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Abstract  
Shape memory alloys (SMAs) possess unique properties, namely, they retain their original 

form after loading while being, for instance, heated. The structural properties of pseudoelastic 

NiTi SMA, such as the dependencies of stress and strain range upon the number of loading 

cycles, were studied by employing the methods of supervised machine learning (ML). The 

obtained results are quite accurate, which can be seen from the calculated mean average error 

(MSE) and root mean squared error (RMSE). In general, ML methods can be utilized to solve 

such kinds of tasks very efficiently.  
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1. Introduction 

Shape memory alloys (SMAs) ‘memorise’ or retain their initial shape when under the action of 

thermomechanical or magnetic fields [1]. SMAs have gained vast attention recently in a wide range of 

applications, that are based on their peculiar properties, namely, in products [2], structural elements [3], 

automotive [4], aerospace [5, 6], mini actuators and micro-electromechanical systems (MEMS) [7, 8], 

etc. Therefore, due to their ubiquitous widespread, it is highly important to study their structural 

properties, namely, the dependencies of stress and strain upon the number of loading cycles. A number 

of related computer modelling and simulations was performed in the studies [9-11]. Since the testing 

procedures are often quite costly and time-consuming, it is advisable to use the methods of artificial 

intelligence (AI), specifically, machine learning (ML) approaches. The number of tasks was solved 

efficiently by ML methods in the papers [12-14]. Thus, the aim of this paper was to predict the 

dependencies of stress and strain ranges upon number of loading cycles for NiTi SMA utilizing the 

supervised ML methods. 

2. Methods 

The dependencies of stress range and strain on the number of loading cycles for the four specimens, 

that were taken from study [15] were predicted by methods of machine learning in the programming 

platform Orange 3.34.0 [16]. This software allows to build visually the flowcharts and obtain the results 

in the form of models, numerical data and plots. 
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In general, for each of four specimens, two model were built. On the input of each model there were 

given the dependencies of the respective physical quantity on the number of loading cycles. The number 

of loading cycles was treated as an independent variable, and the physical quantity was chosen as a 

dependent variable. To increase the accuracy of modelling results, the dataset was augmented. The data 

augmentation was performed by interpolating the original experimental data by 1-Dimensional Akima 

spline. Akima spline is a type of non-smoothing spline that gives good fits to curves where the second 

derivative is changing fast [17]. 

 

 
Figure 1: Model flowchart, which was built in the programming environment Orange 

 

For each specimen, the dataset was split into two unequal parts. The training dataset contained 66% 

of the total dataset. The regression dependencies were built by methods of random forests, neural 

networks, gradient boosting, support vector machines (SVM), AdaBoost, and k-nearest neigbors 

methods. Each of the obtained models was checked additionally by k-fold cross-validation method 10 

times. Fig. 1 shows the flowchart of one model, built in the programming environment Orange. 

3. Results and discussion 

There was performed the estimation of structural properties of specimens, made of NiTi SMAs. In 

general, there were tested 4 specimens. The number of specimen, as well as the sample size for stress 

and strain range versus the number of loading cycles are presented in Table 1. 

Table 1. Specimen number and sample sizes for stress and strain ranges versus the number of loading 

cycles. 

 

Table 1 
Specimen number and sample sizes for stress and strain ranges versus the number of loading cycles 

specimen # 
Sample size 

Δε(N) Δσ(N) 

10 1004 1004 
13 771 771 
16 1059 2049 
17 942 942 

 
Table 2 presents the results in the form of various prediction errors, such as root mean square error 

(RMSE) and mean average error (MAE), as well as correlation coefficient R2 for Δε and Δσ, assessed 

for specimen #10.  



 

Table 2 
Prediction errors and correlation coefficient for Δε and Δσ, built for specimen # 10 using various 
supervised ML methods 

Specimen # 10 Δε Δσ 

Model RMSE MAE R2 RMSE MAE R2 

Ada Boost 0.014 0.008 1.000 0.776 0.196 0.999 
Gradient Boosting 0.019 0.013 1.000 0.802 0.268 0.999 

kNN 0.019 0.006 1.000 0.636 0.133 1.000 
Neural Network 0.153 0.109 0.987 1.586 1.061 0.997 
Random Forest 0.017 0.008 1.000 0.581 0.163 1.000 

SVM 0.298 0.244 0.950 14.667 13.527 0.744 

 

The lowest errors for specimen # 10 were shown by Ada Boost and kNN for Δε, and random forest 

and kNN for Δσ. Fig. 2 (a, b, c, d) displays the plots of predicted versus true values of the respective 

physical quantities, built by the afore-mentioned ML methods. 

 

  
a) Δε Ada Boost b) Δε kNN 

  
c) Δσ Random Forest d) Δσ kNN 

Figure 2: The predicted versus true values of physical quantities. a) built for Δε by means of Ada boost 
method; b) built for Δε by means of kNN method; c) built for Δσ using Random Forest method; d)  built 
for Δσ using kNN method 

 

As it can seen from Fig. 2, the calculated points are very close to the bisector of the first coordinate 

angle, that confirms the high prediction accuracy. 

The modelling was also performed for the specimen #13. 

Table 3 contains the prediction errors and correlation coefficient for Δε and Δσ, estimated for 

specimen # 13 using various ML methods. 

 

Table 3 



Prediction errors and correlation coefficient for Δε and Δσ, built for specimen # 13 using various 
supervised ML methods 

Specimen # 13 Δε Δσ 

Model RMSE MAE R2 RMSE MAE R2 

Ada Boost 0.071 0.008 0.981 0.607 0.176 1.000 
Gradient Boosting 0.071 0.010 0.981 0.619 0.225 1.000 

kNN 0.078 0.007 0.977 0.557 0.112 1.000 
Neural Network 0.235 0.176 0.796 1.165 0.718 0.998 
Random Forest 0.074 0.008 0.980 0.544 0.155 1.000 

SVM 0.144 0.080 0.923 13.615 12.797 0.770 

 

For this particular specimen, the lowest errors were obtained by employing Ada Boost and kNN for 

Δε, and random forest and kNN for Δσ. 

The plots of predicted versus true values of the respective physical quantities, built by the afore-

mentioned ML methods for specimen # 13 can be seen on Fig 3 (a, b, c, d). 

 

  
a) Δε Ada Boost b) Δε kNN 

  
c) Δσ Random Forest d) Δσ kNN 

Figure 3: The predicted versus true values of physical quantities for specimen # 13 a) built for Δε by 
means of Ada boost method; b) built for Δε by means of kNN method; c) built for Δσ using Random 
Forest method; d)  built for Δσ using kNN method 

 

Table 4 contains the forecast errors and correlation coefficient for Δε and Δσ, built for specimen # 

16 using several supervised ML methods. 

 

Table 4 
Prediction errors and correlation coefficient for Δε and Δσ, built for specimen # 16 using various 
supervised ML methods 

Specimen # 16 Δε Δσ 

Model RMSE MAE R2 RMSE MAE R2 



Ada Boost 0.016 0.001 0.971 0.150 0.040 1.000 
Gradient Boosting 0.016 0.002 0.971 0.174 0.078 1.000 

kNN 0.016 0.001 0.971 0.099 0.023 1.000 
Neural Network 0.041 0.025 0.815 0.439 0.257 0.999 
Random Forest 0.018 0.002 0.964 0.115 0.033 1.000 

SVM 0.077 0.067 0.343 12.133 11.186 0.426 

 

For the specimen # 16, the lowest errors were obtained by employing Ada Boost and kNN for Δε, 

and random forest and kNN for Δσ. 

Table 5 presents the errors and correlation coefficient for Δε and Δσ, obtained for specimen # 17 by 

means of different ML methods. 

 

Table 5 
Prediction errors and correlation coefficient for Δε and Δσ, built for specimen # 17 using various 
supervised ML methods. 

Specimen # 17 Δε Δσ 

Model RMSE MAE R2 RMSE MAE R2 

Ada Boost 0.061 0.005 0.961 5.550 0.467 0.866 
Gradient Boosting 0.061 0.006 0.961 5.542 0.498 0.867 

kNN 0.052 0.004 0.971 4.419 0.316 0.915 
Neural Network 0.186 0.085 0.630 5.660 1.115 0.861 
Random Forest 0.058 0.005 0.964 3.896 0.339 0.934 

SVM 0.152 0.092 0.751 10.815 8.849 0.492 

 

For the specimen #17, the lowest errors were obtained by Random Forest and kNN for  Δε and Δσ. 

 

4. Conclusions 

There were predicted the structural properties of pseudoelastic NiTi SMA, namely, the dependencies 

of stress and strain range upon the number of loading cycles, by employing the methods of supervised 

learning methods. The predicted versus true values of those two physical quantities were built. They 

are very close to the bisector of the first coordinate angle, which confirms high prediction accuracy. 

The best results in terms of RMSE and MSE were shown by Ada Boost and kNN for Δε, and by Random 

forest and kNN for Δσ. It can be further concluded, that the methods of supervised ML can efficiently 

predict the afore-mentioned dependencies, and are the promising method to solve such kinds of tasks. 
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