
Software Process Validation: Comparing Process and
Practice Models

Aldo de Moor1 and Harry Delugach2

1 VUB STARLab, Pleinlaan 2, 1050 Brussels, Belgium
ademoor@vub.ac.be

2 Department of Computer Science, University of Alabama in Huntsville,
Huntsville, AL 35899, USA
delugach@cs.uah.edu

Abstract. To assure the quality of software processes, models play an impor-
tant role. Process models represent the officially sanctioned software develop-
ment processes in the organization. Although important, they are not sufficient,
since the practices of software developers often differ considerably from the of-
ficial process. Practice models, describing the way software development is
really done, are an important source of information for validating the software
process. Using conceptual graph theory, we present a formal method for repre-
senting and comparing process and practice models in various combinations.
The method allows for differences between these models to be easily detected.
Software developers, such as managers or engineers, can then interpret these
differences to make recommendations for software process improvement.

1 Introduction
Software development is a complex collaborative process. Organizations, whether
following official standards or not, have their own preferred software development
processes, often uniquely tailored to the projects and organizational characteristics at
hand [4][8]. To capture these official processes, organizations develop their own
process models, which guide, support and advise software developers by prescribing
what activities and steps they are to follow in the production of quality software [6].

Although process models are important in providing overall guidance, they are
seldom followed exactly. Developers often have different, personal views on what
roles they are supposed to play. Furthermore, as contingencies and breakdowns occur
in actual systems development, software engineering is critically dependent on the
unique abilities of the creative people involved in those processes [12]. Thus, al-
though a process focus is important for obtaining coherence in the organization, it is
the practice of people in the organization that brings the process to life [1]. Practices
allow people to learn, innovate, and deal with contingencies; they are thus an essen-
tial part of software development, especially in an agile or distributed environment,
where contingencies and breakdowns need to be dealt with all the time.

In this paper, we focus on exploring the differences between process and practice
models, with the aim of providing useful insights to improve both software engineer-
ing process models and their resulting practice. We use the term software process for

the normative, prescribed way of doing things in a software development organiza-
tion. The intended software process is described by a process model. We use the term
practice to refer to what developers are actually doing. In comparing process and
practice, it is essential to detect and compare the differences between process model
and practice. How large are the differences? How significant are the differences? In
which steps of the development process do they occur? According to whose view-
point are they (most) visible?

When comparing process and practice, however, there is an extra complexity. A
practice, like the process, also has a model; in fact, each individual in the organization
will have his or her own mental model of how software practices really work, for
example, in order to circumvent – in their eyes – unnecessary bureaucracy or ineffec-
tive procedures. Developers often adopt ways of working (around) based on many
instances of similar problems. Their individual practice models thereby consolidate
both the individual lessons learned from many cases and possibly some short-cuts.
These models are therefore an important intermediate unit of analysis. Since informal
models are often error-prone, subject to bias, and especially hard to check and com-
pare, we have chosen to formally represent process and practice models, since formal-
ization makes the comparison process more effective and efficient. We can also use
the same techniques to compare different process models. Our formalism of choice is
conceptual graph theory [7], since, first, it allows complex specifications to be intui-
tively captured and, second, it contains powerful operations (beyond the scope of this
paper) for these captured specifications to be compared and reasoned about.

In Sect. 2 we present our conceptual model of software process validation. Sect. 3
presents our validation method. In Sect. 4, we show the results of applying our
method to a real-world aerospace software case where adequate software process
validation is obviously important. Sect. 5 contains our conclusion.

2 Software Process Validation
Software development already includes a number of formal models for specifying
requirements, analysis, architectural design, and so on. Analyzing and comparing
these models is an integral activity in the process and hence already familiar (in prin-
ciple at least) to participants. It is therefore not a large leap to consider formal models
in order to validate the software development process itself. Our starting point is the
intended process, the way in which the management of the organization envisions
that the software process should be run. However, the intended process is often very
different from the actual work going on. How does one validate the process? That is,
how does one determine that the process is the right one? We emphasize that by vali-
dation we mean any approach that can evaluate differences between models; we do
not imply any judgement here about whether one model is to be favored over another.

Fig. 1 presents our conceptual model of software process validation. We distin-
guish four types of validation: (i) first-hand observation, (ii) process-model valida-
tion, (iii) practice-model validation, and (iv) model comparison.

A classic kind of validation is the manager walking around the office, and observ-
ing how people work, without any explicit representation. This type of validation is
an example of first-hand observation. In large, complex and spatially distributed

organizations, or in organizations with rapidly evolving flexible processes, such ad
hoc validation does not suffice anymore.

Fig. 1. A Conceptual Model of Software Process Validation.

A second type of validation should compare management intentions with the proc-
ess model, which we call process model validation. A process model provides the
organizational blueprint of the way business processes should be conducted. To some
extent, the official description is an (informal) meta-model of this software develop-
ment process; however, the actual intentions of management are often different from
this official process model (or set of models, if there is more than one). Management
needs are therefore often transformed in unintended ways during the specification
process of the process model. One typical way to facilitate process model validation
is to have external consultants conducting discussion sessions with management,
based on analysis of the organizational process model with industry standards, such
as CMM-process targets.

A third type of validation is between actual work performance and the individual
practice models of staff members. This practice model validation can be useful to
allow employees to improve their skills, by forcing them to reflect upon the differ-
ence between what they think is their optimal work performance, and what they are
actually doing. This individual learning process can be promoted by such techniques
as video-taping, logging command sequences, and so on.

In this article, we focus on a fourth type of software process validation: model
comparison between the official process model and an individual practice model, or
between two process or practice models. The coordination of many participants with
very diverse interests and responsibilities means that the theoretical practices (i.e.
process model) and the individual real practices (i.e. practice models) are often far
removed from each other [11]. When old patterns of past experience no longer apply,
new organizational patterns need to be developed and absorbed by staff [5].

The question now becomes how to efficiently facilitate such model comparison?
Much work has focused on informal model comparison; e.g., the so-called Knowl-
edge Workshops, which bring together experts and practitioners who, in a facilitated
and structured way, discuss and capture learning and understanding [10]. Although
certainly useful, such informal approaches are expensive, error-prone, and can easily
lead to organizational memory-loss, since evaluation results are often hard to re-use
or expand in future sessions. Advantages of formal methods include that (i) they
reduce ambiguity, (ii) they can serve as a contract and help resolve conflicts over the
interpretation, allowing for the reasoning about properties, and (iii) they are a prereq-
uisite for many sophisticated analysis techniques [9]. In the remainder of this paper,
we introduce a formal method that we have developed for comparing process and
practice models, taking into account the non-trivial difficulties of putting it to use in
the real world of time-constrained software professionals.

3 A Formal Method for Software Process Validation
At the heart of the method is a top-level software process validation ontology. Core
ontological concepts are workflow, step, and activity. A key feature of a software
development process is that it consists of (possibly concurrent) workflows (e.g. re-
quirements acquisition) that lead to the final deployment of software. Within each
workflow, there will usually be a set of steps, within each step a set of activities.

Our basic unit of analysis is an activity in which an object is produced. All activi-
ties require that at least one organizational actor initiates, executes, or evaluates
them. We call these initiations, executions, or evaluations control processes (some-
times shortened to controls). Associated with these control processes are norms.
These norms denote whether a particular actor must, may, or may not control a par-
ticular activity, in other words, whether that organizational actor has a responsibility,
a privilege, or a prohibition with respect to that control process. The norms are la-
belled by their particular deontic effect, for which we use the terms “Required” for
responsibilities, “Permitted” for privileges, and “Prohibited’” for prohibitions. This
normative approach draws from the RENISYS method for modelling workflow
changes acceptable to a community [3].

Based on these concepts, the ontology includes a number of activity patterns.
Definitional patterns represent concepts and relationships that must be present. For
example, every activity must have some kind of control associated with it. Schematic
patterns represent typical or expected concepts and relationships that are often pre-
sent, but are not required. For example, not every activity will require an input object,
so the relationships involving an input object are necessarily schematic rather than
definitional. We use both definitions and schemas to organize the acquisition of mod-
els

The steps of the method are outlined in Table 1. The technical details of this
method, including its use of conceptual graph theory as the underlying formal knowl-
edge representation and reasoning formalism have been explained in [2]. Here we
only illustrate the method by showing an example taken from a case we studied of
software engineering processes in a large aerospace organization.

Table 1. A Formal Method for Software Process Validation

• Create activity patterns for the models
• Create two models

o Models can be either process or practice models
o Identify model steps
o Build models by instantiating or specialising general activity patterns for

each step
• Compare the models

o Identify activities in models, and delineate steps in a sequence
o Compare steps between the models
o Create difference graphs

• Interpret differences between the models
o Present difference graphs to software professionals
o Adapt process and/or practice models
o Launch change program

4 Applying the Method: Aerospace Software Engineering
Our example is based on a detailed study of a small-sized internal software develop-
ment group that develops and maintains aerospace software. This particular group is
characterized as small (10-20 persons), leading to multiple roles per person, with little
duplication or crosstraining of roles, occasional role re-assignment, and (we discov-
ered) implicit accumulating adaptations of the official process in practice.

Software development in this group is project-based. We compared its process and
practice models in a project with non-mission critical environmental control system
software. We also compared the non-mission critical project’s process model with the
process model for mission critical propulsion system software developed in another
project, but led by the same manager. Space does not permit us to show our complete
model of a software process; we focused on one small part: namely, this organiza-
tion’s activity of creating and approving changes to the requirements.

First, we gathered information from official documents and interviews with a key
manager familiar with both the published process and actual practice. After eliciting
many partial graphs, we were able to construct a process and a practice model. At
first (human) sight, the graphs looked rather similar. However, finding the differences
between the graphs forms the heart of our comparing process and practice models.
Using conceptual graph theory, we computed the difference between two graphs as
the sequence of difference operations that will transform one graph into the other.
Subsequently, the differences were highlighted visually in what we call diffference
graphs. In [2], we explained the algorithms and illustrated them by analyzing the
difference graphs of the process and practice model for the non-critical environmental
system software development. In this paper, we will not focus on the technical proce-
dure, but give another example: the comparison of the non-mission critical environ-
mental system software process model (Proj. A) with that of the mission critical pro-
pulsion system software (Proj. B). Fig. 2 shows Project A’s view on the differences.

The dark lines delineate steps which are identified by simple rules (omitted here)
for defining a temporal ordering. The highlighted parts are where the two models
differ. Here there are significant differences between the graphs; in fact, there is an
extra step where the Software Review Board (SRB) evaluates a change request in

Project-A’s but not in Project-B’s process model. Also some steps have roughly the
same structure in both graphs, but the particular concepts are different.

Fig. 2. Difference graph for Project-A and B’s process models (Project-A’s perspective)

5 Interpretation of key differences between the process graphs
We used the actual graph models in consultation with the manager to analyze the
differences between the projects. Even though the same person was a manager for
both projects, our meeting quickly identified areas that he felt deserved attention to
improve process quality. More than once he remarked, “I never thought of that!” as
we talked through the differences. While not rigorous, our experience was encourag-
ing, suggesting the considerable potential for this technique. Some observations were:

In the first step, in Project-A, the activity is the same as in Project-B, but the result
of the activity is a Change_Request in Project-A, and a System_Note in Project-B
(not shown in this graph). Further, note that in Project-A only one Software_Lead
does the evaluation and is permitted (but not required) to do it, whereas in Project-B
(shown in the other difference graph), a whole team (the so-called System Note Re-
view Team) is involved and is required to do so. The (required) involvement of more
people might mean that the System_Note has more value to the organization.

Furthering the analysis of the first step, however, we see that in Project-A there is
an entire extra evaluation step performed by the SRB (which is a team) that is re-
quired to evaluate the Change_Request. This would tend to contradict our previous
conclusion since now multiple people and two roles are involved in the evaluation
process. We would expect, however, that more overall effort would be expended for
Project-B since it is the mission-critical one. Still, in that project there is only one role
involved in the evaluation, whereas Project-A gets two independent evaluations. To
reconcile this contradiction, we would need more information such as team size, the
length of time spent on and methodology of evaluation, etc.

Focusing now on Step 2 which is centered around the Make_Change activity in
Project-A and the Produce activity in Project-B, one difference is that in Project-A
Make_Change affects the result of a previous activity (Make_Request), whereas in
Project-B the Produce activity follows from the previous activity and has a new
result Requirements_Change_Notice. Furthermore, in Project-A, the SRB is both
permitted to change the Change_Request itself and required to evaluate the change,
but in Project-B, the software engineer is required to produce the Require-
ments_Change_Notice, and a (possibly different) set of software engineers is re-
quired to evaluate the Requirements_Change_Notice. It makes sense that in mis-
sion-critical Project-B there would be additional people involved in the evaluation,
but the graph does not show whether the initial producer of the change is also in-
volved in the evaluation, more information is needed here.

There is a terminology difference in Step 3 between Requirement in Project-A
and Release_Requirements_Change_Notice in Project-B. This may be just a matter
of usage, but it may also indicate that Project-A has underspecified the lifecycle status
of the requirements or that Project-B has overstated it.

We see the requirements engineer’s execution in Step 5 is a direct result of the re-
quirements lead’s evaluation in step 4; there is no explicit initiation. We have learnt
that practitioners often combine initiation and execution in eliciting models. It seems
plausible to assume that if some organizational actor executes an activity that has no
explicit initiation, then that actor is also the initiator. This may not always be desired
for quality control purposes that favor a separation of responsibilities.

Note that for each difference, we were able to identify a course of action or sug-
gested further examination. This gives us confidence that the technique helps soft-
ware development practitioners wanting to improve process quality.

6 Conclusion
Software process validation is an essential but complex part of the systems develop-
ment process, requiring a subtle mix of specific validation processes. In this article,
we focused on one particular validation process: comparing two process models.
Differences between these models can be an important source of creativity for identi-
fying problems and opportunities for improvement of current work regulations and
practices and ensuring quality control.

The method we presented makes use of conceptual graph theory, a powerful
knowledge formalism that is well suited to elicit, represent, reason about, and com-
pare the complex knowledge structures such as process and practice models. There
are additional conceptual graph features (e.g., type/relation hierarchies, context, ac-
tors) that lend themselves to even more interesting evaluation. Since there is a cost in

creating the conceptual graphs, we are working on tools and techniques that can im-
prove our efficiency in creating them from documents and interviews.

By using the formalism for identifying the differences, while leaving the interpre-
tation of these differences to the domain experts such as software engineers and man-
agers, we think we have established a balance between computational power and
human intelligence and experience. As our experience with the aerospace software
process shows, the method-under-construction was already found useful by its in-
tended users, in the sense of providing new insights at relatively low cost. Future
work will measure the cost of model creation vs. the benefit of difference evaluation.

Analytical approaches often use informal techniques, making it hard to see the
bigger picture in different stories of organizational actors. In software engineering,
however, formal methods are common, but these often focus only on the improve-
ment of low-level software execution processes. Thus, a major gap exists with respect
to the evaluation of organizational governance and practices at the business process
and workflow level. Our method for software process validation aims to fill this gap.

Acknowledgments

The research in this paper has been partially supported by the EU Leonardo da Vinci
CODRIVE project (BE/04/B/F/PP-144.339) and DIP project (EU-FP6 507483) .

References
1. Brown, J. S. and Duguid, P., 2000. The Social Life of Information, Harvard Business School

Press, Cambridge, MA.
2. Delugach, H. and De Moor, A., 2005. Difference Graphs. In Contributions to ICCS 2005,

Kassel, Germany, 2005, pp.41-53.
3. de Moor, A. and Jeusfeld, M.A., 2001. Making Workflow Change Acceptable, Requirements

Engineering, 6(2):75-96.
4. Jones, C., 2003. Variations in Software Development Practices,IEEE Software, 20(6), 22-27.
5. Kurtz, C. F. and Snowden, D. J., 2003. The New Dynamics of Strategy: Sense-Making in a

Complex and Complicated World, IBM Systems Journal, 42(3), 462-483.
6. Rolland, C., Souveyet, C. and Moreno, M., 1995. An Approach for Defining Ways-of-

Working, Information Systems, 20(4), 337-359.
7. Sowa, J. F., 1984. Conceptual Structures : Information Processing in Mind and Machine,

Addison-Wesley, Reading, Mass.
8. ter Hofstede, A. H. M. and Verhoef, T. F., 1997. On the Feasibility of Situational Method

Engineering, Information Systems, 22(6/7), 401-422.
9. van der Aalst, W. M. P., 1998. Three Good Reasons for Using a Petri-Net-Based Workflow

Management System. In: Yates, J. (Ed.), Information and Process Integration in Enter-
prises: Rethinking Documents, Kluwer, Boston, 161-182.

10. von Krogh, G., Nonaka, I. and Aben, M., 2001. Making the Most of Your Company's
Knowledge: A Strategic Framework, Long Range Planning, 34, 421-439.

11. Winograd, T., 1995. From Programming Environments to Environments for Designing,
Communications of the ACM, 38(6), 65-74.

12. Winograd, T. and Flores, F., 1986. Understanding Computers and Cognition : a New Foun-
dation for Design, Ablex Pub. Corp., Norwood, N.J.

