
230

Technologies for Detecting Malicious Requests in Computer
Networks Based on the DNS Protocol

Olga Leshchenko, Oleksandr Trush, Mariya Trush, Andrii Horachuk and

Oleksandr Makhovych

Taras Shevchenko National University of Kyiv, Volodymyrs’ka str. 60, Kyiv, 01033, Ukraine

Abstract
The work provides basic information about technologies and methods of detecting malicious

requests in computer networks based on the DNS protocol. Different types of network attacks

on the DNS protocol were analyzed, and the main methods of detecting malicious requests in

a computer network were investigated, and tools for detecting malicious requests were

considered. Technology has been deployed to detect malicious requests and conduct research

on computer networks.

The purpose of this publication is to research the technologies for detecting malicious requests

in computer networks and to deploy malicious request detection systems based on them, which

will help to find malicious requests more effectively.

The practical significance of the obtained results lies in the implemented technologies for

detecting malicious requests

Keywords 1
Information security, IDS, cyber security, detection of malicious requests, elastic, computer

networks, DNS protocol, network attacks.

1. Introduction

Analyzing the data presented in the company's annual report DNS Filter during 2021 and 2022, DNS

plays a role in approximately 80% of attacks. With DNS-based cyberattack protection, organizations can

immediately block up to 33% of DNS-based threats and increase the visibility of additional threats by
47%, protecting against zero-day attacks as well as other known threats [1]. Countering these attacks

requires the use of modern cyber security techniques to protect systems, networks and applications from

persistent cyber threats. Therefore, to detect malicious network attacks, you need to use tools that analyze
DNS queries and block access to malicious, suspicious or other selective domain types. Which can

potentially be harmful. DNS is one of the foundations of the Internet, a highly complex and decentralized

system that converts human-readable domain names (such as havrs.com) into numeric IP addresses.

DNS has a hierarchical tree structure called the DNS namespace. Each dot in the domain name
indicates a division between levels in the tree structure. The top layer of the DNS tree structure

represents the root level, which begins with a dot. Below the root level are top-level domains (TLDs),

which correspond to child root domains such as .com, .org, .edu.ua and others. Further, a TLD also has
child domains that link to second level domains or authoritative domain name servers [2]. Finally, the

fully qualified domain name (FQDN) places hostnames or subdomains in the DNS hierarchy. For

example, the search process for the next domain name dn.dut.edu.ua always starts with a dot, which is
the root server in the DNS tree structure. The root server then forwards the request to the appropriate

TLD, which in this case is .edu.ua. An intrusion detection system (IDS) is a system that automates the

intrusion detection process. IDS tries to detect incidents in the system before certain policies are

violated. There are many causes of system incidents, such as malware infection, an attacker gaining
access to the system or probing the system for vulnerabilities, or abuse of the system by authorized users

resulting in a security policy violation. The purpose of IDS is to alert system administrators to such

Information Technology and Implementation (IT&I-2023), November 20-21, 2023, Kyiv, Ukraine

EMAIL: olga.leshchenko@knu.ua (O. Leshchenko); oleksandr.trush@knu.ua (O.Trush); mariy-trush@ukr.net (M. Trush);

a.gorachuk@gmail.com (A. Horachuk); oleksandr.makhovych@knu.ua (O. Makhovych)

ORCID: 0000-0002-3997-2785 (O. Leshchenko); 0000-0002-4188-2850 (O.Trush); 0000-0002-1673-3351 (M.Trush);

 0009-0000-6067-9025 (A. Horachuk); 0000-0002-4684-9881 (O. Makhovych)

©️ 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mariy-trush@ukr.net

231

incidents at their earliest stage, before they cause any damage, and to support system administrators in
their response to malicious incidents. While many incidents are malicious, others are not, for example,

a user may enter an address by mistake, leading to an attempt to gain access to a critical system to which

the individual is not authorized. Therefore, an IDS must be able to classify potentially malicious
incidents with sufficient accuracy, that is, with a low rate of false negatives and false positives.

2. Types of network attacks on the DNS protocol

DNS Spoofing/Cache Poisoning: a type of attack in which fake DNS data is injected into the cache

of a DNS resolver, causing the resolver to return an incorrect IP address for a domain [10]. Instead of
going to the correct website, traffic can be redirected to a malicious resource or anywhere else the

attacker wants, very often users are redirected to a copy of a known organization's site that is used for

malicious purposes, such as spreading malware or collecting sensitive information to log into personal
accounts and impersonate another person.

DNS tunneling: this type of attack uses other protocols to tunnel through DNS queries and responses.

Attackers can use SSH, TCP, or HTTP to inject malware or stolen information into DNS queries that

most firewalls can't always detect [4,5].
Attackers use the DNS resolver to route requests to the attacker's C2 server, where the tunneling

program is installed. Once a connection is established between the victim and the attacker via the DNS

resolver, the tunnel can be used to exfiltrate data or perform other malicious purposes.
NXDOMAIN attack: is a type of DNS flood attack where an attacker sends a large number of queries

to a DNS server requesting records for domain names that do not exist in an attempt to cause a denial of

service for legitimate traffic [6]. This can be achieved with sophisticated attack tools that can
automatically generate unique subdomains for each request. NXDOMAIN attacks can also target a

recursive resolver to flood the resolver's cache with unwanted requests.

Phantom domain attack. It has similar results to the NXDOMAIN attack on the DNS resolver. The

attacker sets up a bunch of "phantom" domain servers that either respond very slowly to requests or
don't respond at all [10]. The resolver then receives a flood of requests to these domains, causing it to

wait for responses, resulting in slow performance and denial of service.

Random subdomain attack: in this case, the attacker sends DNS queries for multiple random,
nonexistent subdomains of the same legitimate site. The goal is to create a denial of service for the

authoritative name server of the domain, making it impossible to find the website from the name server.

As a side effect, authoritative domain name server the attacker could also suffer because their recursive

resolver cache would be loaded with bad requests.
Domain blocking attack: attackers orchestrate this form of attack by setting up special domains and

resolvers to establish TCP connections to other legitimate resolvers. When target resolvers send

requests, these domains send back slow streams of random packets, tying up resolver resources.
Attack on DNS amplification and DoS, DDoS: a DNS amplification attack is a type of DDoS attack

in which attackers use publicly available open DNS servers to flood a target with DNS response traffic.

An attacker sends a DNS lookup request to an open DNS server with the source address spoofed as the
target address. When a DNS server sends a response to a DNS record, it is sent to the target group

instead.

DNS hijacking. There are three types of DNS hijacking:

• Attackers can hack a domain registrar account and change your DNS nameserver to one they

control.

• Bad subjects can change the A record for your domain's IP address to point to their address

instead.

• Attackers can compromise an organization's router and change the DNS server that is

automatically forwarded to each device when users log on to your network.

Over the years, attackers have successfully deployed various DNS-based attacks against company

networks and their users. Attackers often use DNS to establish command and control (C2) of a botnet
network. Doing so may result in unauthorized network access, lateral movement, or data exfiltration.

3. Deployment of malicious request detection technologies

To detect malicious traffic in computer networks, most specialists use tools to automate the

232

collection and subsequent analysis of traffic. There are two methods of collecting DNS data for analysis.
The discovery system transmits DNS data modules either by passively captured DNS traffic of the

network interface, or by reading existing PCAP files through a parser.

Using the Zeek network monitoring tool to collect information about packets from network
interfaces in a log file format, and specifying configuration parameters to process packet data, all data

will be stored in JSON format. This will make it possible to transfer the data received from network

interfaces in a convenient form, reduce the time for their processing and convenient search for the
necessary information. Processing a large amount of data in JSON format allows a software component

called logstash, which has the ability to collect, process and send processed information to agents for

synchronization with the Logz.io platform using Filebeat (Beats).

The Logz.io platform is used to manage logs, monitor infrastructure and interact with Cloud SIEM
to unify monitoring, troubleshooting and security tasks. The next stage in the deployment of

technologies for detecting malicious requests in information systems is the Elastic platform, which

receives filtered data from Logz.io that is used for further analysis. As shown in (Fig. 1), the considered
technologies form a complex of technical means for collecting, analyzing and detecting malicious

requests in computer networks.

For researching the received data, Elastic offers machine learning capabilities that allow you to

create patterns that will help choose the best classifier for quickly detecting anomalies and malicious
attacks.

Figure 1. Network data analysis process

The task of machine learning is to detect a rare and unusual DNS query that indicates network activity
with unusual DNS domains. This may be related to initial access, retention, command-and-control

activity, or exfiltration (Figure 2). For example, when a user clicks on a link in a phishing email or opens

a malicious document, a request may be sent to download and run a payload from an unusual domain.

Once the malware is running, it can query the malicious DNS domain that the malware uses to
communicate with the command and control server.

The task of machine learning is to detect an unusually high number of DNS queries when using DNS

tunneling, this can be used for command and control activities, saving or extracting data. For example,
dnscat2 tends to generate a lot of DNS queries for the top-level domain because it uses the DNS protocol

to tunnel data. It should be noted that often when DGA malware is actively trying to contact a C&C

server, it tends to generate a flurry of DNS requests at the same time (Figure 3).

Time series analysis of putative malicious domains shows activity peaks over time and little noise
between the peaks. The peaks indicate that the model classified many domains as harmful in a short

period of time, and thus obtained data of true DGA activity, which is demonstrated in (Fig. 4).

At this point, an analysis will be performed to see if Elasticsearch can detect DNS tunneling or not.
The applied method of traffic analysis. Each request in the DNS tunnel will create a new hostname, the

normal average number of unique hostname is below 250, so a more unique hostname indicates DNS

tunneling. All logs are recorded and will be processed by Watcher using a custom script. The Watcher

233

then counts the number of unique names based on the strength of the domain. The number of unique
host names in the domain is visualized in Kibana in the form of a graphic panel. If the number of unique

hostnames is more than 250 and the domain does not exist in the list of trusted domains, an email will

be sent with information about the detected anomalies.

Figure 2. Creating an ML problem

Figure 3. Report of anomalies when working with dnscat2

Figure 4. Activity graph of malicious domains

234

3.1. Analysis of malicious requests in computer networks

By simulating the scenario and the main target of the attack that was directed against the malicious

query detection system during the testing and evaluation phase. It should be remembered that in the
TCP scenario, a significant number of DNS queries are sent through DNS, which makes it visible to

vulnerability detection systems. In custom DNS exfiltration scenarios and command and control

scenarios, the attacker sends a limited number of DNS queries, making it less visible and difficult for

the system to detect suspicious activities that occur on the computer network.
Using the dnscat2 tool, which is shown in (Fig. 5.), and is chosen as a modern service for creating

an attack based on DNS. To generate artificial data to investigate the attacks, a virtual server running

Ubuntu was created and the dnscat2 software was installed to interact with the host machine running
on Arch Linux along with Wireshark.

Figure 5. Generating dnscat2 queries

To evaluate the effectiveness of methods for detecting vulnerable queries, let's create a regular DNS

data set. The network environment for the deployment of malicious request detection technologies has

been established. Having collected DNS traffic for one week, it was prepared for analysis (Fig. 6). There

are two important reasons for capturing plain DNS traffic in the experiment. The first reason is to
compare and study the normal behavior of DNS traffic with DNS traffic that has a DNS tunneling

attack, while the second reason is to identify and set a threshold value based on the normal level of DNS

traffic. Due to the importance of the DNS protocol, DNS tunneling tools have been used to simulate

tunneling attacks using various methods.

For example, the DNS tunneling tool (dns2tcp) uses TXT record types to perform tunneling, while
the Iodine DNS tunneling tool uses NULL records. By collecting its own dataset, it started

implementing DNS datasets that contain malicious DNS traffic. The DNS tunneling dataset includes a

variety of DNS traffic generated by DNS tunneling tools, including Iodine, DNScat2, dns2tcp, and
fraud-bridge, which are described in Table 1. Finally, the normal and malicious DNS datasets are

combined and then imported into a detection system and are evaluated.

The detection system consists of two detection modules: payload and traffic analysis modules. Each

module uses a base value to detect abnormal activity. For example, the payload analysis module sets the

base value of the fully qualified domain name to 30 characters. This value was chosen based on
recommendations from cyber security experts at DG Security. However, it is now necessary to choose

which threshold value of the number of DNS requests to use during a certain period of time to identify

malicious domain names for the traffic analysis module.

235

The threshold value is used in the traffic analysis module for machine learning training purposes.
After capturing the DNS data, we generate text representation signatures from the rendering. If it's a

malicious signature for a domain, we compare the number of DNS requests for the domain name to the

baseline value and then label the training dataset as malicious or benign. Thus, there is a need to conduct
practical experiments to select the most beneficial values for the number of DNS requests during a set

period. The traffic analysis module is specifically aimed at detecting high-throughput DNS tunneling

attacks using imaging signatures and a machine learning classifier.

Figure 6. Results of tunneling data collection

Table 1
Attack simulation tools

Tools Scenario simulation Aim

iodine TCP over DNS Establishing a secure VPN connection

dns2tcp TCP over DNS Establishing a secure VPN connection

DNSExfiltrator DNS exfiltration technique Withdrawal of confidential data

Cobalt Strike Command and control Execute commands and download files

dnscat2 Command and control Execute commands and download files

PacketWhisper Command and control Withdrawal of confidential data

A DNS tunneling attack, such as TCP over DNS, typically sends a large number of DNS queries to
establish communication links. Therefore, for these types of attacks, a threshold can be set where the

volume of DNS traffic is one or two standard deviations above the average daily traffic. Instead, we

focused on the more difficult problem of determining a threshold value for DNS exfiltration techniques

scenarios. The main reason for this type is to send a certain number of requests depending on the file
size. The DNSExfiltrator tool is used to simulate an exfiltration attack that transfers files outside of a

compromised network to empirically determine the threshold. Several files between 1 KB and 1 MB

were transferred over the network using the DNSExfiltrator tool and the number of fragments
representing DNS queries was measured. This experiment used a maximum full domain of 255 bytes

and a maximum label length of 63 bytes. Reducing the query sizes and DNS labels to lower values will

result in even more DNS queries being sent for a given file size. Threshold value is set based on file

size and number of DNS blocks. We will consider time and size as important factors in this evaluation,
since the training phase of the traffic analysis module relies on capturing DNS data every n minutes,

where the settings are based on daily network traffic.

For example, suppose an attacker wants to export a 100 KB text file containing information about a
stolen credit card outside of an organization's network using a DNS exfiltration technique. A 100 KB

file requires 600 DNS queries within 25 seconds to successfully remove it from the organization's

network. In addition, the detection system needs to capture DNS data every minute, and to detect an
attack, the threshold value must be less than 600. In the experiment with the detection system, the traffic

analysis system was chosen to capture DNS packets every 30 seconds and 100 was set as the threshold

value, assuming that the attacker needs to extract a file of at least 50 KB, which would result in about

300 DNS queries in 20 seconds. It should be noted that sometimes an attacker can use a delay technique
between each DNS request to reduce traffic noise, but the payload analysis module in this work is

configured to track these situations (Figure 7.).

So, after conducting an analysis of malicious DNS traffic requests, we received a graph of detected

236

anomalies, among which we chose domain names with the highest index, which we will add to the
blacklist. And also configured the automatic ability to read DNS traffic from existing PCAP files to

identify and detect the attack offline from previously captured network traffic.

Figure 7. Report on received anomalies

4. The results of the implementation of malicious request detection
technologies

After investigating the tunneling and exfiltration attacks, the resulting data was collected and sent
using Wireshark and Elastic, which were used to collect and detect abnormal traffic indicators. Using

Wireshark, data from the network interface was additionally obtained for more accurate use of them

during analysis (Fig. 8.).

Figure 8. DNS tunneling network traffic result

After analyzing the data from the received reports, domain addresses were added to the black list

and new search criteria for malicious domain names were formed. The result of the performed work

was the deployment of network traffic monitoring tools that were obtained using attack creation tools.
Having received data from network interfaces, which were later sent to Elastic for processing and

visualization, the results of network activity during research (Fig. 9.). The study was conducted in several

stages to reject data that did not carry research value. Implementing DNS traffic monitoring technologies

can generate many anomaly reports for the Security Center (SOC) team as they monitor and analyze
the state of security within companies. In addition to monitoring firewalls and IPS systems to detect

indicators of DNS compromise, infected hosts, or DNS tunneling attempts, SOC teams can develop

237

scripts to counter and detect such domains by using DNS filtering systems to create blacklists. That will
help protect against attacks in the future. (Fig. 10).

Figure 9. Graph of network traffic during testing

Figure 10. Graph of traffic anomalies

5. Conclusions

Vulnerability detection technologies and the results of network traffic research were studied.

Implemented anomaly detection system aimed at analyzing DNS-based network attacks. Two detection

modes are analyzed, which target DNS tunneling attacks and DNS exfiltration.
The proposed detection system is implemented using Elastic visualization methods and machine

learning classifiers to distinguish DNS-based attacks. The development of a detection system using

visualization and machine learning is singled out. It is noted that there are several alternative solutions

for network traffic visualization of rare and unusual DNS queries that indicate network activity with
unusual domains.

 The results of the implementation of the system for detecting malicious requests of computer

networks have been obtained.
 The detection system has some limitations and shortcomings that need to be eliminated in future

works. DNS proxy vulnerabilities to various DNS protocols and server attacks, including DoS and

DDoS, server hijacking, DNS spoofing, and cache poisoning attacks. Addressing these issues is planned
to be part of future work to create a comprehensive malicious query detection system using proprietary

machine learning algorithms, such as source port and transaction randomization, to prevent DNS cache

poisoning attacks.

In addition, DNSSec, an additional layer of security to the existing DNS protocol, should be
considered and implemented in the future to validate the chain of trust using public key cryptography

238

for authentication and data integrity, and to improve the overall system level of malicious query
detection.

6. References

[1] Dudnik, Y. Kravchenko, O. Trush, O. Leshchenko, N. Dakhno and V. Rakytskyi, "Study of the

Features of Ensuring Quality Indicators in Multiservice Networks of the Wi-Fi Standard," 2021
IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), 2021, pp.

93-98, doi: 10.1109/ATIT54053.2021.9678691.

[2] Trush, O., Dudnik, A., Trush, M., Leshchenko, O., Shmat, K., & Mykolaichuk, R. (2022,
December). Mask Mode Monitoring Systems Using IT Technologies. In 2022 IEEE 4th

International Conference on Advanced Trends in Information Theory (ATIT) (pp. 219-224). IEEE.

DOI: 10.1109/ATIT58178.2022.10024216
[3] Butkiewicz, M., Madhyastha, H. V., & Sekar, V. (2013). Characterizing web page complexity and

its impact. IEEE/Acm Transactions On Networking, 22(3), 943-956.

[4] DAMBALLA. Botnet Communication Topologies. Understanding the intricacies of botnet

commandand-control. Retrieved from https://www.damballa.com/downloads/r_pubs/
WP_Botnet_Communications_Primer.pdf.

[5] The Federal Bureau of Investigation. Demarest, J. (2017). Statement Before the Senate Judiciary

Committee, Subcommittee on Crime and Terrorism, Washington, D.C. Retrieved from
http://www.fbi.gov/news/testimony/taking-down-botnets.

[6] Detecting DNS Tunneling. Farnham, G., Atlasis, A.: SANS Institute InfoSec Reading Room,

2013. pp. 1–32.
[7] A comparison of distance-based semi-supervised fuzzy c-means clustering algorithms. Lai,

D.T.C., Garibaldi, J.M.: Fuzzy Systems (FUZZ), In IEEE International Conference, 2015. Р. 1580–

1586.

[8] As the Net Churns: Fast-Flux Botnet Observations. Nazario, J., Holz, T.: In: Conference on
Malicious and Unwanted Software (Malware’08), 2008. Р. 24–31.Kaur, S., Kaur, K., & Kaur, P.

(2016). An empirical performance evaluation of universities website. International Journal of

Computer Applications, 146(15), 10-16.
[9] Matam, S., & Jain, J. (2017). Pro Apache JMeter: web application performance testing. Apress.

[10] Heričko, T., Šumak, B., & Brdnik, S. (2021, September). Towards Representative Web

Performance Measurements with Google Lighthouse. In Proceedings of the 2021 7th Student

Computer Science Research Conference (p. 39)
[11] James, I. (2019). Webwaves: Web page auditing using Lighthouse. Preview, 2019(203), 50-51.

[12] Patil, S. A. (2020). Comparative SEO Techniques Analysis on core WebPages and its

Effectiveness in Context of Google Search Engine, International Journal of Scientific
Development and Research, Vol 5, Is.3 (pp. 420-428)

[13] Rosenfeld, L. & Morville, P. & Arango, J. (2015). Information Architecture: For the Web and

Beyond, O'Reilly Media
[14] Z. Qian, H. Miao and H. Zeng, "A Practical Web Testing Model for Web Application Testing,"

2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based

System, Shanghai, China, 2007, pp. 434-441, doi: 10.1109/SITIS.2007.16.

http://www.fbi.gov/news/testimony/taking-down-botnets

	1. Introduction
	2. Types of network attacks on the DNS protocol
	3. Deployment of malicious request detection technologies
	3.1. Analysis of malicious requests in computer networks

	4. The results of the implementation of malicious request detection technologies
	5. Conclusions
	6. References

