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Abstract  
Considered models of mass service systems of self-similar traffic of telecommunication 

networks. The differences of the main ratios of mass service theory for self-similar traffic in 

comparison with random processes with a classical Poisson distribution, as well as with 

distributions with so-called "heavy tails": Pareto, Weibull, log-normal distribution, gamma 

distribution, beta distribution, are analyzed. Analytical expressions for evaluating the key 

parameters of mass service systems of self-similar traffic under conditions of stationarity and 

ergodicity of the request arrival process are presented. Considered models of a single-channel 

and multi-channel service system with shared and shared buffer memory for the incoming 

request queue. For self-similar traffic, the analytical dependence of the average queue length 

on the average network utilization rate is determined. The Hurst parameter was used to estimate 

the correlation function of self-similar processes. The necessity of managing the packet arrival 

period and other parameters of the self-similar incoming flow is shown, reducing the risk of 

overloading individual routes and autonomous network segments. Graphs are shown that 

illustrate the dependence of the required buffer memory on the utilization ratio, as well as the 

growth of the queue for deterministic and quasi-deterministic traffic.  

 

Keywords  1 
Telecommunication network, self-similar traffic, mass service theory, multi-channel system, 

Hurst parameter, network utilization factor 

1. Introduction 

The processes of the functioning of networks and communication systems can be represented as a 
set of mass service systems (MSS), for which the characteristics of QoS service quality [1] and other 

performance indicators are determined. The assessment of traffic service quality indicators requires 

taking into account many factors in order to build adequate, scientifically based methods of calculation. 
For components used to build telecommunication networks (computers, operating systems, network 

technologies, etc.), analytical models based on mass service theory (MST) provide an acceptable 

convergence of theory and practice. 

The accuracy of simulation results is in all cases limited by the accuracy of the input data. In addition, 
even in the presence of many assumptions introduced when using MST, the obtained results are close 

to those that would be obtained with more detailed simulation modelling [2-6]. In addition, analysis 

based on MST can be performed in a shorter time than simulation. 

2. Formulation of the research task 

In the mathematical models of MSS, the type of input flow, the scheme of the system and the 

discipline of service are taken into account 1, 2. 
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Requests arrive at MSS with some average intensity   (number of requests per second). At any given 

time, there will be a certain number of requests (zero or more) in the queue; denote the average number 

of requests in the queue by w , the average number of requests served – by ρ, and the average waiting 

time is 𝑇𝑤. This time is averaged over all requests received at the entrance. Average service time of one 

request 𝑇𝑠   ̶this is the time interval between sending the request to the server and leaving the serviced 

request from the server. Service intensity 𝜇 – this is the number of requests served per unit of time. The 

total average number of requests in the system is defined as 𝑟. Average time of finding a request in the 

system (waiting in the queue and service) – 𝑇𝑟 . If the capacity of the queue is infinite, then requests in 

the system are never lost; they are only delayed during waiting and service times. Under these 
circumstances, the average number of sent requests is equal to the average number of incoming requests 

per unit of time. When the intensity of the arrival of requests at the entrance of the system increases, the 

time of finding requests in the system also increases, which leads to traffic jams (overload). The queue 

is getting longer, the waiting time is increasing. When 𝜌 = 1 , i.e 𝜆 = 𝜇, the server is saturated, working 
100% of the time [1]. Therefore, the theoretical maximum intensity of the incoming flow is related to 

the average service time 𝑇𝑠 as 𝜆max = 1
𝑇𝑠

⁄ . 

In the first approximation, the length of the request stream is taken as an infinite stream. This means 

that the average frequency of applications does not change when they are lost. If the length of the stream 

is limited, then the amount of requests that can be expected at the system entrance is reduced by the 

number of requests currently in the system; this usually results in a proportional decrease in the average 

frequency of applications. 

If an infinite queue size is assumed, the waiting time can grow to infinity. Under the conditions of a 

limited queue, some applications in the system may be lost. In practice, of course, any queue is limited. 
In many cases, this does not lead to a significant difference in the analysis [1, 2]. 

3. Models of mass service systems 

The simplest and most frequently used in MSS are service disciplines FIFO (First came In – First 

came Out) and LIFO (Last In – First Out) 3, 6, 8]. In computer and telecommunication networks, other 

service disciplines can also be chosen [9], for example:  

̶  FIRO (First came In  ̶  in Random order came Out. Another name  ̶  SIRO (Service In Random 

Order); 

– SPT (Shortest requests are Processing First); 

– PRS (Priority Requests Service), service according to priority.  

In practice, the service discipline is chosen for reasons of acceptable service time. For example, in 

a node with packet switching, it is possible to provide for the sending of the shortest packets first or, 

conversely, the longest packets. This choice is determined by the nature of traffic and quality of service 
requirements. 

3.1. Single-channel MSS model 

This is the simplest model of SMO [10, 11] (Figure 1). The central element of the system is a server 

that serves the incoming flow of applications. These applications enter the service system. If the server 

is free, the request is served immediately. Otherwise, the application becomes a queue for service.  

 

Figure 1: Single-channel MSS model 
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When the server has finished servicing the current request, it is removed from the queue. If there are 

requests in the queue, one of them immediately enters the server according to the service discipline 

used. The server in this model can perform some auxiliary services in processing requests. Examples: 

a processor provides a service to processes; the data transmission line provides the service of 

transmission of packets or frames; an I/O device provides read or write requests. When the system is 

saturated, when 𝜌 → 1, the queue grows to infinity. In practice, in a single-channel system, the intensity 

of the input flow is limited to 70% to 90% relative to the theoretical maximum. 

3.2 A model of a multi-channel system with a common queue 

In figure 2 shows a model of a multi-channel service system with a shared buffer memory of the 

input queue of requests. A common queue with a given service discipline is used for all requests. 

If a request arrives at a time when at least one server is free, it is immediately sent to that server. 

All servers are assumed to be identical; therefore, if more than one server is available, it does not matter 

which server is selected for service. If all servers are busy, a queue begins to form. As soon as one 

server becomes free, the request is dequeued according to the current service discipline.  

 

Figure 2: Multi-channel service system with a common queue 

Except for service intensity 𝜌, all parameters used in the analysis of a single-channel system have 

the same meaning. If used 𝑁 identical servers, then the average intensity of maintenance of the system 

as a whole is equal to 𝑁𝜌. This term is often associated with traffic intensity 𝑢, which is numerically 

equal to the intensity of the incoming flow of requests  . The theoretical maximum of the relative 

service intensity is equal to 𝑁 × 100%, and the theoretical maximum intensity of the incoming flow is 

𝜆max = 𝑁
𝑇𝑠

⁄ . 

3.3 A model of a multichannel system with a split queue 

In figure 3 shows a multi-channel system with a separate buffer memory. Such a system can be 

interpreted as a parallel structure of single-channel service systems. Although the structural changes are 

not fundamental, the operating characteristics of the depicted system may differ from those previously 

discussed. The key characteristics of a queue with multiple serving devices are similar to those of a 

single-channel system. An infinite volume of buffer memory and an infinite size of the queue are 

assumed, with the distribution of the queue among all serving devices (servers). It is commonly believed 

that the discipline of service in the order of arrival (FIFO) is implemented. In the case of a multi-channel 

service system, if all servers are assumed to be identical, the choice of a specific server for the next 

request does not affect the service time. 

4. Determination of key parameters of self-similar traffic 

To estimate the average queue size r  under conditions of stationarity and ergodicity of the 
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application arrival process, Little's formula is used 1, 9, 11:  

- for a single-channel service system: 

𝑟 = 𝜆𝑇, 𝑟 = 𝑤 + 𝜌; (1) 
- for 𝑁 -channel service system: 

𝜌 =
𝜆𝑇𝑟

𝑁⁄ ,     𝑢 = 𝜆𝑇𝑠 = 𝜌𝑁,   𝑟 = 𝑤 + 𝑁𝜌,   де     𝑇𝑟 = 𝑇𝑤 + 𝑇𝑠 . (2) 

Accordingly, Little's formulas can be used to connect the number ρ with the intensity of incoming 

requests 𝜆 and the time the request was in the system 𝑇𝑠:  𝜌 = 𝜆𝑇𝑠.  

 
Figure 3: Multi-channel service system with split buffer queue 

Thus, the following a priori information is necessary for the analysis of MSS: the intensity of the 

incoming flow of requests, the average service time, and the number of service channels. Based on this 

information, you can get asymptotic estimates of the average number of requests in the queue, the 
average waiting time, and the total time the requests are in the system. 

It should be taken into account that request flows may not be distributed according to Poisson's law, 

but according to other probabilistic laws with so-called "heavy tails" [11]. These are the Pareto, Weibull, 
log-normal distribution, gamma distribution, beta distribution, and some other less popular ones. 

For example, for the Pareto distribution, the main relations have the following form: 

- probability density 

𝑓(𝑥) = 𝛼
𝑘⁄ (𝑘

𝑥⁄ )
𝛼+1

, (𝑘 і 𝛼 < 0)   ̶ distribution parameters; 
(3) 

- probability function: 

𝐹(𝑥) = 1 − 𝑘
𝑥⁄

𝛼
, (𝑥 > 𝑘, 𝛼 > 0); (4) 

- average value  

𝐸[𝑋] = 𝛼
𝛼 − 1⁄ 𝑘, (𝛼 > 1). (5) 

Real random processes, of course, preserve the property of self-similarity only up to a certain limit. 

This measure of the statistical stability of the process under multiple scaling is defined by the so-called 

Hurst parameter or related self-similarity parameter. A random process x(t) is statistically self-similar 

with the Hurst parameter H (0,5  H  1), if for any  a > 0 process   
𝑥(𝑎𝑡)

𝑎𝐻⁄  has the same statistical 

characteristics as the process 
 x t

 itself: 
- mathematical expectation 

𝑀[𝑥(𝑡)] =
𝑀[𝑥(𝑎𝑡)]

𝑎𝐻⁄  (6) 

- dispersion  

𝐷[𝑥(𝑡)] =
𝐷[𝑥(𝑎𝑡)]

𝑎2𝐻⁄  (7) 

- correlation function 

𝑅(𝑡, 𝑎) =
𝑅(𝑎𝑡, 𝑎𝜏)

𝑎2𝐻⁄  (8) 
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The more 𝐻, the longer the property of self-similarity is preserved under multiple scaling. At 𝐻 =
0,5 this property is practically absent. 

Correlation functions of self-similar processes with a large Hurst parameter decay more slowly than 

those of ordinary random processes, and the decay has, as a rule, an oscillatory character. It was 

established that the constant component of the correlation function decreases according to the law 

𝑐1𝑡−𝑐2𝑎, where 𝑐1, 𝑐2   ̶ constants, 𝑎   ̶ scale parameter. 

Accordingly, the spectral density of the process theoretically tends to infinity at a frequency 

approaching zero. Ratios (1-7) can be useful as asymptotic approximations of real processes. 
Such specific characteristics are inherent not only to data traffic (TCP, FTP protocols), but also to 

signal traffic (SS7 protocol), VBR-video, Ethernet/ISDN and some others. Physically, they are caused 

by a high degree of grouping of packets at client sites, in routers and switching nodes of information 

communication networks. Even if the source generates a regular stream of packets, the data is delivered 
to the consumer in bursts interspersed with idle intervals. The reasons for this are the limited speed of 

network devices, insufficient volume of buffers, etc. In addition, self-similar traffic has a special 

structure that is preserved during multiple scaling. In real processes, there is some outliers with a 
relatively small average traffic level. Due to such bursts of load, network characteristics also deteriorate: 

losses, delays, jitter of packets when passing through network nodes increase [12]. 

Methods for calculating the requirements for networks of new generations (channel bandwidth, 
buffer capacity, etc.) based on Markov models and Erlang or Little formulas, which were successfully 

used in the design of telephone networks, can give unreasonably optimistic solutions and lead [7, 13].  

With the self-similar nature of the traffic, the dependence of the average duration of the queue 

(respectively, the required size of the buffer) q from the average utilization ratio has the following form: 

𝑞 =
𝜌1/2(1−𝐻)

(1 − 𝜌)𝐻/(1−𝐻)⁄  
 

At H=0,5  this formula is simplified: 

𝑞 =
𝜌

(1 − 𝜌)⁄   

which is a classical result of MSS with the simplest input flow and exponentially distributed service 
time (М/М/1). For a system with deterministic maintenance time (М/D/1) a classic result looks like this: 

𝑞 =
𝜌

1 − 𝜌⁄ −
𝜌2

2(1 − 𝜌)⁄ . 
 

In figure 4 shows the results of calculations of the dependence of the required buffer memory 𝑞𝑏𝑢𝑓𝑓 

from the utilization factor 𝜌 = 𝜆
𝜇⁄  for different inbound traffic patterns. Calculations are made as for 

Poisson flows of requests M/M/1 і M/D/1, as well as for self-similar flows. 

 

(1 – H=0,6; 2 – H=0,8; 3 – H=0,7; 4 – H=0,4; 5 – M/M/1; 6 – M/D/1) 

Figure 4: Dependencies of the required buffer memory on the utilization ratio 𝝆. 
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The graphs clearly show that for self-similar traffic already at 4,0  a larger memory resource of 

buffer devices is required than for the classic model M/M/1, which is considered the least favorable 

compared to others (for example, with a constant or Gaussian service time distribution). The rate of 
growth of the required amount of memory increases with the increase of the Hurst parameter, which is 

mainly due to the degree of grouping of homogeneous packets and bursts of network load. 

It can also be concluded that simply increasing the buffer memory (hardware or software) is 

ineffective. With the expected increase in the share of data traffic in the total volume, the degree of self-

similarity will increase, and the dependence 𝜌(𝑞𝑏𝑢𝑓𝑓  ) will grow more and more sharply. To eliminate 

or at least reduce the harmful effect of traffic similarity, methods of regulation or shaping of the 
incoming flow (policing - shaping) are usually used. Ideally, this results in a deterministic or close to 

deterministic application order. With deterministic traffic (deterministic order of incoming applications 

and deterministic processing time), the queue growth graph is a linear-broken line (Figure 5). 

 
Figure 5: Graph of queue growth with deterministic traffic 

In practice, both the traffic at the output of the shaper and the packet processing time are quasi-
deterministic (we denote them by QD). In figure. 6 shows graphs for the relevant cases. 

 
Figure 6: Graph of queue growth with quasi-deterministic traffic 

5. Conclusions 

Models of heterogeneous computer network traffic, which has self-similar properties, are analyzed 

in the work. The considered models of single-channel and multi-channel service system with shared 
and separate buffer memory for the input queue of requests. Their advantages and disadvantages are 

shown. Analytical expressions for evaluating the key parameters of mass service systems of self-similar 

traffic under conditions of stationarity and ergodicity of the application arrival process are presented. 
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For self-similar traffic, the analytical dependence of the average queue duration on the average network 
utilization rate is determined. 

To eliminate traffic bursting caused by the similarity of the incoming stream, it is necessary to 

control its parameters, first of all, the period of arrival of packets. Thanks to this, the rate of growth of 

queues in the buffer memory of switching nodes slows down. As a result, the risk of overloading 
individual routes and autonomous network segments is reduced.. 
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