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Abstract 
The problems of multi-criteria optimization confidently occupy a prominent place due to their relevance 
and practical focus. The article is devoted to the formulation of the multi-criteria discrete problem of 
selecting software components as a multi-criteria combinatorial optimization model based on partial 
permutations. The method of solving the problem based on the studied combinatorial properties of 
polyhedra and the graph of the partial permutations set is considered. 
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1. Introduction 

A natural experiment is an important element in various fields, including design, economy, and 
management. However, in many cases, a full-scale simulation is not feasible for controlling 
technological processes in real-time or designing complex systems and devices. Therefore, it is 
advisable to use computer simulation [1, 2].  
Today, computer modeling is utilized in various areas of human activity. Computer modeling is 
the creating an abstract model process to simulate the behavior and response of a wide systems 
and prototypes range. The computer modeling software programs quality has increased 
significantly in the past few years. The computer modeling basis in many cases is a mathematical 
model use. The main mathematical model purpose in management tasks is to predict the object's 
response to management influences. In addition, mathematical models are used to study various 
objects and analyze their sensitivity [3-6]. 

The mathematical model purposefulness is that it's always built with a specific purpose to 
solve a practical problem. A computer model is most often understood as a conditional image of 
an object or some system of objects (or processes), described with the help of interdependent 
computer tables, schemes, diagrams, graphs, drawings, animation fragments, hypertexts etc., 
which reflect the structure and relationships between the elements of the object or system. 
Mathematical modeling can be considered as a means of studying a real system by replacing it 
with a more convenient system (model) for experimental research that preserves the essential 
features of the original. In mathematical modeling, the description function is approximated by a 
simpler and more convenient function for practical analysis – a model. 

Computer modeling is a method of solving an applied problem of analysis or synthesis of a 
complex system based on the use of its computer model. The essence of computer modeling is to 
find quantitative and qualitative results with the involvement of an existing mathematical model. 
A computer model of a complex system should reflect as fully as possible all the main factors and 
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relationships that characterize real situations, criteria and constraints. In addition, the 
mathematical model should be as universal (to cover the widest possible range of objects close in 
purpose) as simple (to facilitate the necessary research with minimal costs). The computer 
direction of modeling in science was called a computational experiment, which is based on the 
study of a mathematical model with the help of logical-mathematical algorithms and their 
implementation on a computer. 

When solving many practical problems in economics and technology, multi-criteria 
optimization models are used, where the quality of the solution is evaluated by several criteria at 
the same time [7-9]. In the simplest interpretation, a multi-criteria problem (MCP) includes 
objective functions and has no additional constraints. When they are combined into a vector 
criterion, we arrive at a standard optimization problem. However, an adequate mathematical 
model of applied problems includes several objective functions, as well as some additional 
constraints, which make its solution much more complicated than in the simplest version [10-
13]. An example of such a model is considered in this paper. 

The paper is organized as follows: in the second part, the statement of the applied optimization 
problem is formulated, the third and fourth parts are devoted to the construction of a 
mathematical model of the multi-criteria optimization problem on the combinatorial set and the 
description of the properties of the area of admissible solutions of the problem [14,15]. In the last 
part, a method for solving such applied problems based on the formulated properties is proposed. 

2. Multi-Criteria Decision Discrete Model for Selecting Software 
Components in Component-Based Development 

One of the fundamental modern programming principles is the principle of modularity, which 
allows for more effective provision of various stages of the software life cycle, such as the 
creation, implementation and maintenance and improvement of computer software and 
mathematical support. The modularity principle involves the program development and 
implementation in the form of a constituent parts set – modules. 

The proposed Multi-Criteria Discrete Model (MCDM) for Selecting Software Components in 
Component-Based Development includes the following steps: identify the software components 
needed for the project; define the criteria for selecting software components, such as 
functionality, reliability, compatibility, maintainability, and cost; determine the weights of each 
criterion based on their importance to the project; evaluate each software component against 
each criterion using a rating scale; calculate the weighted score for each software component 
based on the ratings and criterion weights; perform sensitivity analysis to assess the impact of 
changes in the criterion weights on the rankings. The model considers both the technical and non-
technical criteria in software component selection. The weights of the criteria can be determined 
based on the project requirements and the stakeholders' preferences. The model also allows for 
flexibility in adjusting the weights to reflect changes in the project's priorities. With this model, 
software developers can make informed decisions on selecting software components that best 
meet the project's requirements and constraints. 

The MCDM can be formulated as a mathematical model on partial permutations set.  
The program can be presented as consisting of separate modules, procedures, programs, 

segments. For each block, there are possible variants of its implementation in the program. 
According to the description, the set can be represented as a set of partial permutations. 

Let ix  be a binary variable that represents whether software component i  is selected or not. 

1ix =  if software component i  is selected, and 0ix =  otherwise. The decision variables can be 

defined as follows: 

 0,  1 ,    1,  2,  ...,  ix i m = .    (1) 

If we have n  possible components and k  possible positions, we will get a set of the partial 

permutations from m to k  
m

nkA  [10]. 



The objective is to select the best placement of software components. Possible mathematical 
functions that can be used to quantify the criteria are functionality, reliability, compatibility, 
maintainability, and cost in the proposed MCDM for Selecting Software Components: 

Functionality ( 1f ) : 
1

1 , maxi if c x= → , where 
1

ic  is the level of functionality of software 

component i , and 
ix  is the placement of software component i . This function calculates the total 

functionality score of the selected software components. 

Reliability ( 2f ): 
2

2 , maxi if c x= → , where 
2

ic  is the level of reliability of software 

component i . This function calculates the total reliability score of the selected software 
components. 

Compatibility ( 3f ): 
3

3 , maxi if c x= → , where 
3

ic  is the level of compatibility of software 

component i . This function calculates the total compatibility score of the selected software 
components. 

Maintainability ( 4f ): 
4

4 , maxi if c x= → , where 
4

ic   is the level of maintainability of 

software component i . This function calculates the total maintainability score of the selected 
software components. 

Cost ( 5f ): 
5

5 , mini if c x= → , where 
5

ic  is the cost of software component i . This function 

calculates the total cost of the selected software components. 
These functions can be used to calculate the scores for each of the criteria based on the 

placement of the software components. The decision maker can then assign weights to each of 
the criteria and use the weighted sum approach to determine the overall score for each potential 
solution. Linear constraints can also be added to ensure that the selected software components 
meet any additional requirements or constraints. 

Constraints that limit the total cost of the selected software components can be formulated as 
follows: 

1

1,i ia x b , 

where 
1

ia  is the cost of software component i , ix  is the placement of software component i , and 

1b  is the maximum allowable cost. This constraint ensures that the total cost of the selected 

software components does not exceed the budget allocated for the project. 
Constraints that require a minimum level of functionality or reliability can be formulated as 

follows: 
2

2,i ia x b  

where 
2

ia  is the level of functionality or reliability of software component i , ix  is the placement 

of software component i , and 2b  is the minimum required level of functionality or reliability. 

This constraint ensures that the selected software components meet the minimum level of 
functionality or reliability required for the project. 

Various constraints can be added to the overall model as additional linear equations or 

inequalities. The decision maker can adjust the values of 1b  and 2b  to reflect the specific 

requirements and constraints of the project. 
In addition to these constraints, there may be other linear constraints that can be added to the 

model depending on the specific requirements of the project. For example, there may be 
constraints that limit the total cost of the selected software components, or constraints that 
require a minimum level of functionality or reliability. These constraints can be formulated as 
linear equations or inequalities and incorporated into the overall model. 

A linear constraint can be added to the proposed MCDM for Selecting Software Components to 
incorporate security requirements. One way to do this is to assign a security score to each 



software component based on its level of security, and then add a linear constraint that ensures 
that the total security score of the selected components meets a minimum threshold. 

The security score for software component i can be denoted as 
2

ia , and the minimum required 

security score can be denoted as 
3b . The linear constraint can be formulated as: 

3

3,i ia x b ,      

where 
ix  is the placement of software component i  [10]. 

This constraint ensures that the total security score of the selected software components is at 
least S, indicating that the selected components meet the minimum security requirements for the 
project. The decision maker can adjust the value of S to reflect the specific security needs of the 
project. In addition to this constraint, there may be other linear constraints that can be added to 
the model to further incorporate security requirements. For example, there may be constraints 
that limit the maximum allowable security risk or that require specific security features. These 
constraints can be formulated as linear equations or inequalities and incorporated into the 
overall model. 

The mathematical model of described task based on the proposed Multi-Criteria Discrete 

Model for Selecting Software Components: to optimize objective functions of i nkx E  
1

1 , maxi if c x= → , 

2

2 , maxi if c x= → , 

3

3 , maxi if c x= → ,          (2) 

4

4 , maxi if c x= → , 

5

5 , mini if c x= →  

subject to:  
1

1,i ia x b , 2

2,i ia x b , 3

3,i ia x b .   (3) 

The objective function is a weighted sum of the scores for each criterion, where the weights 
reflect the relative importance of each criterion. The decision maker can adjust the weights to 
reflect the specific priorities and preferences of the project. The constraints ensure that the 
selected software components meet the minimum requirements for functionality, reliability, 
compatibility, maintainability, and security, and that the total cost of the selected components 
does not exceed the allocated budget. The decision variables xi are binary variables indicating 
whether each software component is selected or not selected. 

The proposed model provides a quantitative approach to software component selection in 
component-based development. The decision maker can make informed decisions based on the 
mathematical model and adjust the weights of the criteria to reflect changes in the project's 
requirements and constraints. 
This problem is a model of a multiobjective optimization problem with additional constraints on 
a combinatorial set of partial permutations and can be solved by a combined approach. 

 

3. Mathematical model of the applied problem and its interpretation 
in terms of multiobjective combinatorial optimization 

Сonsider our model as multiobjective optimization problem on a set of partial permutations and 
investigate its properties. To do this, we will use the concept of mapping combinatorial sets into 
Euclidean space [16-18], 



The problem is to optimize several criteria F= 1 2{ ( ), ( ),..., ( )}Lf x f x f x  on a finite set X , which 

can be represented as: 

( ) minlf x → , '

'{1,..., }
L

l J L = ; 

                                                    ( ) minlf x → , '\L L
l J J ;                           (4) 

                                                      
'x X E  ,                                                                  (5) 

where 
'E  is a combinatorial space, X is a set of possible solutions and functions ( )lf x , Ll J , 

which are defined on 
'E . 

The main capabilities of multiobjective optimization are aimed at solving the problem of 
effective search for a solution [7-9, 11]. The first attempt to formulate the concept of efficient 
solutions was made by V. Pareto [7-9], and its set of such solutions is called the Pareto set. 
However, it is not always possible to find all effective sets of solutions when solving problems and 
applying multiobjective methods. Therefore, it is sometimes important to define at least part of 
the Pareto set, as well as its extension. At the same time, we can talk about Smale's or Slater's set, 
etc. [11]. 

By solution  ( , )Z F X  we mean an element or elements of one of the following sets [6-9]: 

1. The set ( , )I F X  of ideal solutions: 

                                        ( , ) { : ( , , ) }I F X x X v x F X=  = ,                               (6) 

where ( , , ) { | : ( ) ( )}L l iv x F X y X l J f y l x=     ; 

2. Pareto set ( , )P F X , that is, a set of (Pareto optimal) solutions: 

                                       ( , ) { : ( , , ) }P F X x X x F X=  = ,                                 (7) 

where ( , , ) { : ( ) ( ), ( ) ( )}x F X y X F y F x F y F x=    ; 

3. Slater's set ( , )Sl F X  of inefficient solutions: 

                                      ( , ) { : ( , , ) }Sl F X x X x F X=  = ,                                 (8) 

where ( , , ) { : ( ) ( )}x F X y X F y F x=   ; 

4. Smailer's set ( , )Sm F X  of strictly efficient solutions: 

                             ( , ) { : ( , , ) }Sm F X x X x F X=  = ,                             (9) 

where ( , , ) { \{ }: ( ) ( )}x F X y X x F y F x=   . 

For example, an element of set (6) is called an ideal solution [11], and it is the best according 
to all specific criteria, respectively, and for multiobjective problem. At the same time, Pareto 
optimality (see (7)) means that the value of any of the specific criteria can be increased only by 
decreasing the value of at least one of the other specific criteria. For a weakly efficient 
estimate/decision (8), there will be no such estimate/decision that would be better by all specific 
criteria. As a result, the sets (6)-(9) are related as follows: 

 

                                         ( , ) ( , ) ( , ) ( , )}I F X Sm F X P F X Sl F X   .                                    (10) 

It should be noted that, as a rule, Pareto-optimal solutions (efficient solutions) are searched 
for when solving the PMO. Today, there are several directions of development of multi-criteria 
optimization methods, which, conditionally, can be divided as follows: methods based on the 
criteria of collapsing into a single criterion (actual reduction to a single-criteria problem); 
methods based on imposing restrictions on criteria; methods based on finding a compromise 
solution; methods that use human-machine decision-making procedures or interactive 
programming. 

Most methods of constructing a set of effective solutions use certain optimality conditions. 
Necessary conditions are often applied, for example, if the point is effective. Thus, the most 
common methods of the PMO are the method of reducing a multi-criteria problem to a single-



criteria one by collapsing a vector criterion into a super-criteria, the method of priorities, and 
their generalization — the method of successive concessions [7-9,11]. With the help of the first 
method, we can reduce a multi-criteria problem to a single-criteria problem, the other two make 
it possible to reduce the original problem to a sequence of single-criteria optimization problems. 

So, let's consider the reduction of a multiobjective problem to a linear optimization problem, 

using the supercriterion as a weighted sum of ( )F X  - components: 

                            
1

( ) ( )
L

l l

l

x f x
=

 =  , 0l  , 'L
l J , 0l  , '\L L

l J J , 
1

| | 1
L

l

l=

=  .                  (11) 

So, the problem is considered further: 

                                             ( ) maxx → ; 
' Nx X E R   .                                         (12) 

When performing convolution (11), the main issue is the correct choice of coefficients l , 

Ll J , the relative importance of decision-making criteria 
*x  from (5) coincide with the solution 

'x  from  (12) [9, 11]. 

Individual criteria are ordered according to their relative importance – 
1 2

...
Li i if f f .  

Then the first, most important criterion is maximization and limitation 

1 1 1

* '

1( )i i if x f f −  =  

on the lower limit 
1
( )if x  is added, where 

1 1

* min ( )i i
x X

f f x


= , 1 0   – is a concession on 
1

*

if .  

Next, the second most important criterion is optimized on the new domain 

1 1

1 '{ : ( ) }i iX x X f x f=   , etc. 

As a result, a number of problems: 

                                          
1
( ) minif x → , 

1 'lx X E−  , Ll J ,                           (13) 

where
0X X= , 

                                                   '
'1

1 ' '

1{ : ( ) , }
l

l l

i li
X x X f x f l J−

−=    ,                                   (14) 

' *

l li i lf f= −  , 
1

* min ( )
ll li i

x X
f f x

−
= , 0l  , 1Ll J − . 

*x  comes out as a solution to the last of them. 
As mentioned above, the model of the multiobjective optimization problem is considered on 

the combinatorial set, i.e. it also belongs to the class of combinatorial optimization problems.  
Practice has shown that most applied problems are set on a set of Boolean vectors or 

permutations [10]. This means that 
'E  is usually an underlying Boolean value C set−  ( bC set− ) 

nB  from n -dimensions  Boolean vectors or main bC set−  permutations ( )nkE G   included n -

elements of the numerical multiset 1{ ,..., }na a a= , 1 ... ng g  , containing k  various elements [10, 

16].  

A specific case on ( )m m

nk nkE E A=  is considered at the moment at k n= , where A  – this is a set, 

( )m m

nk nkE E A=  - partial permutations with repetitions.  

It ( )nE A  called bC set−  permutation without repetitions or simply bC set−  permutation.  

An interesting feature of this set is that 
'E , and accordingly X , coincides with the set of 

vertices of its convex hull: 
'E = vert

'P , 
'P = conv 

'E . 
 

The set Х  can be sets of Euclidean combinatorial configurations of partial permutations, 
permutations, polypermutations, and others.  



The properties of Euclidean combinatorial configurations are the basis for the development of 
methods for solving the given problems. One of the important areas is the connection of 
combinatorial configurations with combinatorial polyhedra and their graphs. This representation 
of Euclidean combinatorial configurations allows structuring sets е - configurations to analyze 
the values of the functions on them [10,19,20]. Let's consider this connection in more detail. 

 

4. Properties of graphs of Euclidean combinatorial configurations 
sets 

The set of such Euclidean combinatorial configurations as configurations of permutations, partial 
permutations, polypermutations, polyplacements coincide with the set of vertices of the 
corresponding polyhedra [21,22]. 

For example, the convex hull of the general set of е -configurations of partial permutations 

( )m

nconv E A  is a polyhedron of partial permutations ( )m

nM a , which is described by systems : 

w

x a w J w ki j k

i w j 1

k k

x a ,i j

i 1 j 1




   

  =


 =

= =

 

 
 

and symmetrical to it:  

w

i k j 1

i w j 1

x a − +

 =

    w Jk  ; w k  , 

k k

i j

i 1 j 1

x a

= =

=  . 

Polyhedron of partial permutations ( )m m

n nE E A= , 1{ ,..., }na a a= , is the set of all solutions of 

the system of linear inequalities described by relations [11,23,24]. 

The properties of the polyhedron ( )m

nM a  are used to construct methods for solving 

optimization problems on combinatorial configurations. Vertices and edges of a polyhedron can 
be represented in the form of a corresponding graph. 

Important results are given by the connection of combinatorial configurations [25] with the 
theory of graphs, which was studied in  [11, 14, 26]. 

Many discrete optimization problems are presented in terms of graph theory. Theoretical-
graphic models are most widely used in the field of construction and research of communication 
networks, in the study of chemical and genetic structures, electrical circuits, etc. 

A graph G  is a figure that can be represented by a pair G , where  1 2, ,..., mV v v v=  – is not an 

empty finite set of vertices, and  1 2, ,.., nU u u u=  – a finite set of directed or undirected edges 

connecting pairs of vertices. Let the edge connect the vertices ,i jv v , i.e ( , )ij i ju v v= , then they are 

adjacent vertices incident to one edge iju . 

Let X  – he set of е -configurations, and ( ),G V U  – some graph for which the number of 

vertices coincides with the cardinality of the set X . Let's carry out an objective mapping of   



elements of the set 
nX R  into the set  V  vertices of the graph G , that is, to each element 

nx X R    let's match v V , thus we have ( ),XG V U  – graph of the set of е -configurations X . 

We will consider the designations ( ),XG V U  and 
XG  to be identical. 

Definition 1. If there is a bijective mapping : X V→ , where X  – set of  е -configuration, and 

V  – set of vertices of some graph 
ХG , and also defined   – conditions of adjacency of vertices, 

that 
ХG  is a graph of the set of е -configurations X . 

For convenience, we will consider the vertices of the graph 
ХG  as corresponding elements of 

е -configurations, that is, the vertices are mapped into the Euclidean space [3, 10]. 
For a set of partial permutations, the complexity arises when the set ceases to be vertices, that 

is, some points of е -configuration are contained on the edges of the polyhedron, which is also 
displayed in the graph. The question arises of constructing such a graph or a set of graphs that 
would allow considering all е - configurations as vertices.  

If we define a different condition for the adjacency of the vertices of the е -configuration graph 
than the one given above, we will obtain a new graph.  

Definition 2. Vertices of the graph 
XG , adjacent to the vertex we call those and only those 

vertices obtained from х  by permuting arbitrary components of the inducing set 

, , :i je e i j J i j   .  

Definition 3. A transposition graph 
Х

TrG  let's call such a graph 
XG , whose adjacent vertices 

are defined according to Definition 2.  
Based on the transposition graph, we will construct a grid graph of the Euclidean 

combinatorial configuration, having previously entered the corresponding definitions. 
Construction and properties of the structural graph of e-configurations. 
The work [10] used the concept of a structural graph of combinatorial configurations, the 

vertices of which are only some points of the set of Euclidean combinatorial configurations that 
satisfy the set requirements. Let's formulate the definition and consider its properties. 

Let the subsets X   sets of combinatorial configurations X  are determined by h  fixed 

coordinates, and the elements of the set have the form ( )1 2, ,..., mx x x x= .  

Definition 4. Let ( ),XG V U


 – subset graph X   combinatorial configurations X , and the plural 

X   structured in such a way that 1 2 ...X X X X   =      and each subset ,іХ i J    corresponds 

to vertices h  with fixed coordinates and is represented by two vertices 
0

ix  та 
st

ix  such that the 

conditions for a linear function ( )f x  are fulfilled: 

                                                ( ) ( )0 max ,
i

і
x X

f x f x


=  

     ( ) ( )min ,
i

st

і
x X

f x f x


=                                                (16) 

and the edges of the graph ( ),XG V U


 are those that connect the corresponding vertices 
0

ix  and 

st

ix  and the vertices are formed by successive transpositions of fixed coordinates, then we will 

call such a graph the structural graph of the set of Euclidean combinatorial configurations and 

denote n ( ), ,X

SG V U h . 



Definition 5. Vertices 
0

ix  and 
st

ix  subsets ,іХ i J    of the structural graph ( ), ,X

SG V U h , for 

which the conditions (16) are fulfilled are called the peaks of leakage and drain, respectively 

( ), ,X

SG V U h , and the quantity   will be called the level of the structural graph. 

Let's consider several examples of a structural graph illustrating the main stages of their 
construction. 

Example 1. Let Х  – be the set of Euclidean combinatorial configurations of permutations from 

the set  1,2,3,4А= . Let's put 1h = , that is, we fix only one coordinate, then we get four subsets 

such that 
1

4 4x = ,
2

4 3x = , 
3

4 2x = , 
4

4 1x = . 

 We will get four pairs of vertices, respectively 
0

ix  and 
st

ix : ( )0

1 3,2,1,4x = , ( )1 1,2,3,4stx = , 

( )0

2 4,2,1,3x = , ( )2 1,2,4,3stx = , ( )0

3 4,3,1,2x = , ( )3 1,3,4,2stx = , ( )0

4 4,3,2,1x = , ( )4 2,3,4,1stx = . Let's 

mark the vertices on the graph ( ), ,1X

SG V U , shown in the figure 2.3. We also denote the subgraphs 

into which the structural graph is divided. 

 

Figure 1: Structural graph ( ), ,1X

SG V U  sets of Euclidean combinatorial configurations of 

permutations 
 

Figure 1 shows the levels of the structural graph 4 3 2 1, , ,G G G G , whose numbers correspond to 

fixed coordinates. 

Example 2. Let us have Х  – a set of Euclidean combinatorial configurations of partial 

permutations of dimension 4 from the set  1,2,3,4,5,6А= . 

 Let's put 2h = , that is, we will fix the last two coordinates. Let's get the following set of pairs 
of coordinates:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6,5 , 6,4 , 6,3 , 6,2 , 6,1 , 5,6 , 5,4 , 5,3 , 5,2 , 5,1 , 4,6 , 4,5 , 4,3 , 4,2 , 4,1 ,

3,6 , 3,5 , 3,4 , 3,2 , 3,1 , 2,6 , 2,5 , 2,4 , 2,3 , 2,1 , 1,6 , 1,5 , 1,4 , 1,3 , 1,2
 

So, we get thirty levels of the structural graph and the corresponding number of pairs of 

vertices 
0

ix  and 
st

ix . Let's mark them selectively in the Figure 2. 



 

Figure 2: Structural graph ( ), ,2X

SG V U  

The use of grid graphs and structural graphs makes it possible to build new methods of solving 
the vector problem of linear combinatorial optimization, which are models of applied problems 
[10, 11, 14]. Thus, using the properties of combinatorial sets graphs, it is possible to reduce the 
number of necessary steps for solving problem (4)-(5) and quickly find the solution itself, which 
will be some subset of effective solutions. 

For problem (4)-(5), one can use methods aimed at finding one effective solution, which is 
quite sufficient for most practical problems. 

5. Method of the solving multiobjective optimization problem on a 
combinatorial set of partial permutations 

Let us consider the approach to solving optimization problems on combinatorial configurations 
of partial permutations. Given that the problem is multi-criteria, it is advisable to use vector 
optimization methods. 

Thus, at the first step, the method of successive concessions is used for problems with many 
criteria. The description of the next stage directly depends on the specifics of the combinatorial 
optimization problem. In this case, it is quite productive to use methods based on the properties 
of an approximate graph, in particular, the horizontal method. So, when using the method of 
successive concessions and the horizontal method, we will get a new approach that describes the 
main properties of combinatorial configurations and features of multi-criteria optimization. We 
will describe it using the following steps. 

1. Let's enter the input parameters: elements of the generating set А , optimality criteria 

( ) minіf x → , mі J , 

linear constraints ( )і ig x b , kі J . 

2. For each constraint, we will construct a structural directed graph and obtain sets  

,i kD i J . 

3. Let's find combinations of sets of partial permutations according to the formula

!

( )!

k n
n

n k

Pn
A

n k P −

= =
−

. As a result of calculations, we will get a graph containing 
k

nA   vertices. 

4. Let's calculate the coefficient  , which is determined by the formula:  



1 1 2 2( ... ) ,n k ig a g a g a b = + + + −  

where ng – coefficient of the set of partial permutations; ka – coefficient of the limiting function; 

ib  – border to limit ka . 

It should be noted that limiting functions are usually used in extreme problems, which serve 
as additional parameters for sampling admissible values [2]. In such cases, it is advisable to 
introduce indicators that are designed to select only those subgraphs that can contain a potential 
answer. The effectiveness of the described approach lies in the method of permutations, which 
significantly reduces the calculation time. It makes it possible to discard subgraphs that do not 
satisfy the conditions of the algorithm. Thanks to this concept, calculations are performed only 
on subgraphs for which the conditions are fulfilled: 

,xA b  0.xA b−   

Thus, the algorithm for solving extreme problems on combinatorial configurations of partial 
permutations is reduced to gradually deepening the graph and dividing it into subgraphs. At the 
same time, thanks to the introduction of additional parameters, those subgraphs that do not 
satisfy the restriction conditions are discarded. It is expedient and relevant to continue the 
research of combinatorial problems on multiple partial permutations in order to implement 
algorithms that will ensure maximum performance of calculations by introducing additional 
parameters. 

6. Conclusions 

The article presents a multi-criteria decision discrete model for selecting software components 
in component-based development and proposes an approach for solving such a problem. 

The solution to the problem lies in the preliminary study of the extremal properties of 
combinatorial configurations and their graphs, which are the area of search for solutions with 
further application in the combined method. 
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