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Abstract  
In the ever-shifting landscape of technology, Cloud Computing emerges as a dynamic force 

reshaping the very fabric of business operations. As the clouds loom large, businesses find 

themselves empowered with the flexibility to harness servers, storage, networking, and 

applications in a way that adapts seamlessly to their evolving needs. In this work is presented 

a cloud computing model along with corresponding request distribution algorithms responsible 

for service quality and effective control of the number of activated servers to minimize costs. 

The presented algorithms use perceptrons to calculate approximate request processing times 

on servers and waiting times in queues. The first algorithm, based on these times, calculates 

potential penalties in queues for servers and selects the server for which the increase in this 

penalty will be the smallest. The next algorithm chooses the least loaded server and inserts a 

new request into the queue in such a way that the increase in penalty is as small as possible. 

The last of the presented algorithms aims to distribute requests in a way that maximally 

diversifies the times remaining for processing requests in the queues. 
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1. Introduction 

Cloud computing is a service provided by specific software along with the necessary infrastructure. 
This means the elimination of purchasing licenses, installing, and managing the software by the user, 

who simply pays for using the service. The operation of cloud computing involves transferring the entire 

burden of providing IT services to a server with constant access through clients' computers. Therefore, 

cloud processing is a very convenient solution, saving both time and money for both individual users 
and businesses, as well as corporations. Currently, the development of cloud computing is progressing 

rapidly to the point where, in the near future, the entire software, including the operating system, will 

be moved to a server, so users will only need a client with the appropriate interfaces to communicate 
with it. 

Types of cloud services:  
• Infrastructure as a Service – in this model, the provider only offers the infrastructure 
itself, which includes hardware and network access. The client is responsible for installing the 

operating system and software and managing them. However, the client does not have control 

over the cloud infrastructure itself. In this setup, the client pays based on the actual usage of the 

server's resources (in the case of virtual machines) or for a dedicated server. 
• Platform as a Service – in this model, the customer has the ability to deploy both their 

own applications and compatible ones within the cloud infrastructure. They have full control 

over these applications but do not control the cloud infrastructure itself, including networks, 
servers, operating systems, storage, etc. The customer can use these applications themselves or 

offer them as services. In the case of PaaS (Platform as a Service), the customer is billed based 

on resource usage, such as CPU time, the number of queries, or data transfer. 
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• Software as a Service – in this model, the customer receives a ready-to-use application 
running within the cloud infrastructure. The customer does not have control over the cloud 

infrastructure or the configuration of the application, except for basic settings dedicated to the 

user. In this case, the customer pays for each use of the application or subscribes for a specified 

period of usage. 
It's worth mentioning that in the early stages of cloud computing development, traditional 

deployments were common, where multiple applications ran on a single server. This led to resource 

allocation issues because some of these applications could consume most of the resources, causing 
delays for others. An attempt to solve this problem was to run applications on separate servers, but this 

resulted in underutilization of most resources and increased server maintenance costs. The solution to 

this problem was the introduction of virtual machines. With virtualization, you can run multiple isolated 
virtual machines on a single physical server, each with allocated resources and its own operating system. 

Applications are then run on these virtual machines, which, if running on different virtual machines, 

are completely isolated from each other. This allows for better resource utilization, cost reduction, and 

improved scalability. In the context of virtual machines, it's also worth mentioning migration, which 
involves moving a running virtual machine from one physical host to another without interrupting its 

operation. The next stage was the introduction of containers, which function similarly to virtual 

machines but with a lower degree of isolation and they share the same operating system. 
The goal of this research is to develop a HTTP request distribution system consisting of clusters, 

servers hosting websites, switches, and clients where all clients will be treated the same in order to 

minimize the costs of maintaining the entire system under varying workloads. To achieve this there are 
developed appropriate request distribution algorithms and algorithms for turning servers/virtual 

machines on and off based on varying system load, what is accomplished by adjusting the number of 

active clients over time. The operation of the system is simulated using the Omnetpp program [1]. 

The rest of this paper is organized as follows. Section 2 reviews related work on request distribution 
and guaranteeing quality of service. Section 3 describes system architecture and developed algorithms. 

Section 4 summarizes research results and ongoing work. 

2. Related work 

A crucial element affecting the performance of web hosting service, aside from hardware, is the 
HTTP request distribution algorithm among virtual machines/servers. Most request distribution 

algorithms aim for an even distribution of requests among cluster servers, which yields satisfactory 

results even for simple algorithms such as Round Robin, Weighted Round Robin, and Least Load. The 
first of these mentioned algorithms assigns incoming requests to consecutive servers. Weighted Round 

Robin is a Round Robin algorithm that incorporates weights for individual servers (weights can be static 

or dynamically change with server load). Servers with higher weights are selected more frequently in 

this algorithm than those with lower weights. A derivative of the Round Robin algorithm is CAP (Client 
Aware Policy) [2], which distributes requests like Round Robin but within several classes (static 

requests, dynamically lightly CPU-loaded, dynamically heavily CPU-loaded). The aim here is to ensure 

that each server is loaded with different types of requests, not just those that heavily load the processor. 
Another group of algorithms aims to increase the chances of hitting a server's cache memory. An 

example of such an algorithm is LARD [3], which, for a new request, checks whether the request has 

been processed by any of the servers. If it has, it directs the request to that server, provided it is not 
overloaded. If the request has not been processed by any server or if the server that previously handled 

it is overloaded, the least loaded server is chosen. 

More complex algorithms have the capability to adapt to changing working conditions. One of the 

first such algorithms is AdaptLoad [4], which dynamically adjusts its parameters based on system 
observations. It relies on the sizes of downloaded documents and is designed specifically for handling 

static requests. Another example of such an algorithm is FARD (Fuzzy Adaptive Request Distribution) 

[5]. This algorithm takes into account the request class and the three components of the load on each 
server in the cluster (CPU, disk, and network card). Based on this information, it calculates the service 

times for a given request by each server in the cluster. The server with the shortest service time is 

selected, and after servicing the request, the service times for the specific fuzzy sets used in the 



calculation of the selected server's time are modified. A very similar approach to calculating service 
times is presented in the work [6]. An extension of this algorithm is LFNRD [7], in which the measures 

of load are the numbers of static and dynamic requests serviced by a given server, and additional 

parameters of fuzzy sets are modified. In subsequent algorithms, GARDiB and GARD [8,9], the above 

solution is applied to globally distributed server clusters, both with and without intermediary servers. 
Most request distribution algorithms are best-effort algorithms that aim to evenly distribute requests 

among servers and minimize response time. The need to ensure adequate quality of service has been 

recognized for some time. In the work of Casalicchio and Cardellini [10], the authors mention the 
importance of proper request queuing, the use of server clusters in different geographic locations, and 

making appropriate decisions in request distribution, both at the global and local levels. However, they 

primarily focus on selecting the right number of servers in a cluster, the appropriate proportions of 
regular servers to backend servers for handling dynamic requests, and server selection for servicing 

new requests using the Weighted Round Robin (WRR) algorithm. Another article [11] also focuses on 

ensuring the desired quality of service. It involves resource reservations by providers within a cluster, 

followed by redirecting clients to subscriber pages based on resource reservations. The more resources 
a subscriber reserves, the more clients can access their page. In a different approach presented in the 

work [12], an algorithm is introduced to minimize energy consumption by cluster servers. This is 

achieved by turning off idle servers and reactivating them as the system load increases. 
However, so far, relatively few request distribution algorithms have considered guaranteed service 

execution times by servers. Among these algorithms are WEDF, MLF, and GGARDiB [13, 14, 15,16]. 

The first of these algorithms properly schedules incoming requests to a single server to ensure that the 
maximum service time for a page is not exceeded. The MLF algorithm, designed for use with multiple 

servers, not only queues requests but also makes decisions about server selection. It chooses a server 

with the smallest index for which the calculated service time for the request is less than the remaining 

time until the request's deadline. If such a server does not exist, it selects the server that can service the 
request in the shortest time. This algorithm tends to load servers with lower indices more, while servers 

with higher indices remain less loaded, allowing delayed requests to be directed to them. GGARDiB, 

on the other hand, initially distributes requests among clusters, selecting the one that can service the 
request in the shortest time. After selecting a cluster, the server selection process is similar to MLF. 

Regarding improving service quality, there are several solutions related to migration. Migration is a 

resource-intensive and time-consuming process and should not be performed too frequently. In the work 

[17], a method is developed for migrating individual tasks from one overloaded virtual machine to 
another less loaded virtual machine instead of migrating the entire virtual machine. In contrast, the work 

[18] describes an algorithm that reduces the number of migrations by predicting and classifying the 

loads of virtual machines and appropriately allocating them to physical machines to keep the load on 
physical machines as stable as possible. 

It's worth mentioning that in most of the above-mentioned algorithms, customers are not 

differentiated, meaning that each customer is treated the same. In production applications, business-
criteria-based algorithms are often used to differentiate customers. This typically involves prioritizing 

customers who pay for the service or allocating more resources to them.  

3. System description 

For the purposes of this work, it is assumed that the cloud computing system handles HTTP requests 
and consists of a request distribution switch that routes requests sent by clients between zones. Each 

zone contains a switch and at least one virtual machine. The switches are responsible for distributing 

requests between zones or virtual machines/servers. The virtual machines are responsible for processing 

the requests and then sending them back to the client. Requests follow the same path back that they 
came from, which is through the switches.. 

The system consists of a first-level switch which is responsible for load distribution among zones 

(Fig. 1). Each zone contains a second-level switch, servers along with backup servers, and control 
modules (Fig. 2). Clients send HTTP requests that are objects of one of several types of web pages 

(business, health, news, science, sport). When a client sends a request, upon entering the system it first 

goes to the first-level switch, which sends it to a zone and is responsible for turning servers on and off 



in the clusters. Upon reaching the zone, the request goes to the second-level switch, which is responsible 
for distributing requests among servers to ensure quality of service. This switch also calculates service 

times for the requests. The second-level switch forwards the request to the appropriate server queue. 

After leaving the server queue, the request goes to the server, where its processing begins. When the 

request is completed, it returns to the client using the same path it came from, bypassing the server 
queue. 

A server consists of CPU and disk modules. The request first goes to the CPU module, then to the 

disk module, and back to the CPU module. Dynamic requests are additionally processed by the backup 
servers. The number of requests that can be on a server simultaneously is constant and is determined 

before the simulation begins. The CPU and disk modules are implemented as queues, with service times 

dependent on the request size. 

 
Figure 1: A system diagram - client, first-level switch, and zones. 

 



 
Figure 2: A zone diagram. 

3.1. Estimating request service and waiting times 

Service time is the time that requests spend on the server. Waiting time is the time that elapses from 

the entry of a request into the queue to the start of processing on the server. To determine the service 
and waiting times, perceptrons are used. When a request enters the second-level switch, its size and 

whether it is a static or dynamic request are retrieved. Based on the size, the request is assigned to the 

appropriate size class. The input to the neural network consists of the request size divided by the 

maximum request size in the respective size class, and 0 if the request is static or 1 when it is dynamic. 
Based on this data, perceptrons calculate the service times for the request on each of the servers. 

To calculate the queue time, the input is the appropriately normalized sums of static and dynamic 

request sizes that are ahead of the given request in the queue. The activation function used in both cases 

is ReLU (Rectified Linear Unit), 𝑓(𝑥) = {
𝑥, 𝑓𝑜𝑟 𝑥 ≥ 0
0, 𝑓𝑜𝑟 𝑥 < 0

. Figure 3 illustrates a perceptron with n input 

nodes and 1 layer. 



 
Figure 3: A perceptron with n input nodes. 

To update the weights after each request is handled, a function (𝑓(𝑧) − 𝑡)2  is minimized, where z= 

w1 x1+ w2 x2, t  is the actual request processing time, or the actual queue waiting time, w1, w2 are the 

current weights, x1, x2 are the values of the respective inputs at the moment when request xi arrives at 

the second-level switch. 
This optimization process aims to adjust the weights w1 and w2 so that the predicted response time 

f(z) is as close as possible to the actual response time t or queue waiting time. The squared difference 

(𝑓(𝑧) − 𝑡)2  serves as the loss function that the optimization algorithm seeks to minimize, thereby 

improving the accuracy of the model's predictions. Common optimization techniques like gradient 
descent may be employed to find the optimal weight values. 

3.2. First level switch 

The first-level switch is composed of the following modules: Request Analysis Module, Cluster 

Information Gathering Module, Penalty Calculation Module, Decision-Making Module, and Dispatcher 
Module (Fig 4). The Request Analysis Module collects information about incoming requests, including 

their type (static or dynamic) and size. The Cluster Information Gathering Module periodically receives 

information about potential penalties occurring in all queues of servers within a zone. It also maintains 
data regarding the number of static and dynamic requests in each cluster. The Penalty Calculation 

Module calculates the actual penalties for delays in requests returning from cluster processing. It also 

computes the average penalty over time. If this average penalty exceeds the cost of running a server 
over a given time unit or if the potential total penalty in the queues exceeds a critical threshold, this 

module decides whether to activate or deactivate another server. The Decision-Making Module 

determines which cluster should handle a specific request based on algorithms such as Least Load or 

an algorithm that also considers potential penalties in the queues. It selects the zone where the penalty, 
per number of requests in cluster is the lowest. The Executor Module is responsible for forwarding 

requests to the selected cluster for processing. These modules collectively manage the distribution of 

requests, monitor the state of zones, calculate penalties for delays, and make decisions to optimize 
server utilization while maintaining quality of service. 

Request xi (where i is the sequential number of incoming requests) arrives at the Request Analysis 

Module, where its type (static or dynamic) is determined, along with the timestamp 𝜏𝑖
(1)

 of its entry into 

the switch. Subsequently, the request information is forwarded to the Decision-Making Module, which 
is responsible for assigning the request to a specific cluster. Once the decision is made regarding which 



zone will handle the request, the i-th request, along with the index of the designated zone, is passed to 
the Dispatcher Module. This module is responsible for transmitting the request to the chosen zone. 

Information about the number of requests in each zone is maintained within the Decision-Making 

Module's array. When a processed request returns from a zone, the index of the cluster it was sent to is 

retrieved, and the load distribution table in the Decision-Making Module is updated accordingly. 

 
Figure 4: Diagram of a first-level switch. The dashed line represents the path of the request, the solid 
line conveys information about the request, and the bold solid line carries information about clusters. 

3.3. Second level switch with an algorithm that minimizes the increase in 
penalty. 

The diagram of second level switch with algorithm that minimizes the increase in penalty is 

presented in Figure 5. At the beginning, the i-th request, also denoted as xi, enters the request analysis 

module where the arrival time 𝜏𝑖
(2)

 is recorded. The request type (static or dynamic), size, and delay 

penalty are determined, and this information is then sent to the service time module, which houses the 

server models. These models calculate the service times �̂�𝑖
(𝑠)

 for each server in the cluster and the 

deadlines 𝑑𝑖
(𝑠)

= 𝜏𝑖
(1)

+ 𝑡𝑚𝑎𝑥 − �̂�𝑖
(𝑠)

, where s=1,...,S, and S is the number of servers in the cluster. tmax 

represents the maximum response time for a request above which a penalty is incurred. The obtained 

service times, along with other request information, are directed to the penalty module, which receives 
information from the server information collection module regarding queues and servers. The penalty 

module then calculates potential penalties for each queue. Penalties are computed both before and after 

inserting the i-th request into the queue. Penalties are calculated for request xi as well as for requests 
that are placed behind it in the queue as follows: for a given request in the queue, denoted as xk, the time 

the request spends in the queue is calculated. This time is added to the 𝜏𝑖
(2)

 timestamp, yielding an 

estimated time when the processing of request xk will commence on the server. This estimated time is 

compared to the deadline dk for request xk. If it is later than dk, the difference between these times is 
considered a potential delay time for request xk, and thus, a potential penalty is calculated. Otherwise, 

the potential penalty is set to 0. In the next step, the array of penalty differences after and before inserting 

the i-th request for each server is passed to the decision-making module. This module selects the server 
for which the penalty difference is the smallest, i.e., it chooses the index in the array for which the 

corresponding value is the lowest. Then the request is sent to the queue, where requests are sorted by 

deadlines d i.e. the earlier the deadline d, the higher the request is positioned in the queue and leaves it 
when all requests ahead of it have been sent to the server, and the number of requests being processed 

by the server is less than the predetermined maximum number of requests per server. After the i-th 



request returns from being serviced on the server, the actual service time t is sent back to the service 
time determination module, where the weights for the server model that handled the i-th request are 

updated. Additionally, based on the sum of sizes of static and dynamic requests that were positioned 

before request xi, weights responsible for queue time calculation are also updated.  

 
Figure 5: Diagram of a second-level switch. The dashed line represents the path of a request, the solid 
line conveys information about the request, and the bold solid line carries information about servers 
and queues for them. 

3.4. Second level switch with an algorithm that inserts request into queue so 
as to decrease the delay penalty 

The diagram of second level switch with algorithm that inserts request into queue so as to decrease 

the delay penalty is presented in Figure 6. Request xi first enters the request analysis module at time 

𝜏𝑖
(2)

 and then the service time module, where service times �̂�𝑖
(𝑠)

 for this request on each server are 

determined, along with the times when the request should begin processing on each server, denoted as 

𝑑𝑖
(𝑠)

= 𝜏𝑖
(1)

+ 𝑡𝑚𝑎𝑥 − �̂�𝑖
(𝑠)

, where s=1,…,S, and S is the number of servers in the cluster. The request 

then proceeds to the decision-making module, where a server for servicing the request is chosen 

according to the Least Load algorithm. Subsequently, the service times for the request on the servers, 
along with other request information, are sent to the penalty determination module. Before the request 

is placed in the position indicated by the term di, an analysis related to request delays and penalties is 

performed to minimize these penalties (the request may be placed further in the queue than indicated 

by the term di). Finally, the request enters the appropriate server queue where where requests are sorted 
by deadlines d and leaves it when all requests ahead of it have been sent to the server, and the number 

of requests being processed by the server is less than the predetermined maximum number of requests 

per server. The penalty determination module receives periodic updates from both the queue module 
and the server information module to accurately determine where the i-th request should be placed in 

the queue. The decision-making module receives information from the queue module since, in the case 

of this algorithm, it selects the server with the shortest queue for this request.  
Description of queue penalty calculation: 

Before placing request xi in the queue at the position indicated by the term di, we check whether it 

delays requests that it should precede, starting from the end. Let's assume that there are n requests in 

the queue for the server, and term di points to the k-th position in the queue, where k<n, and τi is the 
entry time of request xi into the queue. First, we compare the penalties for delaying request xi and xn, 



where xn represents the n-th request in the queue, i.e., xn has a higher position than xi in the queue, and 
we calculate the difference in their penalties for subsequent processing: (𝜏𝑖 + ∑ �̂�𝑙

𝑛
𝑙=1 − 𝑑𝑖) ×

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 1𝑠 𝑑𝑒𝑙𝑎𝑦 𝑥𝑖   oraz (𝜏𝑖 + ∑ �̂�𝑙
𝑛−1
𝑙=1 + �̂�𝑖 − 𝑑𝑛) × 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 1𝑠 𝑑𝑒𝑙𝑎𝑦 𝑥𝑛. The symbol ∑ �̂�𝑙

𝑛
𝑙=1  

represents the waiting time in the queue for a request that is positioned in front of requests with service 

times �̂�1,..., �̂�𝑛. The value in bracket indicates the delay, and if it is negative, we assume that the penalty 
is 0. The first of these values is the penalty for delaying request xi when it is positioned behind request 

xn in the queue, while the second value is the penalty for delaying request xn when we insert it in front 

of request xi. If the second of these values is greater, we insert request xi behind request xn; otherwise, 

we similarly compare the delay costs of requests xi and xn-1. We continue this procedure until the cost 
of delaying any request in the queue exceeds the delay of request xi or when we reach the k-th position 

in the queue. 

 

Figure 6: Diagram of a second-level switch. The dashed line represents the path of a request, the solid 
line conveys information about the request, and the bold solid line carries information about servers 
and queues for them. 

3.5. Second level switch with an algorithm that increases standard deviation 
of the time remaining to service in queues 

The diagram of second level switch with algorithm that that increases standard deviation of the time 

remaining to service in queues is presented in Figure 7. Request xi enters the request analysis module, 

where its size, type (static or dynamic), delay penalty, and the entry time 𝜏𝑖
(2)

 into the switch are 

determined. This information then goes to the service time module, where service times �̂�𝑖
(𝑙)

 and the 

times when request processing should start on each server, denoted as 𝑑𝑖
(𝑙)

= 𝜏𝑖
(1)

+ 𝑡𝑚𝑎𝑥 − �̂�𝑖
(𝑙)

 for 

l=1,…,S, are calculated, S -number of servers in cluster. The calculated service times, along with other 

request information, are then sent to the decision-making module. This module periodically receives 

queue state information, especially the terms 𝑑𝑗
(𝑙)

 for requests in the queues, where l=1,…,S, and j 

denotes the index of the request. Based on these terms, times 𝑠𝑗
(𝑙)

= 𝑑𝑗
(𝑙)

− 𝜏𝑖
(2)

 for l=1,…,S, j=1,…,Kl, 

where Kl is the number of requests in the queue for the l-th server, are calculated. In this module, a 

decision is made to choose a server in a way that maximizes the differentiation of times sj in the queues. 
For each queue, request xi is added, and then the standard deviation of times sj for requests in that queue 



is calculated. The standard deviation is divided by the number of requests in the queue for which it is 
being calculated. The server is chosen for which this value is the highest. If sj is negative, it is not 

considered when calculating the standard deviation. The request then goes to the dispatcher module, 

which sends it to the queue for the selected server. The request leaves the queue when, at a certain point 

in time τ, an event occurs where the number of requests being processed on the server is less than the 
predetermined maximum number of requests allowed on the server, and the cost of delaying the 

remaining requests when selecting that particular request is the smallest. If the queue consists of 

requests x1,…,xn corresponding to their terms, denoted as d1,…,dn, then when we choose request xk from 

the queue for processing, the delay penalty for the remaining requests is equal: (τ-d1)×penalty for 1s 
delay x1+...+(τ-dk-1)×penalty for 1s delay xk-1+(τ-dk+1)×penalty for 1s delay xk+1+...+(τ-
dn)×penalty for 1s delay xn.. If the expression within any of the brackets is negative, we substitute it 

with 0, as it indicates that the respective request is not delayed. Each queue has its own penalty module 

that calculates these costs.  

 
Figure 7: Diagram of a second-level switch. The dashed line represents the path of a request, the solid 
line conveys information about the request, and the bold solid line carries information about servers 
and queues for them. 

3.6. Control module 

The role of control modules is to periodically send control messages. Control Module 1 sends 

messages to each server in the cluster, where information about the requests residing on the server is 
recorded. Subsequently, these server-held pieces of information are transmitted to queue modules, 

where data about the requests within the queues is stored. These messages then proceed to the second-

level switch, allowing it to have up-to-date information about the servers and their associated queues. 

Control Module 2 sends control messages periodically to the second-level switch. These messages 
contain previously calculated sums of penalties within the queues and on the servers of a given cluster. 

They are then transmitted to the first-level switch. Each cluster contains one such module. 

4. Summary 

In this work, are described both the fundamental request distribution algorithms commonly used in 
production solutions and more sophisticated ones based on fuzzy sets and artificial neural networks. It 

is also proposed loud computing model along with algorithms to ensure service quality while 

minimizing costs by maintaining an appropriate number of active servers. The system consists of a first-



level switch responsible for routing requests between clusters and controlling the number of active 
servers, and, within each cluster, second-level switches distributing requests between servers and 

control modules responsible for transmitting information about servers, queues, or clusters to the 

respective switches. To minimize penalties for request delays, there are developed three request 

distribution algorithms for second-level switches:  The first algorithm minimizes the increase in 
penalties in queues, The second algorithm selects the least loaded server and places the request in such 

a position in the queue to minimize the penalty, The third algorithm selects servers in a way that 

maximizes the variation in remaining service times in the queues. These algorithms, along with an 
appropriate strategy for turning servers on and off, are expected to significantly reduce the operational 

costs of cloud computing compared to commonly used algorithms like Round Robin or Least Load. 

5. References 

[1] OMNeT++ https://omnetpp.org/ 
[2] Emiliano Casalicchio, Michele Colajanni, ―”A client-aware dispatching algorithm for web 

clusters providing multiple services”, Proceedings of the 10th international conference on World 

Wide Web, p.535-544, May 01-05, 2001, Hong Kong, Hongkong 

[3] Pai V.S., Aron M., Banga G., Svendsen M., Druschel P., Zwaenpoel W., Nahum E.― „Locality -

aware request distribution in cluster based network servers”. In Proceedings of 8-th ACM 

Conference On Architectural Support for Programming Languages and Operating Systems, San 
Jose, October 1998. SIGOPS Operating System Review, ACM, New York, USA, 1998 vol 32(5), 

pp. 205-216 

[4] A.Riska,Wei Sun, E. Smirni, G.Ciardo ― „ADAPTLOAD: effective balancing in clustered web 
servers under transient load conditions” (ICDCS 2002), Vienna, Austria, pp. 103-111, 2002. 

[5] Leszek Borzemski, Krzysztof Zatwamicki. "A fuzzy adaptive request distribution algorithm for 

cluster-based web systems", In Proceedings of Eleventh Euromicro Conference on Parallel, 
Distributed and Network-Based Processing, Genova, Italy, February 05 - 07, 2003, pp: 119-126. 

[6] Saeed Sharifian, Mohammad K.Akbari and Seyed A.Motamedi, ―An Intelligence Layer-7 Switch 

for Web Server Clusters, 3rd IEEE International Conference on Sciences of Electronic, 
Technologies of Information and Telecommunications(SETIT 2005), March 27-31, 2005. 

[7] Krzysztof Zatwarnicki. „Adaptive Request Distribution in Cluster-Based Web System” 

Conference: Knowledge-Based and Intelligent Information and Engineering Systems” - 15th 
International Conference, KES 2011, Kaiserslautern, Germany, September 12-14, 2011, 

Proceedings, Part I 

[8] L. Borzemski, A. Zatwarnicka, K. Zatwarnicki,―”Global adaptive request distribution with 
broker”, In Proc. of 11th International Conference on Knowledge-Based and Intelligent 

Information & Engineering Systems, Lecture Notes in Computer Science 4693, Springer, pp. 271-

278, 2007. 
[9] L. Borzemski,K. Zatwarnicki „CDNs with Global Adaptive Request Distribution” Conference: 

Knowledge-Based Intelligent Information and Engineering Systems, 12th International 

Conference, KES 2008, Zagreb, Croatia, September 3-5, 2008, Proceedings, Part II 
[10] V. Cardellini , E. Casalicchio , M. Colajanni, ―”A Performance Study of Distributed Architectures 

for the Quality of Web Services”, Proceedings of the 34th Annual Hawaii International Conference 

on System Sciences ( HICSS-34)-Volume 9, p.9019, January 03-06, 2001 
[11] Zhiguang Shan, Chuang Lin, Dan C. Marinescu, Yang Yang, ―”Modeling and performance 

analysis of QoS-aware load balancing of web-server clusters”, Computer Networks: The 

International Journal of Computer and Telecommunications Networking,Vol. 40 No.2, p.235-256, 
7 October 2002 

[12] K. Rajamani , C. Lefurgy, ―”On evaluating request- distribution schemes for saving energy in 

server clusters”, Proceedings of the 2003 IEEE International Symposium on Performance Analysis 
of Systems and Software, p.111-122, March 06-08, 2003 

[13] Krzysztof Zatwarnicki „Providing Web Service of Established Quality with the Use of HTTP 

Requests Scheduling Methods” Conference: Agent and Multi-Agent Systems: Technologies and 

https://omnetpp.org/


Applications, 4th KES International Symposium, KES-AMSTA 2010, Gdynia, Poland, June 23-
25, 2010, Proceedings. Part I 

[14] Krzysztof Zatwarnicki „A cluster-based web system providing guaranteed service” Systems 

Science 35(4):69-80 2009 
[15] Krzysztof Zatwarnicki ― „Guaranteeing quality of service in globally distributed web system with 

brookers Lecture notes in Artifical Intelligence”, Springer-Verlag, Berlin-Heidelberg, 2011, vol. 

160, pp 45-54 
[16] Krzysztof Zatwarnicki, ―”Operation of Cluster-Based Web System Guaranteeing Web Page 

Response Time”, In Proceedings of the 5th International Conference on Computational Collective 

Intelligence, Technologies and Applications, Vol. 8083. Springer-Verlag New York, pp. 477-486, 
2013. 

[17] Fahimeh Ramezani, Jie Lu, Farooukh Hussain ― „A Fuzzy Predictable Load Balancing Approach 

in Cloud Computing” 
[18] Hao Wu, Yuqi Chen, Chi Zang, Jianchao Dong „Loads prediction and consolidation of virtual 

machines in cloud” 2023 

https://www.researchgate.net/journal/Systems-Science-0137-1223?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InByb2ZpbGUiLCJwYWdlIjoicHVibGljYXRpb25EZXRhaWwiLCJwcmV2aW91c1BhZ2UiOiJwcm9maWxlIn19
https://www.researchgate.net/journal/Systems-Science-0137-1223?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InByb2ZpbGUiLCJwYWdlIjoicHVibGljYXRpb25EZXRhaWwiLCJwcmV2aW91c1BhZ2UiOiJwcm9maWxlIn19

