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Abstract. Conceptual modelling methods such as Object-Role Mod-
elling (ORM) have traditionally been developed with the aim of providing
conceptual models of database structures. More recently, however, such
modelling languages have shown their use for modelling (the ontology) of
domains in general. In these latter cases, the modelling effort results in a
(formally based) conceptual reasoning systems using a domain calculus
on top of a domain grammar.
As the title suggests, this paper is primarily concerned with the applica-
tion of ORM ‘rigour’ to the modelling of active domains. In doing so, we
will position the logbook paradigm as a history-oriented extension of the
traditional natural language approach of ORM, and define an accom-
panying domain calculus (the Object-Role Calculus) which is suitable
to deal with active domains. Finally, we will show how specific views
(with dedicated notations), which zoom in on different aspects (such as
flow of activities and actor involvement) of active domains, can easily be
derived.

1 Introduction

Conceptual modelling methods such as ER [4], NIAM [16], OOSA [5] and ORM [9]
have traditionally been developed with the aim of providing conceptual models
of database structures. More recently, however, such modelling methods have
shown their use for modelling (the ontology) of domains in general [19, 20]. In
the latter case, their use leads to models capturing the concepts of a domain
in general, as well as an associated language to express rules (such as business
rules) governing the behaviour of the domain.

The above mentioned modelling methods typically take a natural language
based perspective on the domain to be modelled. In this perspective, the resulting
models are regarded as a domain grammar describing the allowed communication
about a domain; the universe of discourse. This way of thinking dates back to
the ISO report on Concepts and Terminology for the Conceptual Schema and
the Information Base [13], and is at the base of modelling methods such as ER,
NIAM, OOSA and ORM. A key advantage of such methods is that having a



domain grammer at ones disposal, enables validation of the model by domain
experts, since the model can be validated in terms of statements that are close
to the language used by these experts.

A domain grammar can be extended to also cover rules (constraints) govern-
ing the behaviour of the domain. When combined with a reasoning mechanism,
this rule language becomes a domain calculus. In the case of ORM, such a do-
main calculus has been presented in the form of Lisa-D [10], a formalisation of
RIDL [15]. In [18, 2] a more practical (from an implementation point of view)
version called ConQuer has been introduced. What each of these languages have
in common is that they exploit [11] the naturalness of the domain grammer in
the construction of rules. As a result, the formulation of rules, as well as chains
of reasoning expressed in these rules, closely resembles natural language. Being
able to do so, again, enables validation of the models produced.

In the use of domain modelling methods, we observe three important trends
which fuel our research activities. Firstly, more and more organisations strive
for more mature levels of system development [17]. One of the steps towards
maturity involves better defining development processes in order to make them
more repeatable. This also applies to modelling processes. Organisations strive
to make modelling processes more explicitly defined with the aim of achieving
more repeatable results. Modelling methods such as ORM NIAM and OOSA not
only feature a way of modelling, but also have a well-defined and explicit way of
working based on natural language analysis. The way of working of a method
is concerned with processes, guidelines, heuristics, etc, which are to be used in
the creation of models, as opposed to its way of modelling which refers to the
syntax and semantics of the language in which the models are to be expressed.
Having a well-defined and explicit way of working aids towards a defined and
more repeatable modelling process.

The second trend fuelling our research, is the use of controlled languages as
the basis for unambiguous communication [6, 22]. The essential idea of a con-
trolled language is to define a subset of natural language which is rich enough for
a specific purpose, but still restrictive enough so as to avoid unambiguities. We
claim that a domain grammer and associated domain calculus provide a good
starting point in defining controlled languages for domains. To some extend, a
domain calculus already provides a (highly) controlled language. Such languages
can also be used to represent domain specific reasoning steps, providing an ad-
ditional form of domain knowledge. In [12] an initial study into the use of a
domain calculus for such purposes has been reported.

The third trend we observe is the growing need for integrated models under-
lying a plethora of viewpoints, fuelled by the demands of MDA [7] and enterprise
architecture [14]. UML as well as approaches for enterprise architecting [14] fea-
ture a wide variety of diagramming techniques (viewpoints). A domain model
can provide a common underpinning of this variety of viewpoints, offering a uni-
fied domain ontology. A first elaboration of this role of domain models has been
presented in [20]. However, more work needs to be done to make ORM suitable
to deal with the modelling of active domains. This is the focus of this paper.



When applying ORM for the purpose of modelling active domains, we are
primarily interested in re-using its rigorous way of working in the creation of
models. This does require both active aspects (activities, tasks, processes, etc)
as well as static aspects (results, documents, actors, tangiable objects, etc) to
be expressed as objects playing roles in the domain.

The remainder of this paper is structured allong the overall way of working
we suggest when modelling an active domain:

1. (Section 2) using the logbook paradigm the activities taking place in an ac-
tive domain can be reported in terms of (elementary) facts, which can con-
sequently be used (in principle using ORM’s standard approach) to derive a
domain grammar,

2. (Section 3) any constraints, temporal dependencies, etc, governing the flow
of activities in a domain can then be formulated using a domain calculus
referred to as the Object-Role Calculus,

3. (Section 4) finally, special graphical conventions are introduced to provide
more compact representations of specific aspects of the active domain, such
as the flow of activities, or the involvement of actors.

2 The logbook paradigm

When focussing on active domains ORM needs to be refined in order to better
cater for the active aspects of such domains. The underlying challenge is to
extend ORM to be able to cater for such domains, while at the same time
maintaining ORM’s natural-language based modelling rigour. In doing so, we
base ourselves on earlier (partial) results [21, 8].

Modelling an active domain does require a modelling language to deal with
the notion of time. In the past, ORM has indeed been extended with the concept
of time and evolution [21]. In this paper we propose to formalize this in terms
of a logbook [8], which is intended to trace/mirror the activities taking place in
the domain. Such a logbook will consist of a series of events reporting on the
lifecycle of facts in the domain. For example:

Trafic light 20 is green ceased being true at 11:03:20 on 22-05-2006
Employee John works on the completion of order 50 started being true at 09:30 on 19-05-2006

In our view, a logbook approach is a natural extension of the earlier discussed
natural language based perspective on modelling. To be more precise, we regard
a history as an overview of the events that have taken place in the domain, while
a logbook is a description of such a history using some controlled language.

The facts contained in the descriptions of the events are asumed to be ex-
pressed in terms of semi-natural language (controlled language) sentences as is
normally the case in ORM’s way of working. Using a traditional ORM approach,
the set of facts used/allowed in a logbook can be generalised to a set of fact types,
which together comprise the ORM model underlying the domain. As such, this
ORM model then defines the domain grammar of the controlled language in
which the facts are to be formulated.



Traditionally, ORM focuses on the modelling of facts in general. In the con-
text of an active domain, these facts correspond to statements about what is the
case and/or has happened in the domain at specific points in time. In ORM, the
actual modelling process starts out from the verbalisation of such facts. These
verbalisations are the starting point for the creation of the domain grammar.
When considering an active domain, the set of facts that can be reported about
this domain fall into two categories: (1) acts reporting on the performance of
actions and (2) effects reporting the results of actions. This dichotomy applies
at the instances level (the facts) as well as the type level, leading to act types
and effect types respectively as sub-classes of fact types. In the case of acts, the
objects involved (i.e. playing a role in the act) can be classified further into ac-
tors (objects responsible for performing the act) and actands (objects which are
the effect of the act).

We assume that each event described in the logbook and the objects par-
ticipating in the event, can be uniquely identified in that logbook. We will call
this the Event Identification Principle. This identification principle is used as
the base for all other identification mechanisms. This principle does not inhibit
different events to occur on the same moment. In order to distinguish between
accidently coincidence and necessarily coupled events, we assume that events
may also have a compound nature, in such a way that: (1) different events in a
logbook are independent of each other, (2) events are not splittable into multiple
independent events.

We take the perspective that the state of an active domain is the result of the
sequence of actions leading up to that state. These actions may either take place
in the domain, or outside the domain (such as the very creation of the domain).
As a result, we take the position that the effects are actually derivable from
the set of reported acts. This is what we call the Action Dominance Principle.
This principle does lead to the question on how persistent properties, such as
the speed of light, are to be treated in our logbook approach. This is covered
by the Property Origination Principle, which states that each domain property
pertains to: (1) either some act taken place in the domain, (2) or some effect
of some act in the domain, (3) or some effect of the domain’s creation (i.e. the
result of a ‘big bang’ act). As a consequence, at each moment the state of the
system is the result of all the effects of the domain’s creation and the acts that
were reported since then.

An important consequence of the Property Origination Principle is that (for
most objects in the domain), the property of being alive should be the result of
some act. Therefore, objects that are not present in the initial state require an
explicit birth event. This is called the Birth Principle. Obviously, an object can
not be responsible for its own birth, as it can not be active before coming into
existence. The consequence is that some other object has to be responsible for
causing this event, thus playing a dominant role in that event. If the existence
of an object may terminate, then there should be an explicit death action that
enforces an object to have the property of being death.



An immediate consequence of the Birth Principle and the Event Identification
Principle is that objects may be identified by their birth event. If an event starts
life for more objects, then we require that the individual objects in this case may
be identified by this event and their role in this event.

3 Object-Role Calculus

This section is concerned with a conceptual language in which rules can be
expressed describing the behaviour that may be observed in a logbook compatible
with the domain being modelled. The language presented, referred to as Object-
Role Calculus (ORC) is a variant of Lisa-D [10], a formalisation of RIDL [15].
Lisa-D has originally been designed to describe all computable sets of facts that
can be derived from the elementary facts defined in the underlying conceptual
schema. The conceptual schema specifies all elementary sentences applicable for
that domain. The semantics of Lisa-D have been described in terms of multi-
sets. In this paper we will provide a light-weight definition of the ORC variant
of Lisa-D, which is intended to describe temporal and statical aspects of the
underlying domain.

3.1 Grounding in temporal logic

The semantics of ORC are grounded on Kripke structures [3]. In terms of Kripke
structures, an application domain is seen as a Kripke structure 〈S.R.s0,Π, L〉,
where:

1. S is a non-empty set of states,
2. R ⊆ S × S is a total transition function, i.e. ∀s∃T [(s, t) ∈ R],
3. s0 is the initial state,
4. Π is a non-empty set of atomic propositions, and
5. L is a labelling function that maps each state on a subset of Π.

Our main assumption is that the state of an application domain is described
by its history so far. As a consequence, a state corresponds uniquely to a log-
book. Consequently, the transition function extends a logbook with a new event
description, and the initial state is obtained as the empty logbook.

From the structure of the events in the logbook, the elementary object types.
Their possible instantiations form the set Π of atomic propositions. The labeling
function L then assigns the population of object types that is constructed by a
logbook.

A linear-time temporal logic is syntactically described by the following BNF
grammar:

φ→ true | false |Π | ¬φ | q ∧ φ | φ ∨ φ | φ⇒φ | Xφ | Fφ | Gφ | φUφ

The expression Xφ states that φ will hold in the next state, Fφ that φ will
eventually hold, Gφ that φ will globally hold and φUψ states that at some point



ψ will hold, while in all states before φ is valid. Let M be a Kripke structure over
logbook LB, and let σ be a history. We further will assume an environment E
for evaluation, consisting of a partial assignment of values to a set V of variables.
The standard semantic interpretation of the temporal operators is:

M,E, σ |= Xφ , M,E, σ1 |= φ

M,E, σ |= φUψ , ∃n

[
∀0≤i<n

[
M,E, σi |= φ

]
∧M,E, σn |= ψ

]
where σ(i) denotes the i-th element of sequence σ and σi the subsequence of σ
starting at position i. The other temporal operators are defined in terms of these
base operators: Fφ is equivalent with trueUφ, and Gφ is defined as ¬F¬φ. The
propositional operators are also interpreted in the standard way:

M,E, σ |= ¬φ , not M,E, σ |= φ

M,E, σ |= q ∧ ψ , M,E, σ |= φ and M,E, σ |= ψ

The constant false is introduced as p∧¬p where p is any proposition from Π, and
true is derived by ¬false. The other logical operators (∨ and ⇒) are defined in
the usual way. The conversion from a temporal proposition to a static expression
requires the evaluation of the static expression for the population L(σ(0)) at the
required point of time. This will be further elaborated in section 3.4.

3.2 Historical information descriptors

History descriptors in ORC are meant to provide a language construct for rea-
soning in an historical setting about the application domain. For the purpose of
this paper, it will be sufficient to make more or less direct transcriptions of the
basic temporal operators. For this the syntactical construct history descriptor is
introduced. Let H be a history descriptor, then the semantics of H are denoted
as [(H)] :

[(alwaysH)] , G [(H)] [(XH)] , X [(H)]

In addition we introduce the following abbreviations:

sometimeH , ¬ always¬H
H1 precedesH2 , always((FH1) UH2)
H1 duringH2 , always(H1⇒H2)
H1 triggersH2 , always(H1 ∧ ¬H2⇒X(¬H1 ∧H2))

The first rule will be a target for the educational organisation. The later rule
states describes a trigger that, whenever the condition H1 ∧ ¬H2 is met, will
respond by setting the condition ¬H1 ∧H2 at the next moment. Some example
expression would be:

sometime Lecturer lectures Course

Lecturer sets up Course precedes Lecturer lectures Course



This latter expression, however, is misleading as it does not bring about a con-
nection between lecturer nor course being set up and being lectured. In natural
language, indicatives are used in most cases to make such references. We fur-
thermore introduce:

x [[D1 PRECEDESD2]] y , (x [[D1]] y) precedes ∃z [z [[D2]] y]
x [[D1 DURINGD2]] y , (x [[D1]] y) during ∃z [z [[D2]] y]

3.3 Indicative descriptors

The main idea behind ORC, as present in its early ancestor RIDL [15] is a
functional, variable-less description of domain-specific properties (and queries).
RIDL did contain a linguistic reference mechanism (the indicative THAT). In
ORC variables have been introduced to handle more subtle referential relations
that can not be handled by indicatives. Variables are special names that are
instantiated once they are evaluated in a context that generates values for this
variable. The environment is used to administrate the value of variables, in
environment E, the variable v will evaluate to E(v). Some examples of the use
of variables:

Lecturer:x being hired precedes x sets up Course

Lecturer:x sets up c precedes x lectures Course:c

In this example, the expression Lecturer:x is a defining occurrence of variable x
in which Lecturer has the role of value generator. The environment is used to
administrate the variable-value assignment (see [10] for more details).

3.4 Information descriptors

The syntactic category to retrieve a collection of facts is called information de-
scriptor. We will discuss the semantics of elementary information descriptors,
and briefly summarise the construction of information descriptor (for more de-
tails, see [10]). Information descriptors are constructed from the names of object
types and role type. The base construction for sentences is juxtaposition. By
simply concatenating information descriptors, new information descriptors are
constructed.

Information descriptors are interpreted as binary relationships, they provide
a binary relation between instances of the population induced from the history.
The semantics of information descriptor D are denoted as [[D]] , we will write
x [[D]] y to denote the relationship between x and y. The statement M,E, σ |=
x [[D]] y asserts that for Kripke structure M in environment E from history σ
the relationship x [[D]] y can be derived.

A population assigns to each object type its set of instances. Let n be the
name of object type N and r the name of a role type R, then n and r are



information descriptors with semantics:

M,E, σ |= x [[n]] y , x ∈ L(σ(N)) ∧ x = y

M,E, σ |= x [[r]] y , (x, y) ∈ L(σ(R))

A single role may, in addition to its ‘normal’ name, also receive a reverse role
name. Let v be the reverse role name of role R, then we have:

M,E, σ |= x [[v]] y , (y, x) ∈ L(σ(R))

A combination of roles involved from a fact type may receive a connector name.
The connector name allows us to ‘traverse’ a fact type from one of the partic-
ipating object types to another one. If c is the connector name for a role pair
〈R,S〉, then the semantics of the information descriptor c are defined as:

M,E, σ |= x [[c]] z , ∃y [M,E, σ |= x [[R]] y ∧M,E, σ |= z [[S]] y]

reverse role name T

A B

C

R S"F"

connector name

role name

Fig. 1. Role names

Elementary information descriptors can be composed into complex informa-
tion descriptors using constructions such as concatenation, conjunction, implica-
tion, disjunction and complement. These may refer to the fronts alone or both
fronts and tails of descriptors. For more details, see [10]. In this paper we will
use:

x [[D1 D2]] y , ∃z [x [[D1]] z ∧ z [[D2]] y]
x [[D1 AND ALSOD2]] y , ∃z [x [[D1]] z]∧∃z [x [[D2]] z]∧ x = y

where D1 and D2 are information descriptors and x, y and z are variables. Some
example expression would be:

Person working for Department ’I&KS’
People working for department ‘I&KS’

Person (working for Department ’I&KS’ AND ALSO owning Car of Brand ‘Seat’)
People working for department ‘I&KS’ who also own a car of brand Seat

Note that the natural language likeness of the ORC expressions used in this
paper can be improved considerably.



3.5 Rules

ORC has a special way of using information descriptors to describe rules that
should apply in a domain. These rules can be used to express constraints and/or
business rules. We will use the more general term rule for such expressions. These
rules consist of information descriptors that are interpreted in a boolean way;
i.e. if no tuple satisfies the relationship, the result is false, otherwise it is true.
Some examples of such constructions are:

[[SOMED]] , ∃x,y [x [[D]] y]

[[NOTR1]] , ¬ [[R1]]
[[NOD]] , [[NOT SOMED]]

where D is an information descriptor and R1 a rule.

4 Graphical representation

Using the ORC temporal dependencies can be formulated governing the be-
haviour of a domain. Currently, we are experimenting with effective graphical
representation of some key classes of temporal dependencies. In [20] we have
provided some examples using notations inspired by the field of workflow mod-
elling [1].
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Fig. 2. Lecturing example



An important modelling construct is the notion of a life-cycle type. An exam-
ple of its use is provided in Figure 2, which contains two inter-linked life-cycle
types: Course Offering and Course Attendence. Each of these life-cycle types com-
prise multiple action types.

In the example domain, courses are offered to students. In offering a course,
a lecturer starts by setting up the course offering. This is followed by the actual
lecturing. After lecturing the course, the lecturer sets an exam. This exam is
given to the students attending the course, after which the lecturer marks the
exam papers produced by the students. Students attend the course by enrolling.
After their enrollment they attend the course. Once the course is finished, they
prepare themselves for the exam, which is following by the actual exam, leading
to an exam paper.
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Fig. 3. Life cycle types

In general, the life-cycle type typically involves multiple action types, and
can best be regarded as an abbreviation as illustrated in Figure 3. The temporal
dependency between x and y is defined as follows:

x→→S y , x being act of S PRECEDES y being act S

The enrollment by students in a course should take place during the setup
phase of a course. This is enforced by means of the temporal subset constraint
from the Enrolling action type to the Setting up action type. The connection be-
tween the temporal subset constraint and the Course Offering life-cycle type type
signifies that the temporal subset constraint should be evaluated via this object
type. In general, the semantics are expressed as: x ⊆τ y , x DURING y. In the
case of Figure 2, we have specified a join path, leading for example to:

Enrolling being act of Course attendence for Course offering

DURING

Setting up being act of Course offering

Finally, a model as presented in Figure 2 can be used as a base to derive
specialised views such as depicted in Figure 4 focussing on the flow of activities
performed by a lecturer.
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Fig. 4. Lecture activities

5 Conclusions

The research reported in this paper is part of our effort to find a suitable gener-
alised domain modelling method to model active domains. In this paper we have
focussed on a strategy to apply ORM rigour in modelling active domains. In do-
ing so, we have introduced the logbook paradigm as a history-oriented extension
of the traditional natural language approach of ORM. To be able to define rules
governing the behaviour of active domains, we have introduced the Object-Role
Calculus (ORC). The semantics of this rule language has been defined in terms
of Kripke structures. Finally, we have shown how ORM can be extended with
graphical constructs, in particular life-cycle types, focussing on temporal depen-
dencies in a domain. This notation allows us to also derive specific views on a
domain focussing solely on temporal behaviour.
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