
255

Analysis of Decision Trees for Coreference Resolution Task in
Ukrainian Language

Sergiy Pogorilyy and Pavlo Biletskyi

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv, 01033, Ukraine

Abstract
A method of coreference resolution for Ukrainian language based on decision trees is

described and examined. For this, Elmo text representations and additional features used in

application, based on decision trees. Selected details of decision tree's structure are studied

and explained. The specifics of the Ukrainian language, which are important for the task of

coreference resolution, are mentioned. The analysis of the results shows, that the decision

tree allows automated creation of logical structure, which can be used to access coreference

of a pair of objects and create clusters of such objects.

Keywords 1
Coreference resolution, natural language processing (NLP), decision trees, artificial

intelligence (AI), vector words representation, neural networks.

1. Introduction

Natural language processing (NLP) is a large field that includes many tasks: translation between

natural languages, human-computer interfaces, analysis and generation of natural speech, information

extraction. One of the tasks of natural language processing is coreference resolution. Coreferentiality
in texts means a relationship between syntactic units indicating the same object (referent) in a given

context [1]. Below are examples of coreference (the referent is highlighted in bold, the pronouns are

underlined).

Simple anaphora example:
He crossed the mountain. It was high.

Simple cataphora example:

She took the road to the right. Mery was in a good mood today.
An example of a compound antecedent:

John, David and Julia were tired. They all worked underground.

In comparison with many other European languages - English, German, French, Italian, Spanish -

the Ukrainian language has an arbitrary word order, just like other Slavic languages - Polish, Russian,
Serbian, Croatian, Romanian. For example, for the Ukrainian language:

Karpo prykynuv take slivtse, shcho batko perestav struhaty i pochav pryslukhatys. Vin hlianuv na

syniv cherez khvorostianu stinu. Syny stoialy bez dila y balakaly, pospyravshys na zastupy (Ivan
Nechui-Levytskyi, «Kaidasheva simia», original word order).

From the second sentence in the example, it is possible to rearrange the words to form other

grammatically correct sentences with very close meanings, but with different accents, depending on

the author's intention:

 Cherez khvorostianu stinu vin hlianuv na syniv.

 Na syniv vin hlianuv cherez khvorostianu stinu.

 Cherez stinu khvorostianu vin hlianuv na syniv.

 Cherez khvorostianu stinu hlianuv vin na syniv.

 Cherez khvorostianu stinu na syniv hlianuv vin.

Information Technology and Implementation (IT&I-2023), November 20-21, 2023, Kyiv, Ukraine

EMAIL: sdp77@i.ua (A. 1); 1234bpv@i.ua (A. 2);

ORCID: 0000-0002-6497-5056 (A. 1); 0000-0001-5425-3706 (A. 2);

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

256

At the same time, only one combination is possible in English: «He looked at his sons through the
twig wall», because it uses the standard subject-verb-object (SVO, subject verb object) word order. In

other languages, the subject-object-verb (SOV, subject object verb) order is also common. In this

regard, the algorithm for the Ukrainian language should be able to work with different word orders.

Coreference resolution allows finding connections between sentences and within them, extracting
information from texts, improving the results of text analysis in other tasks, such as translation from

one language to another, dependency parsing, named entity recognition, assessment of the coherence

of texts. At the initial stages of research, algorithms based on rules manually formed by experienced
linguists were used to search for coreference objects. Such algorithms were created for a specific

language and had to take into account many features to achieve high results.

Over time, automated approaches such as neural networks and decision trees began to be used to
solve the problem. They do not require manual rule creation, but require large data sets to prepare

them. Nevertheless, often, automated algorithms use simple rules to form initial clusters.

In previous works, such as [2], [3], usage of the decision trees was considered for coreference

resolution and utilized on MUC-6 dataset [2] for English language and CoNLL-2012 [3] for Arabic,
Chinese and English. Decision trees appliance on Ukrainian-language dataset containing more than

360,000 words was first introduced in our previous article [4]. This article examines decision tree

structure in more detail.
A method of coreference resolution for Ukrainian language based on decision trees is described

and examined. For this, Elmo text representations and additional features used in application, based

on decision trees. Selected details of decision tree's structure are studied and explained. The specifics
of the Ukrainian language, which are important for the task of coreference resolution, are mentioned.

The analysis of the results shows, that the decision tree allows automated creation of logical structure,

which can be used to access coreference of a pair of objects and create clusters of such objects.

2. Means used to implement the coreference resolution algorithm

The application uses vector representations of words obtained by applying the ELMo library[5].

This library allows converting words into vectors corresponding to their semantic, lexical, and

syntactic meaning. Unlike other libraries that allow to form vector representations of words, such as

Word2Vec[6], vector representations formed by ELMo take into account not only the meaning of a
single word, but also the meaning of surrounding words, which allows to better find connections

between individual words and sentences. ELMo uses neural networks to obtain vector representations

of words and requires training. Version used in application adapted for the Ukrainian language.
The Scikit-learn library [7] is used. This library includes many tools for solving regression,

clustering and classification problems, in particular, it contains an optimized implementation of

decision trees with the ability to configure tree construction parameters.

One of the main advantages of decision trees over other algorithms is the ability to visualize the
constructed tree. This allows conducting analysis of created tree and it`s internal operational logics.

Also, decisions automatically made by the tree on each of its steps allow to improve the analysis of

data, find dependencies between parameters, determine the limit of overfitting and adjust parameters
for forming decision tree. Furthermore, after analysis completed, it is possible to make changes in

decision tree structure and see, if changes are improving the result. For this, the Graphviz library [8],

which is specifically developed for graph visualization was used.
A prepared corpus of Ukrainian-language texts containing more than 360,000 words (> 2,500

texts) was used to create a decision tree. The marking of coreference objects in it is carried out

manually, and for obtaining additional information (gender, number, lemmatized (initial) version of

the word) the UDpipe library [9], which uses neural networks and is trained on the Ukrainian text
corpus is used.

3. Data format for representing coreference objects and their analysis

To analyze texts using decision trees, they need to be presented in the correct form. The following

characteristics are used in the work to describe coreference objects (considered in the article [9]):

257

 Cosine similarity of vectors of the semantic representation of objects under consideration. For

this, a pre-trained ELMo model was used. In the work, if the number of words included in the object >
1, the arithmetic mean of word vectors is used.

 The number of words between the selected objects.

 The number of objects between the selected potentially coreference objects.

 Boolean, true if the first object is a pronoun.

 Boolean, true if the second object is a pronoun.

 Boolean, true if the lemmatized versions (initial word forms) of the objects match. In the

algorithm, the matching of lemmatized versions is defined as the matching of at least one word in

both objects under consideration.

 Boolean, true if both objects have the same number (singular or plural).

 Boolean, true if both objects have the same genus.

 Boolean, true if both objects are proper names.
The input of the algorithm is a text consisting of individual words, punctuation, and additional

information prepared using the UDpipe library. This includes gender, number, lemmatized version of

the word, part of speech. Also, for words included in coreference groups, an identifier is added, which

allows to assign a specific word or word combination to a coreference group (prepared manually).
For the algorithm operation, a Python list is formed for each text under consideration, containing

the indexes of the words included in the word combinations, which are potentially coreferential

objects, before combining them into coreferential clusters, but in a format that facilitates their

subsequent union (1), – is a separate word, - is a word combination.

 (1)

Also, lists containing correctly formed clusters of coreference objects are created. These lists are

necessary at the stage of comparing the clusters obtained as a result of predictions of the decision tree

and valid clusters (2), , - is a separate cluster.

 (2)

Since the clustering task is reduced in the algorithm to a classification task, to create decision trees

and predictions with their help, lists with the parameters of each pair of potentially coreferential

objects (3) are needed, which include cosSim – the cosine similarity of objects, nWBtw – the number
of words between objects under consideration, nObjBetw – the number of objects between the objects

under consideration, len1 – the length (number of words) of the first object, len2 – the length of the

second object, 1pron – whether the first object is a pronoun, 2pron – whether the second object is a
pronoun, 1prp – whether the first object is a proper name, 2prp – whether the second object is a

proper name, lemS – whether the lemmatized versions of the objects match, gendS – whether the

objects have the same gender , numS– whether the objects have the same number.

 (3)
Each pair of objects is denoted as x (4).

 (4)

Labels indicating whether the pair of objects under consideration are coreferential are also required

to check algorithm (5).

 (5)

After creating a decision tree, when using it for predictions from list (1), a list (5) containing a list of

predicted clusters is generated.

 (6)

The resulting lists with characteristics of groups of coreference objects (3) as well as their

labeling (4), containing 2,400,000 samples of coreference and non-coreference objects, are divided
into two parts - the first (1500 texts, ~ 60%) is used to form a decision tree, the second (1015 texts, ~

40%) – to check the effectiveness of the algorithm (analysis of the obtained results).

258

4. Algorithm for coreference resolution using decision trees
4.1. Formation of the decision tree

The decision tree is implemented using the sklearn library, which has the decision tree class

sklearn.tree.DecisionTreeClassifier. When creating an instance of a class, the parameters of the

decision tree are determined - the criteria for splitting into subtrees during formation, the maximum

depth of the tree, the minimum number of elements for splitting, the minimum number of elements in
one leaf of the tree, weights for the expected classes, and others. By default, the parameters of the tree

are specified to obtain an error-free configuration of the tree on the sample used for its formation.

This approach leads to excessive adaptation of the tree to the data used in its formation and reduces
the accuracy of work on sets that were not previously analyzed by the algorithm. Also, for large

volumes of data, the use of such a configuration creates an excessively large tree, the formation of

which takes a long time.
Thus, it becomes necessary to limit the size of the tree in order to achieve higher results on the data

that were not used to form the tree. For this, the parameter min_impurity_decrease was used, which

allows determining the minimally sufficient value of reducing heterogeneity in subsequent subtrees

during splitting. Unlike other ways of limiting the size of the tree, such as limiting the depth or
limiting the number of elements in the leaves, this indicator allows more evenly limit the size of the

tree. For the formation of final version of the decision tree, parameter of min_impurity_decrease was

set to 0.000003. To form a tree, prepared data of pairs of potentially coreferential objects (3) with a
marking of whether they are coreferential (4) are submitted to the fit function. The output is a tree

capable of analyzing pairs of coreference objects. Thus, the problem of coreference object clustering

is reduced to the problem of decision tree classification. Part of the resulting tree is shown in Fig. 1.

For illustration purposes, the depth of the tree is artificially limited to fit the resulting tree on the
screen. As can be seen from the figure, the division into coreferential and non-coreferential objects

begins with the characteristic that allows the best separation of the current group of objects - the

coincidence of lemmatized versions of objects. Further, thanks to the use of decision trees, the
following logic can be followed in the subtree of the tree (Fig. 2) – if the lemmatized versions of the

objects match, the length of the first and second objects is 1, and the first object is a proper name, then

with a high probability a pair of objects is coreferential.

Figure 1: Subtree of the decision tree (1)

Further filtering allows finding more coreferent objects: in Fig. 3 if first object is not proper noun
but pronoun, then it is considered coreferent to the second object. On Fig. 4 if first object is proper

noun and its length is 2, then it is also considered coreferent. Decision trees are also allow filtering of

negative coreference examples, as it is shown at Fig. 5, on which there is subtree of the decision tree
right after initial filtering if lemmatized versions of objects are not same. If second object is not

pronoun and cosine similarity measure of objects is lower then 0.426, then with high probability

259

objects are not coreferent. Entire decision tree is too large to show at figure, that is why to limit its
size, parameter min_impurity_decrease was set to 0.00005. Resulting tree is shown at the Fig. 6. This

variant of the tree shows similar performance to the tree presented in results on metric, but for the

MUC metric results are lower for recall – 19.24, which also decreased F1 score to 30.77 percent (in

comparison with results from table 1).

Figure 2: Subtree of the decision tree (2)

Figure 3: Subtree of the decision tree (3) Figure 4: Subtree of the decision tree (4)

4.2. Using a decision tree for coreference resolution

After forming a decision tree, the created tree used to obtain clusters of coreference objects: pairs

of objects - candidates for coreference are considered (1). For each pair of objects, the parameters (3)
necessary for the classification of objects by a decision tree are determined. If the pair is classified to

be coreferential, the objects are merged. After the formation of clusters containing several objects,

their merging occurs if at least one pair of objects from the first and second clusters is recognized to
be coreferential. During the experimental studies, it was found that when several cycles of passes are

used, while cluster merging is possible, the results on the metrics (next paragraph) were 2-5% higher

than without the use of cyclic passes, therefore, in the final version of the algorithm, several passes

are used, while during cycle there is at least one merging. As a result of the algorithm, a list of
clusters containing coreference objects within common clusters is formed (5).

5. Analysis of the obtained results

The metrics [11] and MUC [12] are used to evaluate the results obtained while using the

coreference resolution algorithm. These metrics allow comparing groups of clusters - with the correct

ordering of coreference objects (2) and with the predicted ordering (5), numerically reflecting the

260

difference between clusters. For each metric, the precision (ratio of correctly selected objects to all
selected objects), recall (ratio of correctly selected objects to all objects belonging to this cluster), and

F1 measure (mean harmonic of precision and recall) shown.

Figure 5: Subtree of the decision tree (5)

Figure 6: Decision tree

The metric is used in a wide range of clustering problems. The metric considers individual

elements in the list of predicted clusters, for which the integral value is calculated. The precision for

the metric is defined as the arithmetic average of the accuracy for each element:

 (7)

261

where n - number of the selected element, N – number of elements in the list, - number of

elements that belong to the same coreference group as the selected element (including the selected

element) and are included in the predicted cluster, - total number of elements in the predicted

cluster.

Recall for metric is defined as the arithmetic mean of recall for each element:

 (8)

where n - number of the selected element, N - number of elements in the list, - number of

elements that belong to the same coreference group as the selected element (including the selected

element) and are included in the expected cluster, - total number of elements in the same group as

the selected element.

The MUC metric is specially designed to evaluate the performance of algorithms that solve

coreference resolution task. The MUC metric considers the entire list of clusters for which indications
are calculated. For MUC, recall is determined by the formula:

 (9)

where – number of elements in the true coreference cluster, - number of subgroups
into which the true coreference cluster is divided by the assumed clusters. Precision is defined as:

 (10)

where – the number of elements in the assumed coreference cluster, - the number of

subgroups into which the true clusters divide by the assumed coreference cluster.

For each metric, the F1 measure is calculated, determined by the formula:

 (11)

where R - recall, P - precision.

The evaluation of results of the obtained decision tree is performed on the part of the corpus that
was not used during trees formation (1015 texts). During experimental research, the optimal value of

the min_impurity_decrease parameter was determined, for which the highest results on the and

MUC metrics were achieved. The results of a comparison of decision trees algorithm [4] with other

algorithms used for the analysis of Ukrainian-language texts [1, 10] are shown in the table. 1.

Table 1
Comparison of algorithm performance on and MUC metrics.

Model Metric MUC

CNN Precision 24.23 97.88

Recall 12.45 84.99

F1 16.44 92.11

BiLSTM
(Single-pass)

Precision 56.91 95.94

Recall 30.20 88.76

F1 29.46 92.21

BiLSTM
(multiple-passes)

Precision 56.36 93.13

Recall 39.68 90.43

F1 45.88 91.76

RoBERTa Precision 27.39 91.22

Recall 13.10 89.65

F1 17.72 90.43

Decision tree Precision 73.46 98.15

Recall 29.08 88.14

F1 41.67 92.87

262

For the metric , the decision tree shows highest results compared to other approaches. On the

MUC metric, the decision tree approach shows significantly higher results than those achieved using

the convolutional neural network (CNN) [10] and the natural language model RoBERTa [1], similar
to a two-way neural network with long and short-term memory (BiLSTM) [10]. It is worth noting that

the algorithm's precision for this decision tree on the MUC and metrics is the highest compared to

other approaches, while the completeness similar to the BiLSTM variant with one pass. Parameters of

the decision tree formation allow to increase its precision by reducing the recall or vice versa, thus

adapting to cases, for which accuracy for found coreference objects (precision) or finding the majority
of coreference objects (recall) is more important.

6. Conclusions

In this work, the usage of decision trees for coreference resolution in Ukrainian-language texts is

considered. Ukrainian language specifics and differences from other languages relevant for
coreference resolution were reviewed. Details of the structure of the decision tree were examined.

 The structure of the decision tree reveals simple rules that allow the separation and filtration of

coreferenced and non-coreferenced objects. Formed decision tree allow deeper analysis of its logic in
comparison with other automated algorithms, such as neural networks. Furthermore, the analysis of

incorrectly classified objects may reveal additional features, which may improve the quality of

classification. After forming, their usage requires much less computational resources in comparison

with algorithms based on neural networks, which increases clustering speed.
Results obtained and analysis of internal logic show that decision trees may be used for

coreference resolution in Ukrainian language.

7. References

[1] S. Pogorilyy, P. Biletskyi, Usage of a graphics processor to accelerate coreference resolution
while using the RoBERTa model., Scientific works of DonNTU, Series: Informatics, cybernetics

and computer technology, 2022, pp. 4-9.

[2] Z. Dzunic, S. Momcilovic, B. Todorovic, M. Stankovic, Coreference Resolution Using Decision
Trees, 2006 8th Seminar on Neural Network Applications in Electrical Engineering, 2006, pp.

109-114.

[3] E. Fernandes, C. Nogueira, R. Milidiú. Latent Trees for Coreference Resolution. Computational
Linguistics 40(4), 2014, pp.801–835.

[4] S. D. Pogorilyy, P. V. Biletskyi, Coreference resolution algorithm for Ukrainian-language texts

using decision trees. Prombles in programming 2022, №3-4, 2022, pp. 85-91.

[5] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettelemoyer, Deep
contextualized word representations. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2018, pp. 2227–2237.
[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed Representations of Words

and Phrases and their Compositionality. Proceedings of the 26th International Conference on

Neural Information Processing Systems, 2013, pp. 3111–3119.

[7] Scikit-learn library. URL: https://scikit-learn.org/ .
[8] Graphviz library. URL: https://graphviz.org/ .

[9] UDpipe library. URL: https://lindat.mff.cuni.cz/services/udpipe/ .

[10] S.Telenyk, S. Pogorilyy, A. Kramov , The complex method of coreferent clusters detection based
on a BiLSTM neural network, Knowledge Based Systems, 2021, pp. 205-210.

[11] A. Bagga, B. Baldwin, Algorithms for Scoring Coreference Chains, The First International

Conference on Language Resources and Evaluation Workshop on Linguistics Coreference, 1998,
pp. 563-566.

[12] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, L. Hirschman, A Model-Theoretic Coreference

Scoring Scheme, Proceedings of the 6th Conference on Message Understanding (MUC), 1995,

pp. 45-52.

	1. Introduction
	2. Means used to implement the coreference resolution algorithm
	3. Data format for representing coreference objects and their analysis
	4. Algorithm for coreference resolution using decision trees
	4.1. Formation of the decision tree
	4.2. Using a decision tree for coreference resolution

	5. Analysis of the obtained results
	6. Conclusions
	7. References

