
Objectification

Terry Halpin

Northface University
Salt Lake City, Utah, USA.

e-mail: terry.halpin@northface.edu

Abstract: Some information modeling approaches allow instances of relation-
ships to be treated as entities in their own right. In the Unified Modeling Lan-
guage (UML), this is called “reification”, and is mediated by association
classes. In Object-Role Modeling (ORM), this is called “objectification” or
“nesting”. While this modeling option is rarely supported by industrial versions
of Entity-Relationship Modeling (ER), some academic ER versions do support
it. Objectification is related to the linguistic activity of nominalization, of which
two flavors may be distinguished: circumstantial; and propositional. In practice,
objectification is prone to misuse, and some modeling approaches provide in-
complete or flawed support for it. This paper analyzes objectification in-depth,
shedding new light on its fundamental nature, and providing practical guide-
lines on using objectification to model information. Because of its richer se-
mantics, the main graphic notation used is that of ORM. However, the main
ideas are relevant to UML and ER as well.

1 Introduction

In this paper, the terms “relationship type”, “association”, and “fact type” all denote
typed predicates (e.g. Country plays Sport). In many business domains, it is natural to
think of certain relationship instances as objects about which we wish to talk. For ex-
ample, Australia’s playing of cricket is rated world class. In Object-Role Modeling
(ORM) dialects, this process of making an object out of a relationship is called “objec-
tification” or “nesting” [13, 14, 7, 24, 2]. In the Unified Modeling Language (UML),
this modeling technique is often called “reification”, and is mediated by means of as-
sociation classes [27, 28, 30]. Although industrial versions of Entity-Relationship
Modeling (ER) typically do not support this modeling option [14, ch. 8; 16], in princi-
ple they could be extended to do so, and some academic versions of ER do provide
limited support for it (e.g. [3]). As an example of partial support, some ER versions
allow objectified relationships to have attributes but not to play in other relationships.

In practice, objectification needs to be used judiciously, as its misuse can lead to
implementation anomalies, and those modeling approaches that do permit objectifica-
tion often provide only incomplete or even flawed support for it. This paper provides
an in-depth analysis of the modeling activity of objectification, shedding new light on
its fundamental nature, and providing practical guidelines on how to use the technique
when modeling information. Because of its richer semantics, the main graphic nota-
tion used is that of ORM 2 (the latest generation of ORM), with some examples being
recast in UML. However, the main ideas are also relevant to extended ER.

Objectification is related to the linguistic activity of nominalization. Section 2 dis-
tinguishes between circumstantial and propositional nominalization, and argues that
objectification in information models typically corresponds to circumstantial nomi-
nalization. Section 3 explains circumstantial nominalization of binary and longer facts
in terms of equivalences and composite reference schemes. Section 4 extends this
treatment to unary facts, and discusses other issues for the objectification of unaries.
Section 5 considers what restrictions (if any) should be placed on uniqueness con-
straints over associations that are to be objectified, and proposes heuristics to help
make such choices. Section 6 discusses modeling support to cater for facts or business
rules that involve propositional nominalization or communication acts. Section 7
summarizes the main results, suggests topics for future research, and lists references.

2 Two kinds of nominalization

This paper treats nominalization as the recasting of a declarative sentence as a noun
phrase morphologically related to a verb in the original sentence. Declarative sen-
tences may be nominalized in various ways. One way uses a gerund (verbal noun) de-
rived from the original verb or verb phrase. For example, “Elvis sang the song
‘Hound Dog’” may be nominalized as ‘Elvis’s singing of the song ‘Hound Dog’”.
Another way uses a pronoun or description to refer back to the original (e.g. “that El-
vis sang the song ‘Hound Dog”, or “the fact that Elvis sang the song ‘Hound Dog”).

In philosophy, it is usual to interpret the resulting nominalizations as naming either
corresponding states of affairs or corresponding propositions [1]. In linguistics, states
of affairs are sometimes distinguished into events and situations [10]). For informa-
tion modeling, we adopt the philosophical approach, ignoring finer linguistic distinc-
tions, and thus treat nominalizations as either circumstantial (referring to a state of af-
fairs or set of circumstances in the world or business domain being modeled) or
propositional (referring to a proposition). We treat events (instantaneous) and activi-
ties (of short or long duration) as special cases of a state of affairs.

The relationships between states of affairs, propositions, sentences, and communi-
cation acts have long been matters of philosophical dispute [9], with no definitive
agreement on these issues. At one extreme, states of affairs and propositions are ar-
gued to be identical. Some view logic as essentially concerned with connecting sen-
tences to states of affairs (Sachverhalte) [31], while others view its focus to be propo-
sitions as abstract structures. Our viewpoint on some of these issues is pragmatically
motivated by the need to model information systems, and is now summarized.

We define a proposition as that which is asserted when a sentence is uttered or in-
scribed. A proposition (e.g. Elvis sang Hound Dog) must be true or false (and thus is a
truth-bearer). Intuitively it seems wrong to say that a state of affairs (e.g. Elvis’s sing-
ing of Hound Dog) is true or false. Rather, a state of affairs is actual (occurs or exists
in the actual world) or not. A state of affairs may be possible or impossible. Some
possible states of affairs may be actual (occur in the actual world). States of affairs are
thus truth-makers: true propositions are about actual states of affairs. As in the corre-
spondence theory of truth, we treat the relationship between propositions and states of
affairs as one of correspondence rather than identity.

Although natural language may be ambiguous as to what a given usage of a nomi-
nalization phrase denotes (a state of affairs or a proposition), the intended meaning
can usually be determined from the context of the nominalization use (i.e. the logical
predicate applied to talk about it). In the below examples, the first three uses of the
demonstrative pronoun “that” result in propositional nominalization. In the final ex-
ample, “that” is used in combination with the gerund “snowing” to refer a state of af-
fairs (propositions aren’t beautiful). In the previous two sentences, “snowing’ is a pre-
sent participle, not a gerund. For further discussion of related issues, see [10, 23].

Elvis sang the song ‘Hound Dog’. -- original proposition
Elvis’s singing of the song ‘Hound Dog’ is popular. -- actual state of affairs
That Elvis sang the song ‘Hound Dog’ is well known. -- true proposition
That Elvis sang the song ‘Hound Dog’ is a false belief. -- false proposition

It’s snowing outside. -- original proposition
It’s true that it’s snowing outside. -- proposition
That snowing is beautiful. -- state of affairs

Object-Role Modeling is also called fact-oriented modeling, because it models all
the information in the business domain directly as “facts”, using logical predicates,
rather than introducing attributes. For example, the fact that Governor Arnold
Schwarzenegger smokes may be declared by applying the unary smokes predicate to
the governor, rather than assigning “true” to a Boolean isSmoker attribute of the gov-
ernor (as in UML). States of affairs may be actual or not, and propositions may be
true or false. In ordinary speech, “fact” often means a true proposition, but when
modeling information in ORM, the term “fact” means “proposition taken to be true”
in the sense of epistemic commitment [26, p. 254]. Model facts (committed proposi-
tions) are treated by the business as actual facts (true propositions) even if they might
not be known with certainty by the business to be true. In the rest of this paper, the
terms “fact” (i.e. fact instance) and “fact type” should be understood in this sense.

As a typical case of objectification in information modeling, Fig. 1(a) displays a
simple model in the graphic notation of ORM 2 (the latest version of ORM). Object
types (e.g. Country) are depicted as named, soft rectangles (earlier versions of ORM
used ellipses instead). A logical predicate is depicted as a named sequence of role
boxes, each of which is connected by a line segment to the object type whose in-
stances may play that role. The combination of a predicate and its object types is a
fact type, which is the only data structure in ORM.

If an entity type has a simple, preferred reference scheme, this may be abbreviated
by a reference mode in parentheses. In this example, countries are identified by coun-
try codes, based on the injective (1:1 into) fact type Country has CountryCode, whose ex-
plicit display here is suppressed and replaced by the parenthesized reference mode
(Code) that simply provides a compact view of the underlying fact type.

Here the fact type Country plays Sport is objectified as the object type Playing, which it-
self plays in another fact type Playing is at Rank. The latter fact type is said to be nested,
as it nests another fact type inside it. The exclamation mark “!” appended to “Playing”
indicates that Playing is independent, so instances of Playing may exist without par-
ticipating in other fact types. This is consistent with the optional nature of the first
role of Playing is at Rank. Gerunds are often used to verbalize objectifications in both
ORM and the KISS method [25].

Country
(Code)

Sport
(Name)plays

“Playing !”

AU cricket
AU tennis
NZ cricket
US tennis

Rank
(Nr)

is at

(AU, cricket) 1

(US, tennis) 1
(AU, tennis) 4

code {P}

Country

name {P}

Sport

rank [0..1]

Playing

**

(a) (b)

Fig. 1. Objectification of Country plays Sport as Playing in (a) ORM and (b) UML notation

In ORM 2, a bar spanning one or more roles indicates a uniqueness constraint over
those roles (previously, ORM added arrow tips to the bars). Each role may be popu-
lated by a column of object instances, displayed in a fact table besides its fact type, as
shown. A uniqueness constraint over just a single role ensures that each entry in its
fact role column must be unique. In the fact table for Playing is at Rank, the entries for
Playing are unique, but some entries for Rank appear more than once, thus illustrating
the n:1 nature of this fact type. A uniqueness constraint over multiple roles applies to
the combination of those roles. In the fact table for Country plays Sport, the entries for the
whole row are unique, but entries for Country and Sport may appear on more than one
row. Thus illustrates both the uniqueness over the role pair (the table contains a set of
facts, not a bag of facts) and the m:n nature of this fact type.

Fig. 1(b) depicts the example in UML. Classes are depicted as named rectangles,
and associations as optionally named line segments with their association roles (asso-
ciation ends) connected to the classes whose object instances may play those roles. By
default, association ends have role names the same as their classes (renaming may be
required to disambiguate). UML encodes facts using either associations or attributes.
The ORM fact type Country plays Sport is modeled by the association between Country
and Sport, which is reified into the association class Playing. A “*” indicates a multi-
plicity of 0 or more, so the Playing association is m:n. UML treats the association
class Playing as identical to the association, and permits only one name for it, so ex-
cludes linguistic nominalization. The fact type Playing is at Rank is represented as an op-
tional attribute ([0..1] denotes a multiplicity of 0 or 1) on the association class Playing.

Now consider the question: are the objects resulting from objectification identical
to the relationships that they objectify? In earlier work, we discussed two alternative
ORM metamodels, allowing this question to be answered Yes or No [6]. The UML
metamodel answers Yes to this question, by treating AssociationClass as a subclass of
both Association and Class [27]. Since relationships are typically formalized in terms
of propositions, this affirmative choice may be appropriate for propositional nomi-
nalization. However, we believe that the objectification process used in modeling in-
formation systems is typically circumstantial nominalization, and for such cases we
answer this question in the negative, treating fact instances and the object instances
resulting from their objectification as non-identical. An intuitive argument for this po-
sition follows, based on the model in Fig. 1.

The relationship instance expressed by the sentence: “Australia plays Cricket” is
clearly a proposition, which is either true or false. Now consider the object described
by the definite description: “The Playing by Australia of Cricket”, or more strictly

“The Playing by the Country that has CountryCode ‘AU’ of the Sport named ‘Cricket’”. Clearly, this
Playing object is a state of affairs (e.g. an activity). It makes sense to say that Austra-
lia’s playing of cricket is at rank 1, but it makes no sense to say that Australia’s play-
ing of cricket is true or false. So the Playing instance (The Playing by Australia of
Cricket) is ontologically distinct from the fact/relationship that Australia plays
Cricket. Our experience suggests this is typical for objectification examples in infor-
mation models. In this case, “objectified relationships” are in 1:1 correspondence with
the relationships they objectify, but are not identical to those relationships. Compare
this with first order logic, where predicate formulae are often tested for equivalence
(≡) but not identity (=). Terms or individuals may be identical, but not equivalent.

In information models, one may encounter propositional nominalizations, where
the noun phrase refers to a proposition (e.g. [the fact] that Australia plays cricket is
well known). A related though different case is where the noun phrase refers to a
communication act (e.g. the assertion that Australia plays cricket was made by Don
Bradman). We delay discussion of such cases till Section 6.

3 Objectification, and Composite Reference Schemes

Years ago, we formalized ORM in first-order logic (plus some mathematics) [11].
That analysis treated facts as distinct from the objects resulting from objectification,
which were formalized in terms of (typically unnamed) ordered pairs; it also assumed
that the facts being objectified are not unary, and that each objectified fact type has
only one uniqueness constraint, and this spans all its roles. The formalization of ob-
jectification outlined in this paper differs in several ways: it makes no use of ordered
pairs, instead relying on intuitive equivalences that may be visualized graphically; it
supports objectification of unary predicates and predicates with non-spanning unique-
ness constraints; and it supports navigation between facts and their objectifications.
This section sketches the main ideas, focusing on binary or longer facts with spanning
uniqueness constraints. Later sections discuss objectification of facts that either are
unary or have non-spanning uniqueness constraints.

To facilitate high level declaration of business rules [18] and queries [4] on infor-
mation models that use objectification, we include (implicitly or explicitly) link fact
types, that link or relate the objectification result to the objects in the relationship that
has been objectified. For example, the definite description “The Playing that: is by the
Country that has CountryCode ‘AU’; and is of the Sport that has SportName ‘Cricket’” makes use of
the linking fact types Playing is by Country and Playing is of Sport (Fig. 2). Such descriptions
use ORM2’s formal, textual language, and assume its default algorithms for translat-
ing between implicit (e.g. reference mode) and explicit (e.g. fact type) readings. The
large dots attached to role links depict mandatory role constraints (each instance of
Playing must play both the linking roles). By default, predicates are read left-to-right
and top-down; prepending “<<” to a predicate reading reverses the reading order. The
external uniqueness constraint depicted as a circled uniqueness bar indicates that each
(Country, Sport) pair projected from the attached roles relates to at most one Playing
object. Previously ORM used a circled “u” for this kind of constraint. Link fact types
have long been used for schema navigation in ORM dialects, including LISA-D [24].

Country
(Code)

Sport
(Name)plays

“Playing !”
Rank
(Nr)

is at

<< is by is of

Company
(Name)

acquired
“Acquisition !” was friendly

was by /
was acquirer in

<< is of

was acquired in

 Microsoft Visio
 Microsoft Navision
 Visio InfoModelers

[acquisitionBySelf]

[acquirer] [target]

[acquisitionOfSelf]

[acquirer] [target]

Fig. 2. Objectification in ORM uses linking fact types for relational navigation

If the modeler does not supply readings for the link predicates, default predicate

readings are assigned, such as “involves”, appended by numbers if needed to distin-
guish linking fact types that link to the same object type. Fig. 3 adds inverse predicate
readings, role names (enclosed in square brackets), and a sample population to the ac-
quisition schema. Display of such model elements on screen and in print may be tog-
gled on/off. The role names (acquirer, target) on the acquisition fact type provide role
names for the Company roles in the link fact types—the exact correspondence is de-
rivable if we note the voice (active/passive) of the acquisition predicate reading(s).

Fig. 3. Adding inverse predicate readings and role names supports full navigation

ORM schemas may be navigated in relational-style (using predicate names) or at-
tribute-style (using role names), or a mixture of both. From the company Visio we
may navigate via the left link to its acquisition of InfoModelers, or via the right link to
its acquisition by Microsoft. Navigating via the left link, the schema path may be ver-
balized in relational style as “Company that was acquirer in Acquisition”; navigating via the
right link we have “Company that was acquired in Acquisition”. Here the pronoun “that” per-
forms a conceptual join. Each of the above expressions is a path specification, not a
projection on a path. To project on Company and/or Acquisition, we add a projection
indicator (e.g. “ ”) to the object type occurrence(s) on which we wish to project [4].

To navigate from Acquisition to company, the link paths may be verbalized in rela-
tional style as: Acquisition that was by Company (navigation via left link); Acquisition that is of
Company (navigation via right link). Role paths may also be specified in attribute-style,
using role names for “attributes”. To navigate from Company to Acquisition we have
two options: Company.acquisitionBySelf (navigation via left link); Company.acquisitionOfSelf
(navigation via right link). To navigate from Acquisition to Company we have two
options: Acquisition.acquirer (navigation via left link); Acquisition.target (via right link).

Playing !

Country
(Code)

Sport
(Name)

Rank
(Nr)is at

<< is by << is of

plays

Playing !

Country
(Code)

Sport
(Name)

Rank
(Nr)is at

<< is by << is of

plays
1.1 1.2

2.1 2.2

(a) (b)

Although such expressions may be used to specify projections, here they simply
indicate a path obtained by jumping from an object type to one of its far roles. If the
dot notation is replaced by “of-notation”, the component order is reversed (e.g. “Com-
pany.acquisitionBySelf” becomes “acquisitionBySelf of Company). Role path decarations may
also mix relational and attribute styles (e.g. Company.acquisitionBySelf that occurred on Date).

Fig. 2 is best understood as an abbreviation of Fig. 4(a). Playing is a normal object
type with linking fact types to Country and Sport. Playing has a composite reference
scheme since the external and internal uniqueness, and mandatory constraints on the
link fact types ensure an injection (1:1-into mapping) from Playing to (Country, Sport)
pairs. This is true even if we add a simple reference scheme for Playing (e.g. PlayingNr).

When an external uniqueness constraint provides a reference scheme, a role se-
quence obtained by projecting once over each role spanned by that constraint is said
to be a reference projection for that reference scheme. The order in which the roles
are projected is recorded, and its display may be toggled on/off. In Fig. 4(b) the anno-
tation (1.1, 1.2) indicates a role projection formed by projecting respectively on the left
and right roles of the fact type Country plays Sport. The annotation (2.1, 2.2) indicates the
reference projection for Playing that is formed by projecting respectively on the link
roles played by Country and Sport. Role sequence annotations visually disambiguate
those rare cases where the role sequences are otherwise ambiguous.

Fig. 4. Explication of the objectification in Fig. 2 of Country plays Sport as Playing

The equality constraint depicted by a circled “=” indicates that the (Country, Sport)
pairs in the population of the Country plays Sport fact type must be identical to the popu-
lation of the (Country, Sport) pairs projected from the Country and Sport roles in the join
path Playing is by Country and is of Sport. In ORM, a set-comparison constraint (subset,
equality, or exclusion constraint) applies to two or more sequences of one or more
roles. A dotted line connecting a set-comparison constraint to a junction point of two
roles includes both the roles in the relevant argument for the constraint. A similar
analysis applies to the objectification of ternary and longer facts. For example, we
might objectify Country plays Sport in Year as Playing using a third link fact type Playing is in
Year whose year role adds a third component to the reference scheme for Playing.

The result of objectifying a binary or longer relationship type may now be viewed
as an entity type that has a composite reference scheme whose reference projection
bears an equality constraint to the fact type being objectified. This equality constraint
may be formalized as an equivalence. For our Fig. 4 example, this equivalence might
be introduced to the model in three ways: (1) start with the fact type Country plays Sport,

President
(Name)

 Abraham Lincoln

 George W. Bush
 Ronald Reagan

died

 Abraham Lincoln
 Ronald Reagan

“Death !”

occurred in

Country
(Code)

 Abraham Lincoln US
 Ronald Reagan US

 AU

 US
 CA

...

and then objectify it as Playing; (2) start with the fact types Playing is by Country and Play-
ing is of Sport, then define Country plays Sport as a fully derived fact type in terms of them;
(3) start with the fact types Country plays Sport, Playing is by Country, and Playing is of Sport,
then assert the equality constraint between them. These ways may be formalized by
the following equivalences: (E1) ∀x [Playing x ≡ ∃y:Country ∃z:Sport (x is by y & x
is of z & y plays z)]; (E2) ∀x:Country ∀y:Sport [x plays y ≡ ∃z:Playing (z is by x & z
is of y)]; (E3) ∀x:Country ∀y:Sport ∀z:Playing [x plays y ≡ (z is by x & z is of y)].

ORM 2 includes a formal, high level textual language for declaring its graphical
and other business rules (e.g. E2 may be rendered as: Country plays Sport iff some Playing is
by Country and is of Sport). Regardless of which way is used, the model fragment is inter-
nally stored in terms of the structure in Fig. 4, and the same mapping procedure is
used to transform to the chosen implementation (e.g. a relational database schema).

4 Objectification of unary facts

UML provides no direct support for unary relationships, instead modeling them in
terms of attributes or subclasses. ORM supports unary relationships, but typically for-
bad their objectification. For ORM 2, we removed this restriction, by extending the
previous analysis to objectified types with simple reference schemes. Consider the
unary fact: The President named ‘Abraham Lincoln’ died. We may objectify this
event using the nominalization “that death”, and declare the following additional fact:
That death occurred in the Country with country code ‘US’. This natural way of
communicating may be supported in a similar way to objectification of non-unary
facts. An ORM 2 model for this situation is shown in Fig. 5. Small, sample popula-
tions are included for the object types and fact types. Here the unary fact type President
died is objectified by the object type Death. If desired, the death entries in the fact table
for Death occurred in Country may be expanded by prepending “the death of”.

Fig. 5. Objectification of unary facts is allowed in ORM 2

We interpret this unary objectification using the expanded schema shown in Fig. 6.
Here, Death is a normal entity type, with a simple reference scheme provided by its
injective relationship to President (e.g. Abraham Lincoln’s death may be referenced
by the definite description “The Death that is of the President who has the PresidentName ‘Abra-
ham Lincoln’”). Our previous analysis of objectification may be generalized to include
unaries by removing the arity restriction and the composite reference requirement.
Hence, the result of objectifying a relationship type may be viewed as an entity type
that has a reference scheme whose reference projection bears an equality constraint
to the fact type being objectified.

President
(Name) occurred in

Country
(Code)Death !

met / is of

died

CountryCode
refers to a country

Country

Fig. 6. Objectification of unaries may be explicated as shown

This interpretation does not assume that the Death is of President relationship provides
the only, or even primary way of referring to deaths (e.g. we may introduce a death
number as an alternative way to reference deaths). ORM 2 allows a reference scheme
to be designated as preferred (not the same as primary) if the business treats it as so.

The ORM version known as Fully Communication Oriented Information Modeling
(FCO-IM) [2] also supports objectification of unaries, but in a very different manner.
To support existential facts such as “There is a Country that has the CountryCode ‘AU’”, we
introduced to ORM the notion of independent entity types (initially called “lazy” en-
tity types) [12]. The FCO-IM approach soon after introduced objectification of unar-
ies to provide an alternative way of supporting existential facts, and to allow models
where all base objects are lexical in nature [2]. With this approach, an entity (non-
lexical object) is an objectification of a role played by a value (lexical object). In Fig.
7 for example, the entity type Country is derived by objectifying the unary fact type
CountryCode refers to a country. While this approach encourages use of natural reference
schemes in modeling, and has tool support, we personally find it unintuitive (e.g. it
seems to conflate reference with referent), and awkward in dealing with practical
modeling issues such as multiple inheritance, context-dependent reference schemes,
and changes to reference schemes.

Fig. 7. In FCO-IM, non-lexical types are objectifications of roles of lexical object types

5 Objectification of Fact Types with Non-spanning Uniqueness

Previous versions of ORM allow an association to be objectified only if either it has
just one uniqueness constraint, and this spans all its roles, or it is a binary 1:1 associa-
tion. This restriction forbids the following two kinds of associations to be objectified:

(1) An n:1 (or 1:n) binary association;
(2) A ternary or longer association whose longest uniqueness constraint spans

exactly n-1 roles.

We exclude any n-ary association whose longest uniqueness constraint spans fewer
than n-1 roles, because such an association is compound rather than elementary. Both
UML and ER versions that support objectification allow cases (1) and (2) to be objec-
tified. The rest of this section briefly summarizes why ORM 2 has been modified to
do likewise, though with modeling guidelines. For a detailed discussion concerning
this relaxation, with examples using the ORM 1 and UML notations, see [15].

Birth

GovtHead
(Name)

Country
(Code)was born in

“Birth”

GovtHead
(Name)

Country
(Code)

has /
is of

<< is in

was born in
(b)

 Bill Clinton US
 George W. Bush US
 John Howard AU

(a)

Fig. 8(a) depicts in ORM 2 the objectification of the n:1 fact type GovtHead was born
in Country as Birth, together with a sample population. Fig. 8(b) shows how the schema
is interpreted. The uniqueness constraint on the “has” role of GovtHead implies, and
hence removes the need for, an explicit external uniqueness constraint. The equality
constraint may be formalized as an equivalence. The expanded interpretation avoids
denormalization when adding other facts or mapping to implementation structures.
For example, adding or mapping the fact type Birth was on Date does not require details
about birth countries.

Fig. 8. Objectification of an n:1 fact type

 Mandatory constraints are required on each role played by the objectified type in
the link fact types. For example, if it is optional for the birth country to be known for
a birth, the fact type GovtHead was born in Country may be defined in terms of the other
fact types (by default, a conceptual inner join is performed on the Birth roles), but it
does not allow Birth to be defined in terms of GovtHead was born in Country (whose in-
stances always include a country).

As discussed in [15], objectification of n:1 associations typically portrays the busi-
ness domain in an unnecessarily complicated way (why introduce birth countries in
order to talk about births?), and may add overhead to certain kinds of model changes.
However, such objectifications may better depict the semantic affinity between fact
types attached to the objectified type, and they simplify model evolution for those
cases where the uniqueness constraint on the objectified association changes over
time (e.g. from an n:1 to an m:n pattern).

The second case is objectification of n-ary associations (n > 2) whose longest
uniqueness constraint spans n-1 roles. The n-ary association may have overlapping
uniqueness constraints. For example, the ternary fact type Country in Sport has Rank may
have a uniqueness constraint over its first two roles, and another uniqueness constraint
over its last two roles. In such cases, objectifying part of the association based on the
roles played by one of the uniqueness constraints typically makes the model harder to
understand, and may force an arbitrary decision on which uniqueness constraint to use
as the basis for a spanning objectification [15]. In rare cases, it is also possible that the
uniqueness constraint pattern on the n-ary association may change over time (e.g. to a
spanning uniqueness constraint), and in such cases semantic stability may be en-
hanced by allowing nesting of the original association.

These considerations lead to the following modeling heuristic. A fact type may be
objectified only if: (a) it has only a spanning uniqueness constraint; or (b) its unique-
ness constraint pattern is likely to evolve over time (e.g. from n:1 to m:n, or m:n:1 to

Waiter
(EmpNr)

Meal
(Nr)served

“Service !”

earned a tip of

MoneyAmount
(USD)

… for serving … reported a tip of ...

2.1 2.2 2.3

1.1 1.2

1.3

m:n:p); or (c) it has at least two uniqueness constraints spanning n-1 roles(n > 1), and
there is no obvious choice as to which of the n-1 role uniqueness constraints is the
best basis for a smaller objectification based on a spanning uniqueness constraint; or
(d) the objectification significantly improves the display of semantic affinity between
fact types attached to the objectified type.

6 Propositional Nominalization and Communication Acts

So far we have discussed objectification in the sense of circumstantial nominalization,
where the referenced object is a state of affairs (event, activity etc.). One may also en-
counter cases where the referenced object is either a proposition (resulting from pro-
positional nominalization) or a communication act (e.g. an utterance by a speaker). In
response to an Object Management Group request for proposal to add a business se-
mantics layer [29], the Business Rules Team submission included examples of pro-
positional nominalization as business rules. For example: If a waiter earns an amount
of money as a tip from serving a meal, the waiter must report that fact.

While one may interpret this as a case of propositional nominalization (reporting
the fact rather than the act), the rule may instead be declared using circumstantial
nominalization (reporting the act rather than the fact), as shown in compact form in
Fig. 9. If the rule is modified to require reporting after the service is performed, a time
limit for reporting must be declared to make the rule operational; in this case, the
relevant temporal object type may now be added to the model to cater for the ex-
tended rule in an obvious way. For simplicity, we recommend modeling all proposi-
tional nominalizations instead by their corresponding circumstantial nominalizations.

Fig. 9. Propositional nominalization may be replaced by circumstantial nominalization

As regards modeling of communication acts [32], when it is of interest to model
these acts, they are best modeled directly like any other business domain objects. For
example, in a genealogy model we might be interested in not just descriptions of
states of affairs, but assertion acts made by researchers about states of affairs. Such a
model might include fact types such as: AssertionAct reported Proposition; AssertionAct was
made by Researcher with ConfidenceLevel; etc. These comments relate to the information
model only. For modeling communication processes, the information model should be
supplemented by other kinds of model (e.g. workflow models) that provide a more in-
tuitive and direct way of understanding essential business processes/services. For
some initial discussion of how ORM might be extended in this regard, see [8, 22].

7 Conclusion

This paper distinguished two kinds of nominalization (circumstantial and proposi-
tional), and argued that objectification used to model information systems may be
adequately addressed by circumstantial nominalization alone, where the object refer-
enced by the nominalization is a state of affairs. An underlying theory was then pre-
sented that interpreted the objectification of facts of any arity (unary, binary or
longer) in terms of normal entity types, their reference schemes, and equality con-
straints. To cater for objectification over predicates with non-spanning uniqueness
constraints, guidelines were proposed to help the modeler decide whether or how to
perform the objectification. Finally, it was argued that no additional meta-structures
are needed to capture information models for specific business domains that involve
propositional nominalization or communication acts.

In previous work, we formalized ORM and worked on the ORM technology cur-
rently supported in a Microsoft modeling tool [20]. Currently we are working with a
team on the specification of ORM 2 (the next generation of ORM), and an associated
open-source modeling tool that supports the refinements to objectification discussed
in this paper, as well as many other extensions being added to ORM 2.

Acknowledgement: Our presentation of some ideas has benefited from discussion
with Andy Carver (Northface University) and Don Baisley (Unisys Corporation).

References

1. Audi, R. (ed.) 1999, The Cambridge Dictionary of Philosophy, 2nd edition, Cambridge
University Press, Cambridge, p. 876.

2. Bakema, G., Zwart, J. & van der Lek, H. 1994, ‘Fully Communication Oriented NIAM’,
NIAM-ISDM 1994 Conf. Working Papers, eds G. M. Nijssen & J. Sharp, Albuquerque,
NM, pp. L1-35.

3. Batini, C., Ceri, S. & Navathe, S. 1992, Conceptual Database Design, Benja-
min/Cummings, Redwood City.

4. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th
Int. Conf. on conceptual modeling, Springer LNCS, no. 1331, pp. 113-26.

5. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM
Transactions on Database Systems, 1(1), pp. 9−36.

6. Cuyler, D. & Halpin, T. 2005, ‘Two Meta-Models for Object-Role Modeling’, Information
Modeling Methods and Methodologies, eds J. Krogstie, T. Halpin, & K. Siau, Idea Pub-
lishing Group, Hershey PA, USA (pp. 17-42).

7. De Troyer, O. & Meersman, R. 1995, ‘A Logic Framework for a Semantics of Object Ori-
ented Data Modeling’, OOER’95, Proc. 14th International ER Conference, Gold Coast,
Australia, Springer LNCS 1021, pp. 238-249.

8. Dietz, J. & Halpin, T. 2004, ‘Using DEMO and ORM in Concert: A Case Study’, Ad-
vanced Topics in Database Research, vol. 3, ed. K. Siau, Idea Publishing Group, Hershey
PA, USA, Ch. XI (pp. 218-36).

9. Gale, R. 1967, ‘Propositions, Judgments, Sentences, and Statements’, The Encyclopedia of
Philosophy, ed. P. Edwards, vol. 6, Collier-Macmillan, London, pp. 494-505.

10. Gundell, J., Hegarty, M. & Borthen, K., ‘Cognitive Status, Information Structure, and
Pronominal Reference to Clausally Introduced Entities. Online at: http://www.coli.uni-
sb.de/~korbay/esslli01-wsh/Jolli/Final/gundel-etal.pdf.

11. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: static aspects of the
data-oriented perspective’, doctoral dissertation, University of Queensland.

12. Halpin, T. 1993, ‘What is an elementary fact?’, Proc. First NIAM-ISDM Conf., eds G.M.
Nijssen & J. Sharp, Utrecht, (Sep), 11 pp. Online at http://www.orm.net/pdf/ElemFact.pdf.

13. Halpin, T. 1998, ‘ORM/NIAM Object-Role Modeling’, Handbook on Inf. Systems
Architectures, eds P. Bernus, K. Mertins & G. Schmidt, Springer, Berlin, pp. 81-101.

14. Halpin, T. 2001, Information Modeling and Relational Databases, Morgan Kaufmann,
San Francisco.

15. Halpin, T. 2003, ‘Uniqueness Constraints on Objectified Associations’, Journal of Con-
ceptual Modeling, October 2003. Online at: http://www.orm.net/pdf/JCM2003Oct.pdf.

16. Halpin, T. 2004, ‘Comparing Metamodels for ER, ORM and UML Data Models’, Ad-
vanced Topics in Database Research, vol. 3, ed. K. Siau, Idea Publishing Group, Hershey
PA, USA, Ch. II (pp. 23-44).

17. Halpin, T. 2004, ‘Information Modeling and Higher-Order Types’, Proc. CAiSE’04 Work-
shops, vol. 1, (eds Grundspenkis, J. & Kirkova, M.), Riga Tech. University, pp. 233-48.
Online at http://www.orm.net/pdf/EMMSAD2004.pdf.

18. Halpin, T. 2004, ‘Business Rule Verbalization’, Information Systems Technology and its
Applications, Proc. ISTA-2004, (eds Doroshenko, A., Halpin, T., Liddle, S. & Mayr, H.),
Salt Lake City, Lec. Notes in Informatics, vol. P-48, pp. 39-52.

19. Halpin, T. A. 2005, ‘Constraints on Conceptual Join Paths’, Information Modeling Meth-
ods and Methodologies, eds J. Krogstie, T. Halpin, T.A. & K. Siau, Idea Publishing
Group, Hershey PA, USA (pp. 258-77).

20. Halpin, T., Evans, K, Hallock, P. & MacLean, W. 2003, Database Modeling with Micro-
soft® Visio for Enterprise Architects, Morgan Kaufmann, San Francisco.

21. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’, Proc.
OOER’95: OO. and ER. Modeling, Springer LNCS, vol. 1021, pp. 191-203.

22. Halpin, T. & Wagner, G. 2003, 'Modeling Reactive Behavior in ORM'. Conceptual Mod-
eling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer LNCS.

23. Hegarty, M., ‘Referential Properties of Factive and Interrogative Complements Indicate
their Semantics’. Abstract: http://www.linguistics.berkeley.edu/BLS/abstracts/0113.pdf.

24. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of
a conceptual language for the description and manipulation of information models’, In-
formation Systems, vol. 18, no. 7, pp. 489-523.

25. Kristen, G. 1994, Object Orientation – The KISS Method: From Information Architecture
to Information System, Addison Wesley, Reading, MA.

26. Lyons, J. 1995, Linguistic Semantics: An Introduction, Cambridge University Press: Cam-
bridge, UK.

27. Object Management Group 2003, UML 2.0 Infrastructure Specification. Online:
www.omg.org/uml.

28. Object Management Group 2003, UML 2.0 Superstructure Specification. Online:
www.omg.org/uml.

29. Object Management Group 2003, Business Semantics of Business Rules RFP. Online at:
http://www.omg.org/cgi-bin/doc?br/2003-6-3.

30. Rumbaugh J., Jacobson, I. & Booch, G. 1999, The Unified Language Reference Manual,
Addison-Wesley, Reading, MA.

31. Smith, B. 1989, ‘Logic and the Sachverhalt’, The Monist, 72:1, pp. 52-69. Online at:
http://ontology.buffalo.edu/smith//articles/logsvh.html.

32. Thomas, J. 1995, Meaning in Interaction: An Introduction to Pragmatics, Longman,
London.

