
 

 

Integrating UML Activity Diagrams with Temporal 
Logic Expressions  

João Araújo and Ana Moreira 

Departamento de Informática  
Faculdade de Ciências e Tecnologia 

Universidade Nova de Lisboa 
Quinta da Torre, Caparica, PORTUGAL 

Tel: +351-21-294 8536; Fax: +351-21-294 8541 
E-mail: {ja, amm}@di.fct.unl.pt 

Abstract. UML is a standard modelling language that is able to specify a wide 
range of object-oriented concepts. However, the diagrams it offers are many 
times accused of lack of rigour to specify precisely some critical requirements 
and therefore it is often needed to complement the semantics of the UML 
diagrams using OCL or any other formal language. In the case of activity 
diagrams (used here to describe use cases), OCL is not the most appropriate 
formal language, as it does not represent temporal aspects directly. Our aim is 
to complement the well-accepted simplicity of activity diagrams with a 
temporal logic specification to give a more precise semantics to the final model. 
This specification can be further used to validate requirements against the 
stakeholders using animation techniques. 
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1 Introduction 

UML (Unified Modeling Language) [OMG 2005] has a very rich notation for 
modelling both structural and behavioural aspects of a system. The semantics 
associated to its main constructors, concepts and techniques is defined by means of a 
metamodel. When additional formal constraints or data is needed in a given model, 
most researchers use OCL [Warmer and Kleppe 2003]. OCL can then be used to 
augment the expressive power of the structural model. However, to specify UML 
behavioural models, OCL does not provide appropriate constructs. 

Building a formal specification of a system requires a rigorous set of rules to 
transform a set of informal requirements into a formal specification, bridging the gap 
between the two representations. Formalisation is useful so that we can identify 
ambiguities, inconsistencies and incompleteness earlier in the software development 
process.  

Our goal is to describe the integration of object models and formal specification 
languages. In particular, we will integrate UML activity diagrams with temporal 



logic. We have chosen temporal logic because it provides an effective way to 
represent formally the temporal aspects of a system behaviour. Moreover, temporal 
logic has been used with success in software development at programming level 
[Moszskowski 1986, Kröger 1987]. Therefore, integrating activity diagrams with 
temporal logic has the potential of allowing the validation of scenarios described by 
those diagrams earlier on during software development. 

As mentioned above, OCL is used in the context of UML by many researchers. 
However, it was not adopted here due to the temporal intrinsic nature of the technique 
in hand (i.e. activity diagrams). OCL is not the most appropriate formal language to 
specify temporal constraints. On the other hand, temporal logic was created exactly 
for that purpose. In summary, the advantage of our proposal is two fold: 

• to add rigour to the behavioural UML models, in particular to activity 
diagrams; 

• to use the resulting formal specifications to generate prototypes in order to 
validate requirements together with the stakeholders. Therefore, 
animation techniques can be used here, although this is out of the scope of 
this paper.  

This paper is organised as follows. Section 2 revisits activity diagrams as 
incorporated within UML. Section 3 introduces an example that will be used to 
illustrate the approach. Section 4 shows how to specify formally activity diagrams and 
applies the results to our example. Section 5 presents some related work. Finally, 
Section 6 draws our conclusions and points out directions for future work. 

2 Activity diagrams: an overview 

Activity diagrams are frequently used to describe use cases or their scenarios. Use 
cases, as proposed by [Jacobson 1992], describe functional requirements of a system, 
helping to identify the complete set of user requirements. A use case describes a 
generic transaction, normally involving several objects and messages. Industrial 
software developers are easily seduced by the simplicity and potentiality of use cases; 
they claim that use cases are an interesting and easily understood technique for 
capturing requirements.  

Use cases are described by scenarios that can be more rigorously represented by 
activity diagrams. An activity diagram consists of action states, activity states, 
transitions, object flows, branching, forks and joins, and swimlanes.  

Action states are system states that represent the execution of an action (e.g. create 
or destroy an object, send a signal to an object). They are atomic and, therefore, they 
cannot be decomposed, or interrupted. An action state lasts an insignificant amount of 
time. Activity states can be decomposed, i.e., one activity state can be described by 
another activity diagram. Therefore they are non-atomic and can be interrupted. The 
notation is the same as the action state. 

Transitions occur when an action or activity ends; the flow of control passes 
immediately to the next action or activity. Branching is used to represent alternative 
transitions, and is based on a boolean expression (a guard). A branch consists of one 



 

 

incoming and two or more outgoing transitions. The guards must cover all the 
possibilities, but they cannot overlap. 

A join represents the synchronization of two or more concurrent flows of control 
and has two or more incoming transitions and only one outgoing transition. The fork 
represents the splitting of one control flow in two or more control flows and has one 
incoming transition and two or more outgoing transitions.  

3 Example 

The model components of an activity diagram described in the previous section will 
be discussed and formalised using a simplified version of a system to deliver a 
product to a customer. The requirements of such a subsystem are as follows:  

“A customer should be able to register in the system. This registration 
results in opening an account for him that will be administrated by an 
Accounting System. Afterwards, s/he can buy a product whose shipping is 
realized by a Shipping Company. The Accounting System captures the 
order. The customer can also cancel an order, or return the product. As a 
consequence, these services have the effect of updating  the customer’s 
account.”  

Analysing the requirements described above, we can build the use case diagram 
depicted in Figure 1. We can identify three actors: Customer, Accounting System, and 
Shipping Company. The use cases identified are Register Customer, Process Order, 
Cancel Order, and Return Product.  
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Fig. 2.  Activity diagram for the use case 

Process Order 

The activity diagram for the use case Process Order is shown in Figure 2. When the 
customer requests a product the order processing is started and the product is pulled 
and shipped. The customer should receive the order and the bill. Once paid, the order 
is closed.  



4 Using Temporal Logic to augment activity diagrams semantics  

Activity diagrams are a powerful technique to describe requirements in use cases. 
However, this is not enough to guarantee that the requirements do not contain errors, 
ambiguities, omissions and inconsistencies. These drawbacks can only be identified 
and corrected early in the development process if formal description techniques are 
used. The aim here is to obtain a formal specification from activity diagrams. This 
will help us reasoning about the information specified in the activity diagram to 
identify ambiguities and incorrectness. The rules to generate a temporal logic 
specification from activity diagrams are based on safety, guarantee and response 
properties of programs that can be specified by temporal logic formulas [Manna and 
Pnuelli 1992] and the temporal logic operators  (always) and ◊ (eventually). Such 
properties are defined as follows:  
1. Safety Property: can be specified by a safety formula. A safety formula is any 

formula that is equivalent to a canonical safety formula p (where p always 
holds). Usually, safety formulas represent invariance of some state property over 
all the computations.  

2. Guarantee Properties: can be specified by a guarantee formula. A guarantee 
formula is equivalent to a canonical formula of the type ◊p. This states that p 
eventually happens at least once in the future. 

3. Response Properties: can be specified by a response formula. A response formula 
is equivalent to a canonical formula of the type ◊p. This states that every 
stimulus has a response. An alternative formula is (p → ◊q), which states that 
every p is followed by a q, that is, q is a guaranteed response to p. 

These properties can be classified into safety and progress (or liveness). A safety 
property states that a requirement must always be satisfied in a computation. Progress 
properties can be either guarantee or response. The progress properties specify a 
requirement that should eventually be fulfilled. Therefore, they are associated with 
progress towards the fulfilment of the requirement. 

Temporal logic can specify progress issues by showing how the various activities 
interact, for example, when specifying the priority, or the order in which activities 
may happen Activity diagrams show the flow of control from activity to activity, 
which can naturally be expressed by temporal logic, where activity and action states 
are our properties. 

Based on the three general properties above, we can define 5 rules that state how 
an activity diagram is transformed into a temporal logic expression:  
1. A simple transition, in an activity diagram, from an action or an activity state αi 

to another action or activity state αi+1, can be formalised as (αi → αi+1). 
2. In the case of a sequential transition, we have:  

•if there is only one action or activity state, this can be mapped into the 
canonical formula ◊αi, where i = 1; otherwise, 

•if there is a sequence of states, the general response form is (αi → ◊β), where 
αi represents the first action or activity state and β the rest of the sequence. β 
has two forms: 



 

 

•αj with 1 < j ≤ n, to deal with the last action or activity state, and 
•αj → ◊ (αj+1 → … ◊ (α n-1 → ◊ α n)…) where 1<j ≤ n.  

3. In case of branching, we have associated conditions (condition k, condition k+1, …, 
conditionk+n) to the transitions. Therefore we have the expression: 

• (conditionk ∧ αi → ◊αi+1) ∨ condition k+1 ∧ αi → ◊αi+2, ∨… condition k+n ∧ 
αi → ◊αk+n+1 where 1 ≤ i ≤ n and 1 ≤ k ≤ n.  

4. When we have a fork: 
• if there is a transition from an action or activity state αi to a group of 

concurrent action or activity states γk (represented by a fork), this can be 
mapped to the formula αi → ◊γk, where γk = ∧n

p=i+1 αp, where ∧ is the 
conjunction of  all the activity states αi.  

5. When we have a join:  
• if we have a group of concurrent action or activity states γk, being joined 

and transited to an action or activity state αj the general form is γk → ◊ αj, 
where γk is as before (step 4) , and j > p,  i +1 < p < n. 

Following the mappings just discussed, it is not difficult to transform the Process 
Order activity diagram in Figure 2 into the temporal logic expression in Figure 3.  

 
 
 

 
 
 
 

Fig. 3.  Temporal logic expression for the activity diagram Process Order 

The resulting temporal logic expressions could be used to validate requirements 
against the users by means of animation techniques. There is some work on 
programming languages based on the execution of temporal logic such as Tokio 
[Fujita et al. 1986], METATEM [Barringer et al. 1989] and FTLL [Duan and Koutny 
2004] that could be used to implement the formal specifications obtained using our 
transformation algorithm.  

As a final note, we would like to emphasize that our approach could be used to 
build incrementally a complete formal specification of the system, or at the least the 
critical parts of the system, where all the temporal logic expressions should be 
composed accordingly. In such a scenario, validation would be realized incrementally. 

5 Related work 

Producing a formal specification from object-oriented models is not new. During the 
nineties, many researchers have written on how to integrate object-oriented methods 
with formal description techniques. For example, Moreira and Clark developed 

 (requestProduct → 
◊ (processOrder → 
◊ (pullMaterials → 
◊ (shipOrder → 
◊ ((receiveOrder ∧ billCustomer) → 
◊ (payBill → 
◊ (closeOrder)))))))



ROOA (Rigorous Object-Oriented Analysis) [Clark and Moreira 1999, Moreira and 
Clark 1996] to build a formal and executable object-oriented specification from 
informal requirements using SDL [Z.100 1994] or LOTOS [ISO 1998]. Araújo and 
Sawyer presents an approach (Metamorphosis) [Araújo and Sawyer 1998] to combine 
an object-oriented model with Object-Z [Duke et al. 1991]. However, none of them 
considers formalising UML models [OMG 2005]. 

The precise UML (pUML) group was created with the aim of explicitly 
contributing to the formalization of the UML language. This group undertook 
collaborative work to use formal techniques to explore and define appropriate 
semantic foundations for object-oriented concepts and UML notations. A list of work 
produced under this affiliation can be found on http://www.cs.york.ac.uk/puml/.  

France discusses the formalisation of the UML static requirements modelling 
concepts [France 1999]. Overgaard gives a formal definition of the collaboration 
construct in the UML [Overgaard 1999]. Knapp presents a formal semantics for UML 
interactions [Knapp 1999]. Additionally, Kim and Carrington shows the formalisation 
of the UML class diagram using Object-Z [Kim and Carrington 1999]. Cabot et al. 
propose an extension to UML to define a set of temporal features of entity and 
relationship types, and provide a notation to refer to any past state of the information 
base [Cabot et al. 2003], but it does not explain clearly how these could be used for 
activity diagrams. Ziemann and Gogolla proposes an extension of OCL with temporal 
logic, but this extension is only applied to class diagrams [Ziemann and Gogolla 
2003]. Giese and Heldal investigate the relationship between the informal pre- and 
post-conditions of use cases and the formal OCL pre- and postconditions of 
operations in the class diagram [Giese and Heldal 2004]. However, temporal aspects 
are not considered here.  

In some of our previous work [Araújo and Moreira 2000, Moreira and Araújo 
2000], we define mappings of use cases, sequence diagrams and collaboration 
diagrams into Object-Z class schemas. Temporal aspects are captured in Object-Z’s 
history invariants. 

A different kind of work on formalizing activity diagrams is presented in [Eshuis 
and Wieringa 2001]. Here, the authors define a formal execution semantics for UML 
activity diagrams whose goal is to support execution of workflow models and analysis 
of the functional requirements that these models satisfy. Also, in [Baresi and Pezzè 
2001] activity diagrams and other UML specifications are formalized with high-level 
Petri nets through the  definition of translation rules. 

In spite of all this work, there is still a lot to be said about formal specifications. 
Currently, lots of work on formal specification have been done as part of the MDA 
agenda. Our work is related to this as our formalizations are, in fact, model 
transformations. Therefore, our results can be useful to the MDA community.  

7 Conclusions and future work 

The process described in this paper provides a set of rules to transform activity 
diagrams into a temporal logic expression. The integration of the two approaches is 
synergetic because the sum of the advantages of these approaches is greater than if 
they are considered in isolation. Some of the advantages identified are: 



 

 

(i)formalisation at early stages to achieve more precise and better quality systems is 
encouraged; (ii) normalisation of different notations into one precise mathematical 
notation; (iii) a deep reasoning about the system is promoted, as the language has a 
mathematical semantics. 

Nevertheless, more work must be done. In particular, we need to extend our 
approach to handle object flows, when it is desirable to show objects that are 
produced by certain activities. Also, we need to conduct real case studies to validate 
our approach. Moreover, to increase the usability of our approach, it would be 
interesting to investigate how Tokio, METATEM and FTLL languages could be 
effectively integrated to our approach. 

Another task needing investigation is the expected evolution of the resulting 
specification into a process that builds a specification centred on objects. To improve 
the process, reverse engineering should be defined, i.e., from temporal logic formulas 
we should obtain the activity diagrams automatically. This is useful to promote 
modifiability and traceability. Furthermore, since activity diagrams are closely related 
to Petri nets, to the extent that in UML 2.0 [OMG 2005] they were enriched with Petri 
nets elements, we intend to investigate how our approach can be extended to 
contemplate Petri nets features, 

We do not believe that integrated methods alone will make the use of formal 
specification widespread. Other pragmatic issues must be taken into consideration 
such as training and a change in the culture of the organisation. However we are 
optimistic that methods like the one described here can contribute to the effective 
incorporation of formal specification by industry. 
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