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Abstract  
A method of coreference resolution for Ukrainian language based on decision trees is 

described and examined. For this, Elmo text representations and additional features used in 

application, based on decision trees. Selected details of decision tree's structure are studied 

and explained. The specifics of the Ukrainian language, which are important for the task of 

coreference resolution, are mentioned. The analysis of the results shows, that the decision 

tree allows automated creation of logical structure, which can be used to access coreference 

of a pair of objects and create clusters of such objects. 
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1. Introduction 

Natural language processing (NLP) is a large field that includes many tasks: translation between 

natural languages, human-computer interfaces, analysis and generation of natural speech, information 

extraction. One of the tasks of natural language processing is coreference resolution. Coreferentiality 
in texts means a relationship between syntactic units indicating the same object (referent) in a given 

context [1]. Below are examples of coreference (the referent is highlighted in bold, the pronouns are 

underlined). 

Simple anaphora example: 
He crossed the mountain. It was high. 

Simple cataphora example: 

She took the road to the right. Mery was in a good mood today. 
An example of a compound antecedent: 

John, David and Julia were tired. They all worked underground. 

In comparison with many other European languages - English, German, French, Italian, Spanish - 

the Ukrainian language has an arbitrary word order, just like other Slavic languages - Polish, Russian, 
Serbian, Croatian, Romanian. For example, for the Ukrainian language: 

Karpo prykynuv take slivtse, shcho batko perestav struhaty i pochav pryslukhatys. Vin hlianuv na 

syniv cherez khvorostianu stinu. Syny stoialy bez dila y balakaly, pospyravshys na zastupy (Ivan 
Nechui-Levytskyi, «Kaidasheva simia», original word order).  

From the second sentence in the example, it is possible to rearrange the words to form other 

grammatically correct sentences with very close meanings, but with different accents, depending on 

the author's intention: 

 Cherez khvorostianu stinu vin hlianuv na syniv. 

 Na syniv vin hlianuv cherez khvorostianu stinu. 

 Cherez stinu khvorostianu vin hlianuv na syniv. 

 Cherez khvorostianu stinu hlianuv vin na syniv. 

 Cherez khvorostianu stinu na syniv hlianuv vin. 
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At the same time, only one combination is possible in English: «He looked at his sons through the 
twig wall», because it uses the standard subject-verb-object (SVO, subject verb object) word order. In 

other languages, the subject-object-verb (SOV, subject object verb) order is also common. In this 

regard, the algorithm for the Ukrainian language should be able to work with different word orders. 

Coreference resolution allows finding connections between sentences and within them, extracting 
information from texts, improving the results of text analysis in other tasks, such as translation from 

one language to another, dependency parsing, named entity recognition, assessment of the coherence 

of texts. At the initial stages of research, algorithms based on rules manually formed by experienced 
linguists were used to search for coreference objects. Such algorithms were created for a specific 

language and had to take into account many features to achieve high results.  

Over time, automated approaches such as neural networks and decision trees began to be used to 
solve the problem. They do not require manual rule creation, but require large data sets to prepare 

them. Nevertheless, often, automated algorithms use simple rules to form initial clusters. 

In previous works, such as [2], [3], usage of the decision trees was considered for coreference 

resolution and utilized on MUC-6 dataset [2] for English language and CoNLL-2012 [3] for Arabic, 
Chinese and English. Decision trees appliance on Ukrainian-language dataset containing more than 

360,000 words was first introduced in our previous article [4]. This article examines decision tree 

structure in more detail. 
A method of coreference resolution for Ukrainian language based on decision trees is described 

and examined. For this, Elmo text representations and additional features used in application, based 

on decision trees. Selected details of decision tree's structure are studied and explained. The specifics 
of the Ukrainian language, which are important for the task of coreference resolution, are mentioned. 

The analysis of the results shows, that the decision tree allows automated creation of logical structure, 

which can be used to access coreference of a pair of objects and create clusters of such objects. 

2. Means used to implement the coreference resolution algorithm 

The application uses vector representations of words obtained by applying the ELMo library[5]. 

This library allows converting words into vectors corresponding to their semantic, lexical, and 

syntactic meaning. Unlike other libraries that allow to form vector representations of words, such as 

Word2Vec[6], vector representations formed by ELMo take into account not only the meaning of a 
single word, but also the meaning of surrounding words, which allows to better find connections 

between individual words and sentences. ELMo uses neural networks to obtain vector representations 

of words and requires training. Version used in application adapted for the Ukrainian language. 
The Scikit-learn library [7] is used. This library includes many tools for solving regression, 

clustering and classification problems, in particular, it contains an optimized implementation of 

decision trees with the ability to configure tree construction parameters. 

One of the main advantages of decision trees over other algorithms is the ability to visualize the 
constructed tree. This allows conducting analysis of created tree and it`s internal operational logics. 

Also, decisions automatically made by the tree on each of its steps allow to improve the analysis of 

data, find dependencies between parameters, determine the limit of overfitting and adjust parameters 
for forming decision tree. Furthermore, after analysis completed, it is possible to make changes in 

decision tree structure and see, if changes are improving the result. For this, the Graphviz library [8], 

which is specifically developed for graph visualization was used.  
A prepared corpus of Ukrainian-language texts containing more than 360,000 words (> 2,500 

texts) was used to create a decision tree. The marking of coreference objects in it is carried out 

manually, and for obtaining additional information (gender, number, lemmatized (initial) version of 

the word) the UDpipe library [9], which uses neural networks and is trained on the Ukrainian text 
corpus is used. 

3. Data format for representing coreference objects and their analysis 

To analyze texts using decision trees, they need to be presented in the correct form. The following 

characteristics are used in the work to describe coreference objects (considered in the article [9]): 
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 Cosine similarity of vectors of the semantic representation of objects under consideration. For 

this, a pre-trained ELMo model was used. In the work, if the number of words included in the object > 
1, the arithmetic mean of word vectors is used. 

 The number of words between the selected objects. 

 The number of objects between the selected potentially coreference objects. 

 Boolean, true if the first object is a pronoun. 

 Boolean, true if the second object is a pronoun. 

 Boolean, true if the lemmatized versions (initial word forms) of the objects match. In the 

algorithm, the matching of lemmatized versions is defined as the matching of at least one word in 

both objects under consideration. 

 Boolean, true if both objects have the same number (singular or plural). 

 Boolean, true if both objects have the same genus. 

 Boolean, true if both objects are proper names. 
The input of the algorithm is a text consisting of individual words, punctuation, and additional 

information prepared using the UDpipe library. This includes gender, number, lemmatized version of 

the word, part of speech. Also, for words included in coreference groups, an identifier is added, which 

allows to assign a specific word or word combination to a coreference group (prepared manually).  
For the algorithm operation, a Python list is formed for each text under consideration, containing 

the indexes of the words included in the word combinations, which are potentially coreferential 

objects, before combining them into coreferential clusters, but in a format that facilitates their 

subsequent union (1),   –  is a separate word,  - is a word combination. 

  (1) 

Also, lists containing correctly formed clusters of coreference objects are created. These lists are 

necessary at the stage of comparing the clusters obtained as a result of predictions of the decision tree 

and valid clusters (2), ,    - is a separate cluster.  

         (2) 

Since the clustering task is reduced in the algorithm to a classification task, to create decision trees 

and predictions with their help, lists with the parameters of each pair of potentially coreferential 

objects (3) are needed, which include cosSim – the cosine similarity of objects, nWBtw – the number 
of words between objects under consideration, nObjBetw – the number of objects between the objects 

under consideration, len1 – the length (number of words) of the first object, len2 – the length of the 

second object, 1pron – whether the first object is a pronoun, 2pron – whether the second object is a 
pronoun, 1prp – whether the first object is a proper name, 2prp – whether the second object is a 

proper name, lemS – whether the lemmatized versions of the objects match, gendS – whether the 

objects have the same gender , numS– whether the objects have the same number. 

      (3) 
Each pair of objects is denoted as x (4).  

    (4) 

Labels indicating whether the pair of objects under consideration are coreferential are also required 

to check algorithm (5).  

    (5) 

After creating a decision tree, when using it for predictions from list (1), a list (5) containing a list of 

predicted clusters is generated. 

            (6) 

The resulting lists with characteristics of groups of coreference objects (3) as well as their 

labeling (4), containing 2,400,000 samples of coreference and non-coreference objects, are divided 
into two parts - the first (1500 texts, ~ 60%) is used to form a decision tree, the second (1015 texts, ~ 

40%) – to check the effectiveness of the algorithm (analysis of the obtained results). 
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4. Algorithm for coreference resolution using decision trees 
4.1. Formation of the decision tree 

The decision tree is implemented using the sklearn library, which has the decision tree class 

sklearn.tree.DecisionTreeClassifier. When creating an instance of a class, the parameters of the 

decision tree are determined - the criteria for splitting into subtrees during formation, the maximum 

depth of the tree, the minimum number of elements for splitting, the minimum number of elements in 
one leaf of the tree, weights for the expected classes, and others. By default, the parameters of the tree 

are specified to obtain an error-free configuration of the tree on the sample used for its formation. 

This approach leads to excessive adaptation of the tree to the data used in its formation and reduces 
the accuracy of work on sets that were not previously analyzed by the algorithm. Also, for large 

volumes of data, the use of such a configuration creates an excessively large tree, the formation of 

which takes a long time. 
Thus, it becomes necessary to limit the size of the tree in order to achieve higher results on the data 

that were not used to form the tree. For this, the parameter min_impurity_decrease was used, which 

allows determining the minimally sufficient value of reducing heterogeneity in subsequent subtrees 

during splitting. Unlike other ways of limiting the size of the tree, such as limiting the depth or 
limiting the number of elements in the leaves, this indicator allows more evenly limit the size of the 

tree. For the formation of final version of the decision tree, parameter of min_impurity_decrease was 

set to 0.000003. To form a tree, prepared data of pairs of potentially coreferential objects (3) with a 
marking of whether they are coreferential (4) are submitted to the fit function. The output is a tree 

capable of analyzing pairs of coreference objects. Thus, the problem of coreference object clustering 

is reduced to the problem of decision tree classification. Part of the resulting tree is shown in Fig. 1. 

For illustration purposes, the depth of the tree is artificially limited to fit the resulting tree on the 
screen. As can be seen from the figure, the division into coreferential and non-coreferential objects 

begins with the characteristic that allows the best separation of the current group of objects - the 

coincidence of lemmatized versions of objects. Further, thanks to the use of decision trees, the 
following logic can be followed in the subtree of the tree (Fig. 2) – if the lemmatized versions of the 

objects match, the length of the first and second objects is 1, and the first object is a proper name, then 

with a high probability a pair of objects is coreferential. 

 

Figure 1: Subtree of the decision tree (1) 

Further filtering allows finding more coreferent objects: in Fig. 3 if first object is not proper noun 
but pronoun, then it is considered coreferent to the second object. On Fig. 4 if first object is proper 

noun and its length is 2, then it is also considered coreferent. Decision trees are also allow filtering of 

negative coreference examples, as it is shown at Fig. 5, on which there is subtree of the decision tree 
right after initial filtering if lemmatized versions of objects are not same. If second object is not 

pronoun and cosine similarity measure of objects is lower then 0.426, then with high probability 
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objects are not coreferent. Entire decision tree is too large to show at figure, that is why to limit its 
size, parameter min_impurity_decrease was set to 0.00005. Resulting tree is shown at the Fig. 6. This 

variant of the tree shows similar performance to the tree presented in results on  metric, but for the 

MUC metric results are lower for recall – 19.24, which also decreased F1 score to 30.77 percent (in 

comparison with results from table 1). 

 

Figure 2: Subtree of the decision tree (2) 

  

Figure 3: Subtree of the decision tree (3) Figure 4: Subtree of the decision tree (4) 

4.2. Using a decision tree for coreference resolution 

After forming a decision tree, the created tree used to obtain clusters of coreference objects: pairs 

of objects - candidates for coreference are considered (1). For each pair of objects, the parameters (3) 
necessary for the classification of objects by a decision tree are determined. If the pair is classified to 

be coreferential, the objects are merged. After the formation of clusters containing several objects, 

their merging occurs if at least one pair of objects from the first and second clusters is recognized to 
be coreferential. During the experimental studies, it was found that when several cycles of passes are 

used, while cluster merging is possible, the results on the metrics (next paragraph) were 2-5% higher 

than without the use of cyclic passes, therefore, in the final version of the algorithm, several passes 

are used, while during cycle there is at least one merging. As a result of the algorithm, a list of 
clusters containing coreference objects within common clusters is formed (5). 

5. Analysis of the obtained results 

The metrics  [11] and MUC [12] are used to evaluate the results obtained while using the 

coreference resolution algorithm. These metrics allow comparing groups of clusters - with the correct 

ordering of coreference objects (2) and with the predicted ordering (5), numerically reflecting the 
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difference between clusters. For each metric, the precision (ratio of correctly selected objects to all 
selected objects), recall (ratio of correctly selected objects to all objects belonging to this cluster), and 

F1 measure (mean harmonic of precision and recall) shown.  

 

Figure 5: Subtree of the decision tree (5) 

 

Figure 6: Decision tree  

The   metric is used in a wide range of clustering problems. The   metric considers individual 

elements in the list of predicted clusters, for which the integral value is calculated. The precision for 

the   metric is defined as the arithmetic average of the accuracy for each element:  

     (7) 
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where n - number of the selected element, N – number of elements in the list,   - number of 

elements that belong to the same coreference group as the selected element (including the selected 

element) and are included in the predicted cluster,   - total number of elements in the predicted 

cluster. 

Recall for  metric is defined as the arithmetic mean of recall for each element:  

     (8) 

where n - number of the selected element, N - number of elements in the list,   - number of 

elements that belong to the same coreference group as the selected element (including the selected 

element) and are included in the expected cluster,   - total number of elements in the same group as 

the selected element.  

The MUC metric is specially designed to evaluate the performance of algorithms that solve 

coreference resolution task. The MUC metric considers the entire list of clusters for which indications 
are calculated. For MUC, recall is determined by the formula:  

                                                               (9) 

where    – number of elements in the true coreference cluster,  - number of subgroups 
into which the true coreference cluster is divided by the assumed clusters. Precision is defined as:  

                    (10) 

where  – the number of elements in the assumed coreference cluster,  - the number of 

subgroups into which the true clusters divide by the assumed coreference cluster. 

For each metric, the F1 measure is calculated, determined by the formula:  

        (11) 

where R - recall, P - precision. 

The evaluation of results of the obtained decision tree is performed on the part of the corpus that 
was not used during trees formation (1015 texts). During experimental research, the optimal value of 

the min_impurity_decrease parameter was determined, for which the highest results on the  and 

MUC metrics were achieved. The results of a comparison of decision trees algorithm [4] with other 

algorithms used for the analysis of Ukrainian-language texts [1, 10] are shown in the table. 1. 

Table 1 
Comparison of algorithm performance on  and MUC metrics. 

Model Metric MUC  

CNN Precision 24.23 97.88 

Recall 12.45 84.99 

F1 16.44 92.11 

BiLSTM  
(Single-pass) 

Precision 56.91 95.94 

Recall 30.20 88.76 

F1 29.46 92.21 

BiLSTM  
(multiple-passes) 

Precision 56.36 93.13 

Recall 39.68 90.43 

F1 45.88 91.76 

RoBERTa Precision 27.39 91.22 

Recall 13.10 89.65 

F1 17.72 90.43 

Decision tree Precision 73.46 98.15 

Recall 29.08 88.14 

F1 41.67 92.87 
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For the metric , the decision tree shows highest results compared to other approaches. On the 

MUC metric, the decision tree approach shows significantly higher results than those achieved using 

the convolutional neural network (CNN) [10] and the natural language model RoBERTa [1], similar 
to a two-way neural network with long and short-term memory (BiLSTM) [10]. It is worth noting that 

the algorithm's precision for this decision tree on the MUC and  metrics is the highest compared to 

other approaches, while the completeness similar to the BiLSTM variant with one pass. Parameters of 

the decision tree formation allow to increase its precision by reducing the recall or vice versa, thus 

adapting to cases, for which accuracy for found coreference objects (precision) or finding the majority 
of coreference objects (recall) is more important. 

6. Conclusions 

In this work, the usage of decision trees for coreference resolution in Ukrainian-language texts is 

considered. Ukrainian language specifics and differences from other languages relevant for 
coreference resolution were reviewed.  Details of the structure of the decision tree were examined. 

 The structure of the decision tree reveals simple rules that allow the separation and filtration of 

coreferenced and non-coreferenced objects. Formed decision tree allow deeper analysis of its logic in 
comparison with other automated algorithms, such as neural networks. Furthermore, the analysis of 

incorrectly classified objects may reveal additional features, which may improve the quality of 

classification. After forming, their usage requires much less computational resources in comparison 

with algorithms based on neural networks, which increases clustering speed.   
Results obtained and analysis of internal logic show that decision trees may be used for 

coreference resolution in Ukrainian language. 
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