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Abstract 
In this article, mathematical support for the analysis of user click activity data has been 

developed. Based on the Bayesian click model and existing methods of estimating its 

parameters, a software product was created using the Python programming language, which 

predicts the relevance of web documents based on click logs. Studies have been conducted 

and conditions have been established under which the smallest error of these predictions is 

achieved. 
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1.  Introduction 
 

One of the metrics of user feedback in search and marketing systems is Click-Through Rate (CTR) 

– click rating or click ratio. The value of this indicator gives information about the interest of users in 

certain search results. Therefore, the tasks of calculating, evaluating and predicting this metric are 

important and relevant [1-3]. For mathematical modeling and analysis of clicks, so-called click models 

have been developed, which are described by a set of probability relationships [4]. Research on this topic 

is presented in the works of scientists from Canada (Zhe Gao and Qigang Gao from the Faculty of 

Computer Science, Dalhousie University, Canada), Korea (Kyungwon Kim, Eun Kwon and Jaram Park 

from AI Center of Samsung Research, Samsung Electronics Company, Ltd., Republic of Korea) and 

other outstanding technical scientists [5-10]. 

Here are examples of the most common software products, services and online tools that are used to 

analyze data about user click activity: 

1. Google Keyword Planner. 

2. Microsoft Keyword Planner. 

3. Facebook Campaign Planner. 

4. LinkedIn Campaign Manager. 

5. SellerApp. 

6. Reddit Ads Dashboard. 

7. Pinterest Ads Manager. 

The development of new mathematical and software algorithms for analysis and predicting user click 

activity is an urgent task. The paper proposes the use of the Bayesian click model and the 

implementation on its basis of effective mathematical methods of analysis, evaluation and prediction of 

user actions for improving the quality and efficiency of search services, as well as analyzing user 

interaction with ads to select the most relevant of them. 
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2.  Mathematical grounding 
 

Since CTR is characterized by a shift in the positions of the search results (the lower the result in 

the list, the lower its actual CTR), the task of its unbiased prediction arises. That is, the calculation of 

its value, which would not depend on the position of the result in the output. In addition, click models 

are used to calculate unbiased CTR values. Click models provide an opportunity to estimate the CTR 

of some web document in terms of probabilities. CTR is numerically equal to the ratio of the number 

of clicks on the banner or link to the total number of their impressions: 

%100
simpression

clicks
CTR  

The main examples of such models are the following: 

Random Click Model  

This is the simplest model, which is described by the following equation: 

 )1( uCP   (1) 

where uC is a random event – choose any URL u with equal probability  . 

Position-based Model (РВМ) [9] 

More complex click models are based on the following hypothesis: 

1uA , 1uE  1 uC   (2) 

where uA - a random event - to become interested in a document, uE - a random event - to get 

acquainted with its previous description (for example, a snippet in the search network). The ratio (2) 

means that the user clicks on the document u  if and only if he has familiarized himself with this 

document and is interested in it. Random variables uA and uE are independent. 

PBM is based on the assumption that the probability of getting acquainted with a snippet depends 

on the rank - the position of the document in the issue. The higher rank of the document, the lower its 

position and the corresponding probability of familiarization with it. The positional model describes 

this with the following ratios: 

)1()1()1(  uuu APEPCP ,  (3) 

uu aAP  )1( ,  (4) 

uuEP  )1( ,  (5) 

Cascade Model (CM)  

The Cascade click model  is based on the assumption that the user views the search results strictly 

from top to bottom and makes a click decision for each viewed document [11, 12]. After selecting the 

desired URL, the user will no longer view the documents below, regardless of their position. CM is 

described by the following ratios: 
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Dynamic Bayesian Network (DBN) [12] 

In [14], the authors proposed a Dynamic Bayesian Network - a click model, which is an extension 

of the cascade model (CM). The DBN for a fixed query is described by the following relations: 

111  iii AEC ,  (12) 
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where i stands for the rank (position) of the document in the search results. iC  is a binary observable 

variable that shows whether a click occurred on the document at position i. The hidden variable 

iE describes the fact of the user's familiarization with the snippet, iA shows whether the user was 

interested in the document at position i. iS shows whether the user was satisfied with the search result 

after visiting the web page at position i. 

DBN is based on the following assumption: a click occurs if and only if the user has viewed a 

URL and is interested in it (12). The probability that the document will interest the user depends only 

on the document itself (13). Similar to the cascading model, the user browses URLs linearly from top 

to bottom until they decide to stop. Once a user clicks and visits a URL, there is a certain probability 

that they will be satisfied with the result of their search (14). On the other hand, if he does not browse 

the web page, he will not be satisfied with the search result (15). If the user is satisfied with the URL 

they visited, they stop searching (16). If he is not satisfied with the result, there is a probability (1 – γ) 

that the user will stop searching (17) and a probability γ that the user will check the next URL. In 

other words, γ is a metric of user "persistence". If the user has not read the document snippet at 

position i, he will not explore the documents at lower positions (18). In addition, ua and us are 

distributed according to the beta distribution. 

The essence of learning click models is to estimate their parameters based on a set of data - the so-

called click log. This data set contains information primarily about user searches, search results, and 

clicks on each of the results in the output. After evaluating the parameters of the model, it is possible 

to draw conclusions about the click behavior of users. 

For DBN, the evaluated parameters are ua  and us , and these two parameters describe the 

relevance of document u. The parameter ua describes hypothetical relevance as it measures the 

likelihood of a click based on a URL. The parameter us is equal to the probability that the user will be 

satisfied after going to this link; therefore us should be understood as a "ratio" between actual and 

hypothetical relevance. 

For a dynamic Bayesian network, the parameter ua  is equivalent to the CTR that document u 

would have in the first position of the search results. Therefore, in the future, the main attention will 

be paid to the calculation of the parameter ua , since it is a CTR forecast for the document u in the 

search results. At the same time, this CTR prediction is unbiased because ua does not depend on the 

rank (position) of document u in the resulting list. 

The EM algorithm and the Forward-Backwards algorithm [13] for DBN training, that is, for 

parameter estimation ua and based on click logs us . They are used when implicit variables are 

present in the model. It is important to clarify that in the maximization step of the EM algorithm, the 

updated values of ua  and calculated us , and the maximum posterior method is used, which is a 

generalization of the maximum likelihood method. The easiest way to calculate the updated 

parameters is to calculate in closed form (analytically) using the theory of conjugate distributions. 

According to Bayes' theorem: 
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where for some parameter   )( xp  - posterior distribution, )( xp - likelihood function, )(p - a 

priori distribution. If the likelihood function and the prior distribution are conjugate, then 

)( xp  belongs to the same family of distributions as )(p . Since in the Bayesian click model the 

likelihood function has a Bernoulli distribution and the prior probability has a beta distribution, the 

posterior probability will also have a beta distribution, but with different parameters (or 



hyperparameters). Values of updated hyperparameters  and  of the posterior beta distribution are 

calculated as follows: 
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where ix , ),1( ni  are some independent observations. 

The only input parameter that is given before starting DBN training is γ, the probability that the 

user will continue to view the output results at the positions ni ,...1)1(   provided that 0iS . [10] 

shows the graph of the root mean square error of predicting the CTR of the document at position 1 as 

a function of γ. As shown in Figure 3 [12], the best CTR prediction at position 1 was obtained for γ = 

0.9. At the same time, the click model for γ = 1 gives only a slightly worse forecast, but at the same 

time the estimation of DBN parameters becomes much simpler. After all, in the case when γ = 1, the 

user continues to explore the search results until he is satisfied. This means that the last click in the 

list of all clicks gave the user a satisfactory result, and he stops reading snippets of documents that are 

in lower positions: 

0...1... 11   nii EEEE ,  (21) 

where i is the position of the last clicked document. As can be seen from (21), for γ = 1 there is no 

variable uncertainty iE , and therefore there is no need to apply EM and Forward-Backwards 

algorithms. Parameters ua and us are estimated using simple calculations [12]. 

Therefore, the estimation of the parameter ua , the algorithm of which is given above, is the 

essence of using the Bayesian click model (DBN) for the unbiased prediction of the CTR of the 

document u. 

This work describes the software created by the authors, which implements the Bayesian click 

model for CTR predictions. Research has also been conducted and the conditions under which the 

smallest error of these predictions is achieved have been established. 

 

3.  Algorithmic support 
 

A detailed analysis of the existing development tools was carried out and a decision was made to 

build a Bayesian click model using the Python programming language as the main tool, in particular 

its PyAgrum, NumPy, Pandas, Matplotlib libraries included in the Ananconda distribution. The 

Tkinter library was used to create the graphical interface. In addition, the software product Bayes 

Server is used as a tool for modeling conventional and dynamic Bayesian networks, causal models 

and influence diagrams. One of the most important capabilities provided by this software product is 

the calculation of the values of hidden variables. The main inference algorithm in Bayes Server is 

Relevance Tree, which is used by default. When calculating hidden variables, a choice is made: either 

to calculate the values of specific variables, or to calculate all of them at once. In addition, it is 

possible to calculate the value of the likelihood function. Another important feature of Bayes Server is 

parameter learning, for which it is necessary to additionally connect sets of training data. Bayes 

Server provides extensive options for editing models, for querying model parameters, including 

multiple queries based on large datasets. 

 

Description of model inputs 
Click logs are used to train click models. These are data sets that contain information about search 

sessions. A search session is a session during which a user makes a search request in the system and 

receives a result. After receiving the search results, the user goes through one or more links until he 

either finds the document he needs, or ends the search session due to the lack of relevant documents. 

Thus, each search session is characterized by three necessary attributes: 

 search query; 

 list of results; 



 vector of clicks that takes values from {0; 1} and corresponds to the fact of clicking on a 

specific document. 

Logs published in open access on the Kaggle resource as part of the international competition The 

Personalized Web Search Challenge were used to build and train the Bayesian click model. The data 

were formatted as illustrated in the Table 1: 

Table 1. Format of click logs 

query url0 url1 … url9 click 0 click 1 … click 9 

1q  10d  11d  … 19d  10c  11c  … 19c  

1q  11d  10d  … 19d  11c  10c  … 19c  

… … … … … … … … … 

nq  0nd  1nd  … 9nd  0nc  1nc  … 9nc  

Here iq  ),1( ni   – some search query; ijd )10,1( j - a document (URL) associated with a search 

query iq , ijc )10,1( j  – a Boolean variable associated with a document ijd . If ijc equal to 0, then 

the document was not clicked, if ijc equal to 1 - it was clicked. 

The original click logs are archived and have the *.gz format. To convert them into the format 

presented in the table. 1, a separate Python script file was created that implements the conversion of 

the archive to *.csv or *.sql. For this, the generator mechanism is used, which allows reading large 

and super-large arrays of data. From all the available information in the archive, only data of the 

following types are selected: 

 session id; 

 search request id; 

 an identifier consisting of two numbers, the first is an anonymized address of some document, 

the second is its domain. This pair of numbers is read as one and interpreted as the URL of the 

document. 

In addition, the log file lists (fig. 2) the URLs that were clicked on during this search session. For 

URLs from this list, the value 1 in the click vector is matched.  

 
Figure 2: A project for the Flask framework has been created. 

 

For the rest, the value is 0. In this way, a data array is formed, which looks similar to the table. 1. 

In the file of scripts for parsing logs, the final data can be exported both to the database and to a *.csv 

file. 

 

4.  Results - construction of the Bayesian click model for unbiased CTR 
prediction. 

Model training 
A Bayesian network is a directed acyclic graph (Fig. 3). To build it, it is necessary to define a set 

of vertices (or nodes) and specify connections (arcs, edges) between them. The node A from which the 

edge originates is called the parent, )(BpaA  while the node B is called the child. Child nodes 



conditionally depend on parent nodes; nodes that have no parents are conditionally independent. Each 

vertex of the graph corresponds to a random variable that has a finite number of mutually exclusive 

states. In addition, the probabilities of occurrence of each state are specified. 

 

 
Figure 3. Scheme of the Bayesian click model 

 

The Bayesian click model assumes the existence of the following four binary variables: 

 E – a user viewed some document in the SERP; 

 A – a user is interested in a certain document; 

 C – a user clicked on this document; 

 S – a user was satisfied with the contents of the document. 

So the Bayesian network has 4 vertices. Connections between them will be built taking into 

account the dependencies described by equations (12-15). To implement equations (16-18), the 

concept of a Bayesian network must be expanded to a Dynamic Bayesian Network (DBN). 

DBN is a regular Bayesian network with the concept of time. DBN makes possible to model time 

series or sequences of dependent events. When modeling clicks in search networks, search sessions 

with 10 documents in output are considered. Since events E and S are inextricably linked for 

documents in adjacent positions, a Dynamic Bayesian Network will be used to model clicks within 

the entire session. 

The sequence of DBN construction in Bayes Server consists of the following steps [14]: 

1. Creating a node (Node, Discrete Node (temporal)). 

2. Naming the node (Name field), specifying the states of the variable ("Y", "N") that 

correspond to the node. 

3. Repeat steps 1-2 for all 4 nodes. 

4. Specifying connections between nodes (Links). 

5. Setting probability distributions for all states of each variable, using the ratio (12-18) (Fig. 4). 

 

 
Figure 4. Probability distribution for variable C. ))(( CpaCP  



Let's take a closer look at step 4. Since a Dynamic Bayesian Network is not being created, the 

connections between nodes in Bayes Server have an attribute called temporal order. This attribute is a 

non-negative integer and in terms of the click model means the following: if the temporal order for the 

connection from node C to node S is zero, then S at position i depends on C at the same position. If 

the temporal order is equal to one, then S at position i +1 conditionally depends on C at position i. 

Thus, for the construction of the DBN in Bayes Server, additional links with the time order of 1 

were created between the variables S and E as well as E and E. This means, according to formulas 

(16-18), that the variable E for the document at position i conditionally depends on the states of 

variables E and S at position i -1. The final visual view of the dynamic Bayesian network, which was 

built in Bayes Server, is presented in Fig. 5. 

 

 
Figure 5. Dynamic Bayesian network (click model), built in Bayes Server 

 

In the PyAgrum library [15], the DBN construction algorithm consists of the following steps: 

1. Initialization of an instance of the model class (pyAgrum.BayesNet()). 

2. Defining variables (method pyAgrum.LabelizedVariable()), naming and setting states ("Y" 

and "N", which is equivalent to "Yes" and "No", respectively). 

3. Creation of network nodes based on defined variables (pyAgrum.BayesNet().add()). 

4. Initialization of directed connections between nodes (pyAgrum.BayesNet().addArc()). 

5. Setting probability distributions for the states of each variable (pyAgrum.BayesNet().cpt()). 

6. Initialization of the inference mechanism for the model. 

In Bayesian networks, inference is the calculation of the values of hidden (or latent) variables 

based on the values of the observed variables and the probability distribution for the hidden variables. 

The probabilities of the occurrence of certain states of the variable given before research are called 

prior probabilities, when the probabilities calculated after the research are called posterior 

probabilities. To determine the posterior probabilities of the latent variables, it is necessary to 

calculate their conditional and unconditional probabilities. The PyAgrum library provides several 

algorithms for calculating posteriors, such as Lazy Propagation [16], Variable Elimination, Shafer-

Shenoy algorithm, Gibbs sampling, etc. The main algorithm for PyAgrum is Lazy Propagation, so it 

was used to calculate the DBN hidden variables. It is based on the belief propagation algorithm, 

which is widely used in machine learning, including for neural networks, Bayesian networks, and 

Markov models [17]. 

Lazy Propagation computes all posterior distributions in a Bayesian network using an adjacency 

tree T = (C, S), where C are cliques of the tree, S are separators. The tree T is built by moralizing and 

triangulating the graph of the Bayesian network G = (V, E). When the tree is constructed, each cell 

CC is assigned a set of distributions of all variables X such that    )(XpaX  . Such a set of 

distributions corresponding to the cell C is denoted by CФ . When evidence X = x is established for 

some variable X, then from all distributions Ф in the tree, which contain X in the domain of definition, 

only those for which X = x remain. The algorithm removes the rest. 

After the tree T is initialized, the message propagation algorithm works. Messages are propagated 



from one clique to another through each separator SS in two directions - from the leaves to the root 

of the tree and vice versa. The message BAФ  transmitted from clique A to clique B is a set of 

probability distributions and is calculated as follows: 

 
 


 

BA

AC
C

ABA ФФФ

\
B\adj(A)

 ,  (22) 

where )(Aadj are cliques adjacent to A. At the same time, variables for which the posterior 

distribution should not be calculated and for which certificates are not established can be excluded 

from the calculations. 

When traversal of all messages is complete, the posterior distribution for the variable Y can be 

computed from any clique or separator containing Y. Let Ф be the set of distributions from which the 

posterior distribution for Y will be calculated. Then the algorithm for calculating )( YP , where  is 

some proof, is as follows: 

1. Find relevant distributions YR from Ф (Algorithm 3.5, [16]). 

2. Exclude YR each variable X from the set from  YXX  ,R)dom( y (Algorithm 2.3, [16]). 

3. Let YФ be the resulting set of distributions. Then calculate )( YP as follows: 
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In PyArgum, in order to specify the inference method for the newly created Bayesian network, it is 

only necessary to initialize an instance of the pyArgum.LazyPropagation(bn) class, where bn is an 

instance of the pyAgrum.BayesNet() class. 

After defining the structure of the model, PyArgum provides an opportunity to generate a 

visualization of the Dynamic Bayesian Network in svg format. Fig. 6 shows the model created by 

means of the library. 

 

 
Figure 6. The model was created using the tools of the PyAgrum library 

 

After constructing the DBN, both in Bayes Server and in Python, posterior probabilities were 

found for the variables iA and iS , where i are time points 9,0i (for DBN, the numbering of time 

points starts from zero). For this, the variables iC  were defined as observables and the states, 

""NCi  , were defined for all time slices 9,0i . In Bayes Server, the states of the observed 

variables must be specified in special tables, while in PyAgrum there are two ways to initialize 

variables: using setEvidence() or pyAgrum.lib.dynamicBN.plotFollow(). The plotFollow() method 



immediately generates a plot of the given variables, so this one was chosen for use in the inference. In 

PyAgrum, the inference method is Lazy Propagation, in Bayes Server – Relevance Tree. Both of these 

algorithms belong to the family of exact inference algorithms, but the developers of Bayes Server do 

not reveal details about how their algorithm works. After configuring the models, we perform 

calculations. The results of the calculations are shown in figures 7-8. It is worth noting that for these 

cases 5.0 uu sa  

 
Figure 7. Visualization of posterior distributions for iA and iS in PyAgrum 

 

 
Figure 8. Visualization of posterior distributions for iA and iS in Bayes Server 

 

From figures 7 – 8 shows that the calculation results are identical, despite the different methods of 

inference. Therefore, the tool for building a DBN for the purpose of CTR prediction can be both the 

Bayes Server API, which is available as Python libraries, and PyAgrum directly. Empirically, it was 

established that the calculation of posterior probabilities in PyAgrum is faster, so Bayes Server will 

remain only a secondary tool in the study of Bayesian networks. 

To predict CTR, it is necessary to calculate the parameter ua , which is initialized at the request 

level. That is, it is determined only by the request-document pair. The parameter ua is equivalent to 

the CTR of document u if it were in the first position. Therefore, the value ua will be the unbiased 

CTR prediction for u  

To calculate the parameters ua  and us , a two-step iterative Expectation-Maximization algorithm 

[10] was used. 

Suppose that for a fixed search query q are investigated n search sessions. Let 
j

iA , 
j

iS , 
j

iE are 

hidden variables at i position, 10,1i  in  j search session, nj ,1 . We denote the document at 

position i for session j as 
j

id . Then one iteration of the algorithm consists of two steps. 

Step 1. Maximization. Given )(
j

iAQ  and )(
j

iSQ  posterior distributions, then the updated 

parameters ua , us will be found as follows: 
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where I is the indicator function, P (a ) and P (s) are a priori beta distributions taken with parameters 

(1, 1). 

The maximum a posteriori at this step can be calculated in two ways: by numerical optimization 

(gradient descent method, Newton's method) or analytically (in closed form). For numerical 

optimization, the optimize module of the scipy library has a special minimize_scalar() method. To 

calculate ua , us the theory of conjugate distributions is used analytically. We denote a , and a as 

hyperparameters for ua , s and s as hyperparameters for us . Then updated ua and us will be 

calculated as follows: 
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Since closed-form computation requires less programming time and is more accurate, this method 

was chosen to perform the maximization step. 

Step 2. Expectation. ua , us become the new parameters for A and S, respectively. Then new 

posterior distributions )(
j

iAQ and )(
j

iSQ  are calculated. 

Iterations are performed until the parameters ua , us  converge. 

Creating a model in Python was implemented in the model_setup function with input parameters 

initial values ua and us input parameter values  . 

Model training in Python was implemented in the train function, which accepts the following input 

parameters: 

 model – DBN created using PyAgrum; 

 sessions_number – the number of training sessions for the model; 

 df_with_clicks is a Pandas dataframe that contains click logs in the format shown in the Table 1; 

 max_iterations (optional) – the number of iterations of the EM algorithm. (max_iterations=60). 

After the training process is complete, the function returns matrices a and s that contain the 

corresponding parameters for each session and each URL in the session. 

A graphical user interface (GUI) was also created for the program that implements the Bayesian 

click model to combine input and output information for the model. The visual shell is presented in 

fig. 9: 

 

 
Figure 9. GUI for DBN 



To start the learning process, you need to set the following input data: 

 Parameter  is an input parameter of the Bayesian click model.  is the probability that the user 

will continue the search if the previously viewed document was not relevant for him; 

 Training data path is a folder in which click logs are stored, for which there is only one unique 

search query within one file; 

 Search query amount defines some sample of data that will be used to train the model; 

 Documents: "all unique URLs" if ua calculated for all documents on the search page. If it is 

necessary to calculate ua only for a specific list of documents, then you should select the item 

"URLs from a config file"; 

 Number of training sessions  can be specified as a single number or a sequence of unique integers. 

In the second case, training will be carried out sequentially in several stages with different 

numbers of training sessions in each; 

During model training, the calculated parameters are recorded in the corresponding table. By 

default, it has only two columns - "Query" and "Document". During the execution of the program, the 

table changes dynamically after activating the "Evaluate" button. In addition to calculating and 

displaying the results in a table, it is also possible to save these results in a separate file, in .csv format 

or as a database. There is an option to save only the values ua  as a matrix, without the corresponding 

URLs and queries. 

 

 
Figure 10. GUI for DBN (results of learning) 

Checking the estimated parameters for accuracy and research of the calculation error 

Since ua and us are evaluated by an iterative algorithm, it is necessary to study the stopping 

criterion of this algorithm. For this purpose, an experiment was conducted, which consists of the 

following stages: 

1. Randomly select 5 URLs associated with different search queries. 

2. Set a fixed number of iterations for the EM algorithm (max_iterations = 100). 

3. Compute values ua for all five URLs over a fixed number of training sessions for a given number 

of iterations. At the same time, for each URL, make two stages of calculation ua : with initial 

values of 0.1 and 0.9. In addition, fix all intermediate values ua that are calculated at each 

iteration. 

4. Plot convergence graphs ua for different numbers of training sessions.  



 
Figure 11. Graphs of dependences of differences ua on the number of iterations of the EM algorithm 

 

Figure 11 shows that with an increase in the number of training sessions, the initial values ua have 

less and less influence on their final evaluation. For four out of five documents, the change in 

differences slows down with the number of iterations exceeding 60. For 3du   a similar result is 

achieved only on a large number of sessions. For further experiments, the maximum number of 

iterations of the EM algorithm will be 60. 

As previously stated, ua as a measure of the attractiveness of some URL u is equivalent to the 

CTR u, if it were in the first position in the output. Therefore, to study the accuracy of CTR prediction 

by the Bayesian model, an experiment was conducted according to the protocol originally proposed in 

[12], which was also used in [18]. The experiment consists of the following steps: 

1. View all sessions that share a search query. 

2. Consider some URL that appeared in both position 1 and positions 2-10. 

3. All sessions, where the URL appeared in position 1, are considered test sessions. 

4. The rest of the sessions are considered training sessions. 

5. In the test sessions, calculate the CTR for the URL directly according to the formula. 

6. In training sessions, train the model and evaluate the parameter ua . 

7. Compare the test CTR with ua , calculating the error. 

8. Average the errors for all similar request-document pairs, weighting them by the number of 

test sessions. Thus, the weighted root mean square error for this experiment was calculated according 

to the following formula: 
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As part of this experiment, averaging was performed on different numbers of request-document 

pairs (10, 20, 30, 40, 50) for a better understanding of the dynamics of error changes. The results are 

shown in the graphs in fig. 12. 



 
Figure 12. Graphs of the dependence of errors on the number of training sessions 

 

After comparing the graphs in fig. 12, it can be concluded that with an increase in the number of 

request-document pairs for averaging, the graphs become smoother - the change in error becomes 

smaller with an increase in the number of studied URLs. In addition, there is a downward trend, that 

is, with an increase in the number of sessions, the root mean square error decreases, which is quite 

natural. On the right of fig. 12 are the graphs of the change in the value, which is the square root of 

the mean square error (RMSE). Thus, it is possible to see what is the average deviation of the 

predicted CTR from the real one, depending on the number of training sessions. 

It is also important to remember that this click model requires the definition of an input parameter 

 , which is the probability that the user will continue the search, given that the previous result did not 

satisfy him. Thus, the parameters  also depend on the estimates ua and us . For previous 

experiments,  it was equal to 0.9. To find the optimal value of this parameter, an experiment similar 

to the previous one was conducted, but now the number of training sessions and n are fixed, and the 

error is presented as a function dependent on the input parameter  (fig. 13). 

 

 
Figure 13. The dependence of the root mean square error on  

 
An unexpected conclusion emerges from the results of the experiment - the best CTR forecast is 

achieved at the value  =1, which corresponds to the SDBN (Simplified DBN) specification. A 

similar effect was also observed in [18]. In other words, for the studied click log, SDBN predicts CTR 

better than general DBN. This means that users, according to these click logs, are extremely persistent 

in their search for information. Since the best prediction is achieved for  =1, let's conduct an 

experiment with the calculation of the root mean square weighted error at  =1 and compare it with 

the error at  =0.9.  



 
Figure 14. The root mean square error. Comparison for  =0.9 and  =1 

 

Comparing forecasts for two different values  , we come to the conclusion that the optimal DBN 

parameter for predicting CTR on these click logs is  =1, and for any number of training sessions (fig. 

14). 

5. Conclusion 

1. The Bayesian click model is considered, including probabilistic relationships that describe the 

model, semantics of model parameters, possible methods of parameter estimation. 

2. An overview of available software products and services for analyzing and predicting user click 

behavior was conducted. 

3. With the use of modern information technologies and programming languages, in particular, the 

Python programming language, the PyAgrum library, and the Bayes Server software, a click model 

was built. 

4. A comparison of the performance results of various algorithms for calculating hidden variables 

was carried out. An application in the Python programming language was created, which evaluates 

unknown model parameters based on click logs. 

5. Studies of the accuracy of CTR prediction by the click model have been conducted. In 

particular, the dependence of the prediction error on the number of training sessions, as well as on the 

value of the input parameter, is illustrated. By conducting the experiment, the optimal value of the 

input parameter was found. 

In future studies, it is planned to develop a Bayesian click model for medical calculators for 

cardiac diagnostics [19, 20], biosensor systems [21, 22] and geoinformation systems [23]. This 

approach will allow taking into account probabilistic ratios that will describe the proposed models, the 

semantics of parameters, as well as possible methods of their evaluation. 
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