranges of 
weights for different layer options (for example, all the weights of the first layer 

option should be in the range 0 ... 0.5, and the second layer option – in the range 
of 0.6…0.9 

6 neural network is considered trained if there is at least one version of the 
original and hidden layers, in which the errors of the output layer do not exceed 

the maximum error 
7 saving neuron weights and biasing the variants of the original and hidden layers, 

the deviations of the initial values of which do not exceed the maximum error 
for all training sets is the final solution to the neural network training problem 

8 there is at least one combination of the hidden and source layer, the deviation 
of the source values from the target values of which does not exceed the 

maximum error for all training examples 
9 feed a training example to the input of the neural network and get the initial 

values of all layers for each variant of the hidden and original layers. As a result, 
the output will be a multidimensional array containing the outputs of the first 

layer, each hidden layer option, and each set of hidden and original layer options 
10 there is at least one version of the original layer, the deviation from the target 

values for which does not exceed the maximum error 
11 calculation of the change in the coefficients of change in the weights of neurons 

is performed for each input, hidden and output layers 
12 calculation of the change in the shift change coefficients is performed for each 

input, hidden and output layers 
13 remember the indexes of the input and output layers with deviations not 

exceeding the maximum error 
14 time elapsed since the start of training is greater than the maximum value of 

training time 

4. Experiment 

The examination and initial processing of the input data were conducted by the authors group and 

comprehensively detailed in [25, 26]. The input parameters for the mathematical model of helicopter 

TE encompass atmospheric values (h – flight altitude, TN – temperature, PN – pressure, ρ – air density). 

The parameters recorded aboard the helicopter (nTC – gas generator rotor r.p.m., nFT – free turbine rotor 

speed, TG – gas temperature in front of the compressor turbine) were adjusted to absolute values 

according to the gas-dynamic similarity theory developed by Professor Valery Avgustinovich (refer to 



table 6). In this study, we posit the constancy of atmospheric parameters (h – flight altitude, TN – 

temperature, PN – pressure, ρ – air density) [25, 26]. 
 

Table 6 
Part of training set (on the example of TV3-117 TE [25, 26]) 

Number TG nTC nFT 

1 0.932 0.929 0.943 

2 0.964 0.933 0.982 

3 0.917 0.952 0.962 

4 0.908 0.988 0.987 

5 0.899 0.991 0.972 

6 0.915 0.997 0.963 

7 0.922 0.968 0.962 

8 0.989 0.962 0.969 

9 0.954 0.954 0.947 

10 0.977 0.961 0.953 

… … … … 

256 0.953 0.973 0.981 

 

The assessment of the homogeneity of the training and test samples is a crucial consideration. In this 

regard, the Fisher-Pearson criterion χ2 with degrees of freedom r – k –1 is employed [25, 26]: 

( )

( )
2

1

min ;
r

i i

i i

m np

np




=

 −
=   

 
                 (12) 

where θ – maximum likelihood estimate found from the frequencies m1, …, mr; n – number of elements 

in the sample; pi(θ) – signifies the probabilities of elementary outcomes up to a certain indeterminate 

k-dimensional parameter θ. 

The conclusive step in statistical data processing involves their normalization, a procedure that can 

be carried out using the following expression: 

min

max min

;i i
i

i i

y y
y

y y

−
=

−
      (13) 

where 
i

y  – dimensionless quantity in the range [0; 1]; yimin and yimax – minimum and maximum values 

of the yi variable. 

The previously mentioned χ2 statistics, under the stated assumptions, enables the testing of the 

hypothesis regarding the representativeness of sample variances and the covariance of factors within 

the statistical model. The realm of accepting the hypothesis is denoted by 2

,n m   − , with α 

representing the significance level of the criterion. The outcomes of the computations based on equation 

(12) are provided in table 7 [25, 26]. 
 

Table 7 
Part of the training sample during the operation of helicopters TE (on the example of TV3-117 TE) 
(author's development, described in [25, 26]) 

Number P(TG) P(nTC) P(nFT) 

1 0.561 0.109 0.652 
2 0.588 0.155 0.574 
3 0.542 0.128 0.515 
4 0.612 0.147 0.655 
5 0.644 0.121 0.612 
… … … … 

256 0.537 0.098 0.651 



To verify the representativeness of the training and test samples, an initial data cluster analysis was 
conducted (refer to table 7), resulting in the identification of eight classes (fig. 7, a). Subsequent to the 
randomization procedure, the effective training (control) and test samples were chosen in a 2:1 ratio, 
specifically 67 % and 33 %, respectively. The clustering process applied to the training (fig. 7, b) and 
test samples reveals that, akin to the original sample, each of them comprises eight classes. The 
distances between the clusters align nearly perfectly across all examined samples, indicating the 
representativeness of both the training and test samples [25, 26]. 

 
 

 
    a             b 

Figure 7: Clustering results: a – initial experimental sample (I…VIII – classes); b – training sample 
(author's development, described in [25, 26]) 

 

To form the training and test subsets in the work, cross-validation was used [27] to estimate the 

values of the parameters of TV3-117 engine, the results obtained in [27] of which are shown in fig. 8. 

 

 

Figure 8: TV3-117 aircraft engine input parameter scatter diagram [27] 

5. Results 

The outcomes of assessing the unknown condition of helicopter TE, demonstrated through the TV3-

117 aircraft engine (integral to the power plant of the Mi-8MTV helicopter), using the developed neural 

network classifier, are outlined in table 6. Similar to the earlier discussed examples, the performance of 

the developed neural network classifier was examined on a test sample (the third and fourth rows of 

table 6) in noise-free settings (the first and third rows of table 6), as well as under the influence of the 

additive component of white noise (σ = 0.01; M = 0), considering a 1% and 3% alteration in compressor 



efficiency (second and fourth rows of table 8). The final line (table 8) corresponds to a dual defect, 

involving simultaneous changes in the efficiency of both the compressor and compressor turbine. 

 

Table 8 
Test results of the developed neural network classifier 

Line number Classifier output values Operational status 
R1 R2 R3 R4 R5 R6 

1 0.609 0.084 0.009 0.011 0.009 0.007 Compressor defect  
(–1 % ηC) 2 (with noice) 0.717 0.143 0.204 0.135 0.252 0.004 

3 0.668 0.121 0.233 0.032 0.177 0.005 Compressor defect 
(–3 % ηC) 4 (with noice) 0.745 0.308 0.362 0.180 0.316 0.002 

5 0.732 0.711 0.009 0.018 0.016 0.001 

Compressor and compressor 
turbine defect (–3 % ηC and 

(–3 % ηTC) 

 

 

The examination of the test outcomes from the developed neural network classifier reveals that the 

prevailing neuron (for rows 1…4) is the one with the output R1, signifying a compressor defect, as 

indicated in table 4. As previously, the severity of the defect can be inferred from the numerical value 

at each neural network output. In the fifth row (table 8), there are two prevailing neurons, with the 

maximum signal values observed for outputs R1 and R2. According to table 6, the developed neural 

network classifier successfully identifies the mentioned dual defect involving a reduction in the 

efficiency of both the compressor and compressor turbine. 

Let us consider this procedure using the example of the problem of diagnosing a double defect 

associated with a decrease in the efficiency of the compressor and compressor turbine by 3 %. The 

value of the vector at the output of the neural network classifier in this case is R = (0.732; 0.711; 0.009; 

0.018; 0.016; 0.001)T (table 6) of the corresponding precedent to the centers of clusters: d(S, S0) = 0.653; 

d(S, S1) = 0.724; d(S, S2) = 0.631; d(S, S3) = 1.168; d(S, S4) = 1.241; d(S, S5) = 1.326. 

The effectiveness of defect recognition was assessed by the total “discrepancy” based on the 

parameters of the state of engine components [28]: 
6

1 2 6

1

... ;i

i

x x x x   
=

 = = + + +     (14) 

where * ;i i ix x x = −  δx1 – operational status deviation (defect size) of the air inlet section; δx2 – 

operational status deviation (defect size) of the compressor unit; δx3 – operational status deviation 

(defect size) of the combustion chamber unit; δx4 – operational status deviation (defect size) of the 

compressor turbine unit; δx5 – operational status deviation (defect size) of the free turbine unit; δx6 – 

operational status deviation (defect size) of the exhaust unit (see table 1). 

Fig. 9 shows the results of the efficiency of the neural network classifier for recognizing defects in 

helicopter TE (using the example of the TV3-117 engine): GT – fuel consumption; TC – air temperature 

behind the compressor (calculated using [15]); TG – gas temperature in front of the compressor turbine; 

nTC, nFT – gas generator rotor r.p.m. and free turbine rotors, respectively; TTC, TFT – gas temperature 

behind the compressor turbine and free turbine, respectively (calculated using [15]).  

Wherein:  

fig. 9, a: curve 1 – GT; curve 2 – TC; curve 3 – TG;  

fig. 9, b: curve 1 – TC, TG; curve 2 – GT, TC; curve 3 – GT, TG;  

fig. 9, c: curve 1 – GT, TC, TG;  

fig. 9, d: curve 1 – TTC; curve 2 – GT; curve 3 – nFT; curve 4 – TFT; curve 5 – nTC;  

fig. 9, e: curve 1 – GT, nTC, nFT, TTC; curve 2 – GT, nTC, TTC, TFT; curve 3 – GT, nFT, TTC, TFT; curve 4 

– GT, nTC, nFT, TFT; curve 5 – nTC, nFT, TTC, TFT;  

fig. 9, f: curve 1 – GT, nTC, nFT, TTC, TFT. 
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            d            e 
Figure 9: Results of the effectiveness of the neural network classifier for recognizing defects in 
helicopter turboshaft engines 
 



 
         f  

Figure 9: Results of the effectiveness of the neural network classifier for recognizing defects in 
helicopter turboshaft engines (continuation) 
 

It was found (fig. 7) that as the depth of node defects δxi increases in the training interval 0 ... 10 %, 

the recognition efficiency first increases (the value of ∆Σ decreases), reaching its maximum (the 

minimum value of ∆Σ), and then decreases. This feature of the dependence ∆Σ = f(δxi) can be used for 

practical purposes, for example, the boundaries of the training interval should be selected from the 

condition of obtaining the greatest efficiency in recognizing the defective state of the engine (for an 

engine compressor unit this may be the boundary value of the reduced efficiency of the compressor at 

which it is required engine flushing, etc.). 

6. Discussions 

The results of a comparative analysis of the accuracy and error in diagnosing defects in helicopters 

TE units (on the example of defects in the compressor and compressor turbine) are given in table 9. 

 

Table 9 
Comparative analysis results 

Neural network architecture Accuracy Loss 

Developed neural network classifier 0.998 0.0011 
Fully Connected Deep Networks RTRN 0.991 0.0045 
Kohonen Neural Network (proposed by Professor Serhi Zhernakov) 0.970 0.022 
Three-layer perceptron (proposed by Professor Serhi Zhernakov) 0.962 0.014 
Cosco Neural Network  0.921 0.019 
Elman Neural Network  0.899 0.032 
Hamming Neural Network  0.873 0.044 
Hopfield Neural Network  0.854 0.056 
Jordan Neural Network  0.836 0.069 
Radial basis function network 0.817 0.091 

 

Currently, several methods are known for parametric diagnostics of the GTE operational status, which 

can be divided into methods A, B, C, D and E [29]: A – method of diagnostic matrices; B – method 

based on solving a system of normal equations; C – method based on nonlinear optimization of a criterion 

characterizing the state of the engine; D – method of adjustment using a square objective function; E – 

method of adjustment using a modular objective function. The results of comparing the effectiveness of 

the neural network approach with methods A, B, C, D and E show (fig. 10) that the advantage of the 

developed neural network classifier over other methods increases as information about the controlled 

engine parameters decreases. Wherein: fig. 10, a: diagnostics by parameter TC; fig. 10, b: diagnostics by 



parameter TG; fig. 10, c: diagnostics by parameter GT; fig. 10, d: diagnostics by parameter GT and TG; fig. 

10, e: diagnostics by parameter GT and TC; fig. 11, f: diagnostics by parameter TC and TG. 

 

 
                              a                                                            b                                                         c 

 
                                 d                                                         e                                                          f 
Figure 10: Comparative assessment of the effectiveness of methods for diagnosing the condition using 
the developed neural network classifier and methods A, B, C, D and E 
 

Since the effectiveness of the considered methods for diagnostics the operational status of helicopter 

TE varies in different situations, it is obvious that the combined method is optimal. 

7. Conclusions 

The enhancement of the neural network diagnostics method involves the utilization of an ensemble 

comprising six radial-basis neural networks, a perceptron, a Kohonen neural network, and a hybrid 

neural network. This approach, applied to experimental data recorded during helicopter operation or 

data obtained through a mathematical model, proves effective in addressing the challenge of diagnosing 

the operational status of helicopter engines during flight. 

Unlike diagnostic methods reliant on calculating the thermogas-dynamic parameters of helicopters 

turboshaft engines using nonlinear element-by-element engine models, the neural network diagnostics 

method is refined by training the neural network based on a small training sample. The quality of the 

resulting neural network model is then evaluated on a meticulously organized test sample. 

The hybrid neural network training algorithm is enhanced by combining the error backpropagation 

algorithm with a genetic algorithm. This involves altering the range of initialization for neuron weights 

and biases in the input, hidden, and output layers. This refinement enables the training of the hybrid 

neural network to determine the degree of membership of indicator values at their inputs to a specified 

class characterizing the operational status of helicopters turboshaft engines. 

The merit of incorporating the Kohonen network in a neural network classifier (part of a neural 

networks ensemble) for diagnosing helicopters turboshaft engines operational status in flight modes lies 

in its capacity for automatic classification (clustering) without expert instructions. This involves 

processing a training sample composed of real or calculated (reference) data across various engine 

operating modes. 

For decision-making regarding the location and nature of defects in helicopters turboshaft engines, 

the estimation of neuroclassifier outputs using the nearest neighbor rule with precedents (codes of 

reference condition) can be employed. The metric value (distance to the nearest precedent) provides 

insight into defect intensity or multiplicity (i.e., the number of simultaneously manifesting defects). 



The developed neural network classifier, initially designed for helicopters turboshaft engines, has 

the potential for diagnosing other engine types, such as turbojet and turboprop engines used in aircraft 

power plants. However, when extending the use of the classifier to other aircraft engines, considerations 

must be made for their structural blocks (e.g., fan, low-pressure compressor, high-pressure compressor, 

etc.) and, consequently, the applied thermogas-dynamic parameters. 
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