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Abstract  
Ergodicity is a fundamental property in statistical information signal modelling and processing 
because it simplifies the analysis and estimation of signal properties and system parameters. It 
enables practitioners to work with single realizations of signals and make meaningful statistical 
inferences, which is necessary when dealing with real-world data and signals. The continuous-
time stationary conditional linear random process as a mathematical model of information 
signals has been analyzed in the paper using characteristic functions method. The mixing 
property of the process, from which its ergodicity follows, has been proven. 
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1. Introduction 

Conditional linear random process (CLRP) is represented as a stochastic integral with a random 
kernel driven by the process with independent increments [1, 2]. It is used for the mathematical 
modelling, computer simulation, statistical analysis and forecasting of information signals and 
processes which can be represented as a sum of many random stochastically dependent impulses 
occurring at Poisson time moments. The CLRP as a mathematical model of the investigated signal 
considers the physical nature of its generation. The CLRP is applied in the area of information systems 
and technology for the problems of mathematical modelling and analysis of electrophysiological 
information signals, radar clutter, dynamic loads of mechanical systems, forecasting of energy loads 
and consumptions, water consumptions, etc. [2–4]. The conditional linear random process is a 
generalization of a well-known model of the linear random process [5–7] having a similar integral 
representation but with a nonrandom kernel, and as a result they can be used only for mathematical 
modelling of the signals or processes represented as a sum of independent impulses. Conditional linear 
random processes compared with their linear counterparts take into account the conditional 
heteroscedasticity of modelled signals which is important for information technology applications in 
economics, medicine, and energy. 

Ergodicity is always the important property of mathematical models which is used for information 
signal processing when the task is to estimate parameters of a signal or a system [8–10]. Ergodicity 
allows to use of time averages (averages over a single realization of a signal) to estimate these 
parameters. This is particularly important when dealing with non-stationary signals or time-varying 
systems [11, 12].  Ergodicity is closely related to the concept of stationarity. The assumption of 
ergodicity is fundamental in the modelling of communication systems and the analysis of random noise 
in electrical circuits, application to financial mathematics [13], compressive sensing [14, 15], etc.  
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Very often the ergodic property of the investigated signal is just a hypothesis or assumption. 
However it is a  characteristic property of linear random processes [16, 17]. Moreover, the mixing 
property is inherent in linear random processes [17]. We did not find such properties of conditional 
linear random processes in the available literature. Thus, it is important to study the same features for 
the CLRP model. 

The main goal of the paper is to justify the conditions for the continuous-time stationary conditional 
linear random process to be ergodic as a consequence of mixing property using the known 
representation of its multidimensional characteristic function.  

In the following parts of the article, we define the continuous-time conditional linear random process 
and represent its multidimensional characteristic function. Then we consider the notions of ergodicity 
and mixing in terms of characteristic functions of the stationary random processes. Finally, we find the 
conditions of stationary CLRP to be mixing and ergodic. 

2. Conditional linear random process and its properties 

This section is preliminary and covers the definition of continuous-time conditional linear random 
process and representation of its multidimensional characteristic function which is used in the next 
section for proving the mixing property and ergodicity. Here we follow mostly the results of [1] and 
[2], but Levy process is used with its Poisson jump spectrum given on the Levy-Khintchine form in the 
CLRP model definition. 

A continuous-time conditional linear random process ( , ), , ( , )t tξ ω ω∈Ω ∈ −∞ ∞  (where { }, ,PΩ F  
is probability space) is defined as the following stochastic integral:   

( , ) ( , , ) ( , ), , ,t t d t
∞

−∞

ξ ω = ϕ ω τ η ω τ ω∈Ω ∈∫   (1) 

where ( , , ), ,t tϕ ω τ τ ∈  is a stochastic kernel;  
( , ), ( , )η ω τ τ∈ −∞ ∞  is a Levy process;  

random functions ( , , )tϕ ω τ  and ( , )η ω τ  are stochastically independent.  
Let ϕ ⊂F F  be a σ -subalgebra generated by the random kernel ( , , )tϕ ω τ  satisfying the condition 

( , , )t
∞

−∞

ϕ ω τ < ∞∫  with probability 1. 

The m-dimensional characteristic function of conditional linear random process (1) is represented in 
the following form: 
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characteristic function ( ϕF -characteristic function) of CLRP (1), which is expressed as follows: 

( )
1 2 1 2

1

2
1

2 2
1

( , , , ..., ; , , ..., ) exp ( , , )

( , , ) 1exp ( , , ) 1 ( ) ,
1

m

m m k k
k

m

m k k
k

k k
k

f u u u t t t ia u t d

ix u t xix u t dG x d
x x

ϕ

∞

ξ
= −∞

∞ ∞
=

=−∞ −∞

 
ω = ϕ ω τ τ + 

 
 ϕ ω τ∑   + 

+ ϕ ω τ − − τ     +     
 

∑ ∫

∑∫ ∫

F

 

, ( , ), 1,k ku t k m∈ −∞ ∞ = ,  

(2) 

where ( ),G x x∈  is a real non-decreasing and bounded function such that ( ) 0G −∞ =  (the Poisson 
jump spectrum in Levy-Khintchine form of infinitely divisible Levy process ( , )η ω τ );  



a∈ , and if ( , )Eη ω τ < ∞  then ( , ) ( ).Ea xdG x
∞

−∞

= η ω τ − ∫  

If random functions (fields) ( , , )tϕ ω τ  and ( , , )s t sϕ ω τ + +  are stochastically equivalent in the wide 
sense, that is, their finite-dimensional distributions are equal satisfying the following condition:  
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; (3) 

for any s∈ , then conditional linear random process (1) is a strict sense stationary. 
Using the above representation of m-dimensional characteristic function of conditional linear 

random process the expressions for moment functions can be obtained which are important for 
information signal processing (including mathematical expectation and covariance function), properties 
of cyclostationarity [18] can be analyzed, mixing and ergodicity conditions can be proven. The results 
can be also extended for multivariate case. 

3. Ergodicity and mixing of stationary conditional linear random proces 

In this section we define the general notion of continuous-time stationary ergodic random process. 
We also analyze some cases which are important for the problems of information signal processing. 
Finally, we define and prove the mixing property for conditional linear random process. Ergodicity is 
the consequence of mixing property [17, 19]. 

Let ( , ), ( , )t tξ ω ∈ −∞ ∞  is a continuous-time strictly stationary random process with the values in a 
measurable space { },X B  and 1 2( , , ..., )mg x x x , 1m ≥  is a mB -measurable function satisfying the 
following condition: 

( )1 2 1 2( , ), ( , ), ..., ( , ) , , , ...,m mg t t t t t tξ ω ξ ω ξ ω < ∞ ∀ ∈E  . (4) 
The continuous-time strictly stationary random process ( , ), ( , )t tξ ω ∈ −∞ ∞  is called ergodic if for 

any function 1 2( , , ..., )mg x x x  satisfying the above conditions, the following holds with probability 1: 
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 (5) 

The above definition of ergodic random process is very general. But in the problems of information 
signal analysis several cases are the most important. The mathematical expectation and covariance 
function, one- and two-dimensional cumulative distribution functions and characteristic functions of 
the investigated signal are usually estimated, analyzed, and used for informative features detection [20]. 
Further, the ergodicity of stationary random process with respect to the most important probability 
characteristics are represented indicating the relation to the general condition (5).  

On the below expressions m  is the dimension of the corresponding function 1 2( , , ..., )mg x x x , 
convergence is assumed with probability 1. Thus, we can define the following types of ergodicity of 
continuous-time strictly stationary random process ( , ), ( , )t tξ ω ∈ −∞ ∞  [17]. 

Ergodicity with respect to the mathematical expectation ( , )tξ ω = µE : 

11, ( ) , 0m g x x t= = = ⇒  
0

1lim ( , )
c

c
t dt

c→∞
ξ ω =µ∫ . 

Ergodicity with respect to the covariance function ( )( )( ) ( , ) ( , )R t t τ = ξ ω −µ ξ ω + τ −µ E , τ∈ : 
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Ergodicity with respect to the one-dimensional cumulative distribution function 
( ) ( ( , ) ),F y t y yξ = ξ ω < ∈P  : 
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 is a Heaviside function. 

Ergodicity with respect to the two-dimensional cumulative distribution function 
1 2 1 2 1 2( , ; ) ( ( , ) , ( , ) ), ,F y y t y t y y yξ τ = ξ ω < ξ ω + τ < ∈P  : 
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Ergodicity with respect to the one-dimensional characteristic function ( )( ) exp ( , )f u iu tξ = ξ ωE : 
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0
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c ξ→∞
ξ ω =∫ . 

Ergodicity with respect to the two-dimensional characteristic function 1 2( , ; )f u uξ τ =  

( )1 2exp ( , ) ( , )i u t u t = ξ ω + ξ ω + τ E : 
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0
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c

c
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c ξ→∞
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It is easy to see that stationary random process can be ergodic with respect to mathematical 
expectation but not ergodic with respect to covariance function or characteristic function, etc. 

The notion of ergodicity as it has been defined above represents the convergence of corresponding 
sampling averages to probability characteristics of the random process. Mixing is another fundamental 
property of random process expressed the fact that events (related to investigated process) separated by 
long time intervals are approximately independent [19]. 

In terms of random process distributions, mixing property means that random vectors 
1 2( ( , ), ( , ), ..., ( , ))mt t t t t tξ ω + ξ ω + ξ ω +  and 1 2( ( , ), ( , ), ..., ( , ))ns s sξ ω ξ ω ξ ω  (created by the samples of 

stationary random process) become approximately independent as t →∞ .  
A mixing property of the stationary random process represented by its characteristic functions is 

defined as follows [17]: 
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1 2 1 2 1 2 1 2, , ..., , , , ..., , , , ..., , , , ..., .m n m nu u u v v v t t t s s s∈ ∈ 
 

(6) 

Ergodicity in the sense of (5) is a consequence of mixing. The hierarchy of mixing and ergodicity 
properties which are considered in the paper has been illustrated in Figure 1. Thus, to justify the ergodic 
properties of continuous-time strictly stationary conditional linear random process we need to prove the 
mixing property first. The idea is to use the characteristic function method using the representation (2) 
and relationship between conditional and unconditional characteristic functions. Obviously, the time-
dependent properties of the model expressed as stochastic integral driven by Levy process heavily 
depend on the corresponding properties of the random kernel. 

Let ( , ), ( , )t tξ ω ∈ −∞ ∞  be a continuous-time strictly stationary conditional linear random process 
driven by Levy process, and with the kernel satisfying (3).  

Let us denote  
1 2 1 2Law( ( ), ( ), ..., ( )) Law( ( ), ( ), ..., ( ))m mξ ω ξ ω ξ ω = η ω η ω η ω  

if random vectors  
1 2( ( ), ( ), ..., ( ))mξ ω ξ ω ξ ω  and 1 2( ( ), ( ), ..., ( ))mη ω η ω η ω  

have the same m -dimensional cumulative distribution functions (distribution laws). 
 



 
Figure 1: Hierarchy of mixing and ergodicity properties 

 
Let random vectors 
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are asymptotically independent as t →∞ , ∀τ , 1 2 1 2, , ..., , , , ...,m nt t t s s s ∈ , that is, taking into account 
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Then ( , )tξ ω  is the strictly stationary CLRP satisfying the mixing condition (6) 
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is the logarithm of characteristic function of infinitely divisible random variable ( ,1)η ω  on the Levy-
Khintchine form when 0a = . 

The function ( )uψ  is a uniformly continuous on u∈  and (0) 0ψ = . 

Since a kernel of CLRP satisfies the condition ( , , )t d
∞

−∞

ϕ ω τ τ < ∞∫ , t∀ ∈  with probability 1, then 

( , , ) 0tϕ ω τ →  as τ →∞ , t∀ ∈   with probability 1. Taking into account (3) and (7), properties of the 
above function ( )uψ , and also properties of ϕF -characteristic function [2], the following expressions 
with respect to conditional and unconditional characteristic functions of CLRP can be written: 
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Thus, the condition (6) holds. That is, the investigated stationary conditional linear random process 
undergoes the mixing property. The ergodicity of the process in the sense of (5) is an immediate 
corollary of mixing property, including ergodicity with respect to moment functions, one- and 
multidimensional cumulative distribution functions and characteristic functions which are used for the 
feature detection and estimation in the problems of information signal processing. 

4. Conclusions 

The conditional linear random process driven by Levy process has been defined and described using 
conditional characteristic functions method, Levy-Khintchine form has been used to specify the Poisson 
jump spectrum of Levy process. The CLRP belongs to the class of infinitely divisible mixtures. The 
condition of CLRP to be strict sense stationary has been represented. 

The hierarchy of mixing and ergodicity properties has been analyzed, the importance of the 
corresponding concepts for the problems of applied information signal modelling and processing has 
been represented. Thus, the effective mathematical model should undergo ergodicity and mixing 
properties. 

The mixing property of the continuous-time strictly stationary conditional linear random process has 
been proven using the characteristic functions method. The ergodicity property is a consequence of 
mixing. That is why, if the information signal is modelled as stationary ergodic CLRP then it is priori 
justification of performing the statistical analysis using time averaging of its single realization. 

The prospective research is related to the study of mixing and ergodicity of discrete-time conditional 
linear random process. 
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