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Abstract 
This report documents the construction and output of extreme gradient boosted algorithms that 

were trained using the phonemes that make up American English words to identify how 

different sounds express emotion and sentiment. The data comprised of two corpora that consist 

of words that have been assigned scores according to how they reflect certain emotions and 

sentiments. The models are trained only on the phonemes that make up each word. This is a 

unique approach to automatic emotion recognition and sentiment analysis which typically does 

not consider individual phonemes. In addition to the boosted algorithms, linear regression is 

used to examine the relationships between word length, and emotions and sentiments. 
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1. Introduction 
 

The principle of the arbitrariness of the sign [1] is a foundational concept in linguistics. It posits that 

there is no inherent or logical connection between the sound of a word and its meaning. In other words, 

linguistic signs are considered to be arbitrary, with their meanings assigned by convention rather than 

by any intrinsic relationship between sound and sense. In recent years, there has been a growing interest 

in exploring sound symbolism, challenging the notion of the arbitrariness of the sign (e.g., [2], [3], [4], 

[5]). These studies have revealed that concepts such as size and shape exhibit stochastic relationships 

with sounds. Furthermore, many of these relationships are found to be consistent across different 

languages. For instance, the mil/mal effect, which observes that vowels like /i/ and /a/ are more 

frequently used in the names of small and large referents respectively, and the kiki/bouba effect, which 

notes that spiky shapes are often associated with sounds resembling kiki, while rounded shapes are often 

associated with sounds resembling bouba, have been found to hold true in numerous languages around 

the world (e.g., [2], [4]). Emotional sound symbolism refers to the phenomenon where the sounds of 

words are associated with, and convey, specific emotional or affective qualities. In this linguistic 

concept, certain phonemes or combinations of sounds are thought to evoke or symbolize particular 

emotional states or feelings. In a cross-linguistic study of five languages [6], researchers observed a 

pattern whereby phonemes at the beginnings of words predict emotional valence most strongly and that 

phonemes associated with negative valence were uttered more quickly, drawing parallels between 

emotional sound symbolism and alarm calls in the animal kingdom. Important to the present study, they 
observed that in English, phonemes like /ʌ/, /d/, /ɪ/, and /oʊ/ were associated with negative valence 

while phonemes like /tʃ/, /ɛ/, and /p/ were associated with positive valence. 

Automatic emotion recognition and sentiment analysis is a subfield of natural language processing 

which endeavors to construct algorithms that understand human emotion and sentiment in language. 

Sound symbolism has been largely overlooked in automatic emotion recognition and sentiment analysis 

although there are a few studies that explore sound symbolism through the lens of machine learning. 

For example, Winter and Perlman [7] constructed random forest algorithms to show a systematic size- 

sound relationship in English size adjectives. As with the present study, the data was engineered in a 
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manner so that each sample returned a count of the number of times each phoneme occurs in each word. 

The outcome of this is a dataset comprised of mostly null values. Following on this method researchers 

constructed algorithms to classify Pokémon names according to their evolution level using sound 

symbolism [8]. They showed that the random forest algorithms were able to classify novel Pokémon 

names more accurately than Japanese university students assigned to an identical task. An issue of 

overfitting due to the high number of null values in the dataset was uncovered and resolved using cross- 

validation. In the present study, word length is found to be a significant predictor of several emotions 

and sentiments and this effect is taken into consideration in the design and analysis of the algorithms. 

Potentially related, Li et al. [9] examined the relationship between utterance length and word error rates 

in automatic speech recognition and speech emotion recognition. They found that shorter utterances 

tended to have higher word error rates likely due to a lack of contextual information. 

The present report outlines the construction and output of algorithms designed to combine sound 

symbolism with automatic emotion recognition and sentiment analysis. Two corpora, with a combined 

total of almost 20,000 words, are used to train 19 algorithms that are each designed to classify samples 

according to specific emotions and sentiments. All algorithms return significant accuracy estimates. 

 

2. Method 
 

All data, files, codes, and links to a YouTube series documenting this project can be found in the 

following online repository: https://osf.io/brus3/?view_only=63412. 

The present study uses two separate corpora to train machine learning algorithms. The first is the 

Glasgow Norms [10], a list of 5,500 words that have been assigned Likert scores for 9 sentiments. A 

full list of the sentiments in the Glasgow Norms is provided in Table 1. The second corpus is the NRC 

Word-Emotion Association Lexicon [11], a list of 14,000 words that have been assigned a binary score 

as to whether each word is associated with 10 emotions and sentiments. A full list of the emotions and 

sentiments in the NRC Lexicon can be found in Table 2. Words from both corpora were cross referenced 

with the Carnegie Mellon University Pronouncing Dictionary (CMU [12]) to obtain American English 

phonemes for each word. Words that did not find a match in the CMU were manually checked. Instances 

of mismatched spelling were corrected. All other unmatched samples were discarded. 

All analyses were conducted in the R environment [13]. Word length was calculated by summing 

the number of phonemes in each word. No additional considerations were made for diphthongs or long 

vowels which were counted as single phonemes. The relationships between word length, and emotions 

and sentiments were analyzed using a series of regression equations, dependent variables being the 

average Likert scores in the Glasgow Norms and the binary classification in the NRC Lexicon; 

independent variables being word length. The XGBoost algorithms were constructed using the 

XGBoost [14] and caret [15] packages. K-fold cross-validation (K = 28) was used to avoid the 

overfitting issue reported in [8]. The data was split into 8 subsets (A-H) and recombined using a Latin 

square resulting in 28 subsets with a 3:1 training to testing split. For example, the first iteration of each 

model is trained using subsets A through F and tested on subsets G and H. The following results report 

on the aggregate of each series of 28 iterations. Combined significance was calculated using Stouffer's 

[16] and Fisher’s [17] methods; however only Fisher’s method is reported as it returned more 
conservative significance estimates. The algorithms for both corpora were designed to classify samples 

so the Likert scale values in the Glasgow Norms were assigned to binary categories using a median 

split. The XGBoost algorithm was found to be susceptible to distribution skew, so categories were 

balanced by randomly removing samples from the majority category. This had little effect on the 

Glasgow Norms dataset due to the median split but removed around 80% of samples in the NRC dataset 

because only around 10% of samples in that dataset have a value of 1 in the binary dependent variable. 

To increase variability, balancing was conducted after cross-validation sub-setting. To limit the 

influence of word length in the XGBoost models, phoneme counts were divided by word length so that 

features were a percentage how much a phoneme makes up each word. This resulted in a convergence 

issue during tuning, so α was manually adjusted and the same learning rate was applied to all models 
(α = 0.1). All other hyperparameters were automatically tuned by inputting diverse hyperparameter 

settings into a tuning grid. 

https://osf.io/brus3/?view_only=63412


3. Results 
3.1. Linear Regression and Word Length 

 
A series of linear regression models were calculated to test the relationship between word length, and 

the emotions and sentiments in the Glasgow Norms (Likert score) and the NRC Lexicon (binary). Table 

1 reports on the findings of the analyses conducted on the Glasgow Norms. Increased Age of 

Acquisition, Arousal, Size, and Valence had a significant positive correlation with word length while 

Concreteness, Familiarity, and Imaginability had a negative one. All significant relationships observed 

in the analyses conducted on the NRC Lexicon (Table 2) showed a positive correlation. These include 

Anger, Sadness, and Trust emotions while the Negative and Positive sentiments were also significant. 

 
Table 1 
Word Length and the Glasgow Norms. 

Sentiment F-statistic p-value R2 

Age of Acquisition 986.4 < 0.001 0.152 

Arousal 152.7 < 0.001 0.027 

Concreteness 321.5 < 0.001 0.055 

Dominance 0.273 0.601 0 

Familiarity 63.72 < 0.001 0.011 

Gender 0.617 0.432 0 

Imaginability 333.4 < 0.001 0.057 

Size 578.3 < 0.001 0.095 

Valence 5.928 0.015 0.001 

 
Table 2 
Word Length and the NRC Lexicon 

Variable Measure t-value p-value 

Anger Emotion 2.099 0.036 

Anticipation Emotion 1.835 0.067 

Disgust Emotion -0.241 0.809 

Fear Emotion 0.252 0.801 

Joy Emotion -0.02 0.984 

Negative Sentiment 3.571 < 0.001 

Positive Sentiment 7.572 < 0.001 

Sadness Emotion 2.467 0.014 

Surprise Emotion 0.125 0.901 

Trust Emotion 4.965 < 0.001 

 

 

3.2. XGBoost Accuracy 
 

All models constructed and tested using the Glasgow Norms achieved an accuracy greater than chance 

and a Fisher’s combined p-value < 0.001. Table 3 reports on the aggregated accuracy and standard 

deviation of these models. A similar result was found in the NRC models except in the case of the 

Surprise algorithm (p = 0.022 using Fisher’s method and p = 0.021 using Stouffer’s method). The NRC 

models are presented in Table 4. The Glasgow Norms models did report a greater accuracy than the 

NRC models; however, it is important to note that these were constructed and tested on larger datasets 

due to the balancing outlined in 2. The accuracy was, on average, higher and variability was lower in 

the models constructed using the Glasgow Norms models compared to the NRC models. 



Table 3 
Glasgow Norms model accuracy (ACC) and standard deviation (STD) and Fisher’s combined p values 
(p). 

Sentiment ACC STD p 

Age of Acquisition 63% 1% < 0.001 

Arousal 58% 1% < 0.001 

Concreteness 61% 1% < 0.001 

Dominance 53% 1% < 0.001 

Familiarity 56% 1% < 0.001 

Gender 58% 1% < 0.001 

Imaginability 62% 1% < 0.001 

Size 58% 1% < 0.001 

Valence 56% 1% < 0.001 

 
Table 4 
NRC model accuracy (ACC) and standard deviation (STD) and Fisher’s combined p values (p). 

Variable ACC STD p 

Anger 54% 2% < 0.001 

Anticipation 53% 2% < 0.001 

Disgust 55% 2% < 0.001 

Fear 54% 2% < 0.001 

Joy 53% 3% < 0.001 

Negative 54% 1% < 0.001 

Positive 54% 2% < 0.001 

Sadness 54% 2% < 0.001 

Surprise 51% 3% 0.022 

Trust 52% 2% < 0.001 

 

3.3. XGBoost Feature Importance 
 

Tables 5 and 6 report the 15 most important features for the Glasgow Norms and NRC models 

respectively. Certain features are consistently important across models despite measuring different 

emotions. Features with high feature importance across models include voiceless plosives (/t/ and /k/), 

the alveolar nasal (/n/), approximant consonants (/ɹ/ and /l/), the alveolar fricative (/s/), and the open- 

mid back vowel (/ʌ/) which appears particularly important, but it should be noted that this is also the 

most common phoneme in American English according to the CMU. 

 

Table 5 
The most important phonemes (IPA) and their feature importance (IMP) in the Glasgow Norms 
models. 

Age of 

Acquisition 
Arousal Concreteness Dominance Familiarity Gender Imaginability Size Valence 

IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP 

ʌ 100 l 93 ɪ 98 ɹ 91 n 90 k 93 ʌ 96 ʌ 97 ɹ 99 

t 60 ʌ 89 ʌ 89 s 89 l 89 l 87 ɪ 91 t 85 n 84 

s 51 t 88 l 71 l 89 t 85 t 87 l 85 ɹ 72 l 83 
ɪ 42 k 88 p 70 t 81 ʌ 81 ɹ 86 k 77 k 72 k 80 

l 41 ɹ 84 t 69 k 76 ɹ 79 ɪ 75 p 72 s 67 t 75 

ɹ 40 d 79 k 63 ʌ 73 k 79 s 70 t 72 l 61 d 72 

k 37 ɪ 77 ɹ 63 d 69 s 77 n 69 ɛ 69 p 61 s 71 

p 36 s 75 ɛ 62 n 65 p 71 d 67 ɹ 69 d 51 ʌ 71 

n 31 p 72 n 52 p 61 d 68 p 63 s 64 m 50 ɪ 56 

d 28 n 72 i 51 m 61 ɪ 58 ʌ 60 n 57 n 48 m 54 

ɛ 27 m 57 s 50 i 55 m 50 ɛ 58 ɝ 54 ɪ 42 p 53 

m 27 b 52 b 46 ɝ 54 ɝ 49 i 55 d 54 ɝ 40 ɝ 50 

ɝ 26 ɛ 50 d 45 ɪ 54 f 49 f 50 i 49 i 37 aɪ 48 

i 23 ɝ 50 ɝ 45 b 51 i 45 b 50 b 46 b 32 i 48 
b 22 æ 47 eɪ 40 æ 50 b 44 eɪ 47 f 43 ɛ 32 æ 47 



Table 6 
The most important phonemes (IPA) and their feature importance (IMP) in the NRC models. 

 

Anger Anticipation Disgust Fear Joy Negative Positive Sadness Surprise Trust 

IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP IPA IMP 

s 85 ʌ 89 ʌ 95 ʌ 93 ʌ 91 ʌ 96 ʌ 99 ʌ 88 ʌ 89 ʌ 92 

t 85 t 87 s 84 n 86 n 81 n 85 n 77 l 88 t 87 n 84 

ʌ 84 n 82 ɪ 80 t 84 t 79 ɹ 82 t 75 ɪ 86 s 78 t 81 

n 78 ɹ 75 n 79 l 75 s 76 d 81 ɪ 71 s 85 n 75 k 79 

l 76 ɪ 72 l 76 ɹ 74 l 72 s 80 s 70 t 81 ɹ 71 ɹ 77 

ɪ 75 s 71 t 75 s 68 ɪ 72 ɪ 79 ɹ 65 ɹ 76 ɪ 67 l 74 

d 74 l 68 d 69 k 65 ɹ 67 t 76 l 62 n 76 l 66 ɪ 74 

ɹ 74 k 62 ɹ 69 ɪ 64 k 62 l 75 k 60 d 75 k 61 s 68 

k 61 i 56 i 61 d 64 d 55 k 59 d 54 k 61 i 51 ɝ 56 

ɝ 54 p 54 k 60 m 51 p 50 p 54 i 49 i 56 d 50 ɛ 56 

æ 50 d 52 m 54 ɝ 50 ɛ 48 i 53 m 48 p 53 p 47 d 55 

p 46 m 48 ɝ 50 p 50 i 48 m 50 ɝ 48 m 52 ɝ 45 i 53 

i 46 ɝ 45 p 48 ɛ 49 m 47 b 49 ɛ 46 ɛ 46 ɛ 44 p 49 

m 46 ɛ 44 æ 48 i 46 ɝ 45 ɝ 48 p 46 ɝ 46 æ 43 æ 46 

b 41 ɔ 42 ɛ 40 b 46 f 44 æ 46 æ 40 æ 44 m 41 m 45 

 

 

4. Discussion 

All models achieved accuracy significantly greater than chance (p < 0.001 in all cases but one). 

Although further investigation is recommended, the results suggest that it is unlikely that sound 

symbolism in American English expresses fine-grained emotions and sentiments because the feature 

importance scores suggest many models are using the same features to make decisions. Rather, it seems 

that sound symbolism communicates emotional and sentimental weight. Consider that the Valence 

model in the Glasgow Norms—where high valence is positive and low valence is negative—and the 

Positive and Negative models in the NRC Lexicon all showed a positive correlation with word length. 

Positivity and negativity are sound symbolically expressed through longer words, although this is 

slightly stronger for positive sentiments as shown by the NRC lexicon models and the significant, but 

relatively weak, positive correlation in the Valence regression model. 

Those sounds that have high feature importance scores across models include voiceless plosives (/t/ 

and /k/), the alveolar nasal (/n/), approximant consonants (/ɹ/ and /l/), the alveolar fricative (/s/) and the 

open-mid back vowel (/ʌ/). Most of the consistently important consonants are produced at the alveolar 

ridge. /ʌ/ appears to be an especially important feature across models. This observation falls in line with 

[6] who showed that /ʌ/ was associated with negative valence; however, few other patterns can be drawn 

between the that study and the present report. The high importance of /ʌ/ might also be due to a 

combination of its high occurrence frequency, being the most common phoneme in the CMU, and the 

distribution of null values in independent variables (NRC = 85%; Glasgow Norms = 88%). XGBoost 

algorithms are constructed using decision trees which base their decisions upon the outcomes of nodes. 

At each node a certain number of features are tested. /ʌ/ is the most commonly occurring phoneme in 

English and it will often be tested against low frequency features with null values. This issue was 

somewhat mitigated by dividing phoneme counts against word length, but it doesn’t solve the problem 

entirely. Take for example Age of Acquisition Likert scores which were shown to have the strongest 

association with increased word length across all models, this is an unsurprising finding. However, Age 

of Acquisition XGBoost model feature importance scores revealed that /ʌ/ was the most important 

feature in that model, to a much greater degree than other models. This suggests that word length is still 

contributing to the models despite attempts to mitigate its influence through model tuning and data 

engineering. Word length could be included in the XGBoost models; however, given that length has a 

greater range than phoneme counts and no null values, this would likely mask weaker features [8]. 

That said, all models reported significant accuracy. Given that most automatic emotion recognition 

and sentiment analysis systems rely heavily on lexical and syntactic features, this study underscores the 

potential of phonemic information as an additional valuable resource for improving the accuracy of 

such systems, especially when dealing with emotional and sentimental aspects of language. While the 

current study provides valuable insights into the role of sound symbolism in sentiment analysis, future 

research could delve further into the interplay between phonemic features and linguistic and contextual 

factors to enhance the robustness and generalizability of sentiment analysis models across different 

languages and domains. 
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