
The 18th European Conference on Artificial Intelligence

Proceedings

4th International Workshop on
Neural-Symbolic Learning and Reasoning

NeSy’08

Monday July 21, 2008

Patras, Greece

Artur S. d’Avila Garcez and Pascal Hitzler

Workshop Schedule

09:00 – 10:00
Keynote Talk
Kai-Uwe Kühnberger
Modeling Reasoning Mechanisms by Neural-Symbolic Learning

10:30 – 10:50
Ekaterina Komendantskaya
Unification by Error-Correction

10:55 – 11:10
Matthew Cook
The Reusable Symbol Problem

11:15 – 11:35
Claudine Brucks, Michael Hilker, Christoph Schommer, Cynthia Wagner, Ralph
Weires
Symbolic Computing with Incremental Mind-maps to Manage andMine Data
Streams – Some Applicatoins

11:40 – 12:00
Sebastian Bader, Steffen Hölldobler, Nuno C. Marques
Guiding Backprop by Inserting Rules

12:05 – 12:25
Tsvi Achler, Eyal Amir
Hybrid Classification and Symbolic-Like Manipulation Using Self-Regulatory
Feedback Networks

1

Workshop Organisers
Artur d'Avila Garcez, City University London, UK
Pascal Hitzler, University of Karlsruhe, Germany

Programme Committee
Sebastian Bader, TU Dresden, Germany
Howard Blair, Syracuse University, U.S.A.
Luc de Raedt, KU Leuven, Belgium
Marco Gori, University of Siena, Italy
Barbara Hammer, TU Clausthal, Germany
Ioannis Hatzilygeroudis, University of Patras, Greece
Steffen Hölldobler, TU Dresden, Germany
Ekaterina Komendantskaya, Sophia Antipolis, France
Kai-Uwe Kühnberger, University of Osnabrück, Germany
Luis Lamb, Federal University of Rio Grande do Sul, Brazil
Roberto Prevete, University of Naples, Italy
Dan Roth, University of Illinois at Urbana-Champaign, U.S.A.
Anthony K. Seda, University College Cork, Ireland
Frank van der Velde, Leiden University, The Netherlands
Gerson Zaverucha, Federal University of Rio de Janeiro, Brazil

2

Preface

Artificial Intelligence researchers continue to face huge challenges in their quest
to develop truly intelligent systems. The recent developments in the field of
neural-symbolic integration bring an opportunity to integrate well-founded
symbolic artificial intelligence with robust neural computing machinery to help
tackle some of these challenges.

The Workshop on Neural-Symbolic Learning and Reasoning provides a forum for
the presentation and discussion of the key topics related to neural-symbolic
integration.

Topics of interest include:

• The representation of symbolic knowledge by connectionist systems;
• Learning in neural-symbolic systems;
• Extraction of symbolic knowledge from trained neural networks;
• Reasoning in neural-symbolic systems;
• Biological inspiration for neural-symbolic integration;
• Neural networks and probabilities;
• Applications in robotics, semantic web, engineering, bioinformatics, etc.

3

Invited Keynote Talk

Modeling Reasoning Mechanisms by Neural-Symbolic Learning

Kai-Uwe Kühnberger, University of Osnabrück, Germany, kkuehnbe@uos.de

Currently, neural-symbolic integration covers – at least in theory – a whole bunch
of types of reasoning: neural representations (and partially also neural-inspired
learning approaches) exist for modeling propositional logic (programs), whole
classes of manyvalued logics, modal logic, temporal logic, and epistemic logic,
just to mention some important examples [2,4]. Besides these propositional
variants of logical theories, also first proposals exist for approximating “infinity”
with neural means, in particular, theories of first-order logic. An example is the
core method intended to learn the semantics of the single-step operator TP for
first-order logic (programs) with a neural network [1]. Another example is the
neural approximation of variable-free first-order logic by learning representations
of arrow constructions (which represent logical expressions) in the Rn using
Topos constructions [3].

Although these examples show a certain success of neural-symbolic learning
and reasoning research, there are several non-trivial challenges. First, there exist
a variety of frameworks that seem to have rather different and seemingly
incompatible foundations. Second, potential application domains where the
strengths of neural-symbolic integration could be documented and its potential be
shown are not really known. Third, the conceptual understanding of the cognitive
relevance and the cognitive plausibility of neural-symbolic learning and reasoning
should be clarified. In this talk, I will address these questions and propose some
ideas for answers. I will sketch general assumptions of solutions for the neural-
symbolic modeling of a variety of logical reasoning mechanisms. Then I will
propose some application domains where neural-symbolic frameworks can be
successfully applied. I will finish the talk with some speculations concerning
cognitively relevant implications and the degree of cognitive plausibility of neural-
symbolic learning and reasoning in general.

References

[1] S. Bader, P. Hitzler, S. Hölldobler and A. Witzel: A Fully Connectionist Model
Generator for Covered First–Order Logic Programs. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence, 2007, pp. 666–
671.
[2] A. d’Avila Garcez, L. Lamb & D. Gabbay: Neural-Symbolic Cognitive
Reasoning, Cognitive Technologies, Springer, 2008.

4

[3] H. Gust, K.–U. Kühnberger & P. Geibel: Learning Models of Predicate Logical
Theories with Neural Networks based on Topos Theory. In P. Hitzler and B.
Hammer (eds.): Perspectives of Neuro–Symbolic Integration, Studies in
Computational Intelligence (SCI) 77, Springer, 2007, pp. 233–264.

[4] E. Komendantskaya, M. Lane & A. Seda: Conenctionist Representation of
Multi-Valued Logic Programs. In P. Hitzler and B. Hammer (eds.): Perspectives
of Neuro–Symbolic Integration, Studies in Computational Intelligence (SCI) 77,
Springer, 2007, pp. 283–313.

5

Unification by Error-Correction
Ekaterina Komendantskaya 1

Abstract. The paper formalises the famous algorithm of first-order
unification by Robinson by means of the error-correction learning in
neural networks. The significant achievement of this formalisation
is that, for the first time, the first-order unification of two arbitrary
first-order atoms is performed by finite (two-neuron) network.

1 Introduction

The field of neuro-symbolic integration is stimulated by the fact that
logic theories are commonly recognised as deductive systems that
lack such properties of human reasoning, as adaptation, learning and
self-organisation. On the other hand, neural networks, introduced as
a mathematical model of neurons in human brain, possess all of the
mentioned abilities, and moreover, they provide parallel computa-
tions and hence can perform certain calculations faster than classical
algorithms.

As a step towards integration of the two paradigms, there were
built connectionist neural networks (also called neuro-symbolic net-
works), see [1, 8] for a very good survey. In particular, there were
built neural networks [16, 17] that can simulate the work of the se-
mantic operator TP for logic programs. These neural networks pro-
cessed classical truth values 0 and 1 assigned to clauses and clause
atoms. These values were presented to the neural networks as input
vectors and emitted by the neural networks as output vectors.

The connectionist neural networks of different architectures [8, 15,
7, 1] bore different advantages, but one similar feature: the unifica-
tion of first-order terms, atoms, or clauses was achieved by build-
ing a separate neuron for each of the ground instances of an atom.
Then all neurons were connected in a particular way that they re-
flected intended logical relations between the ground atoms. In many
cases, e.g., in the presence of function symbols in logic programs,
the number of the required ground instances can become infinite.
This makes building corresponding neural networks impractical. The
problem gave rise to a series of papers about possibility of approx-
imation of potentially infinite computations by (a family of) finite
neural networks; see [13, 3, 25, 2].

In this paper, I propose a different direction for the development
of the connectionist neural networks. In particular, I propose to use
two-neuron networks with error-correction learning to perform the
first-order unification over two arbitrary first-order atoms. A simple
form of error-correction learning is adapted to syntax of a first-order
language in such a way that unification of two atoms is seen as a
correction of one piece of data relative to the other piece of data.

The problem of establishing a way of how to perform first-order
unification in finite neural networks has been tackled by many re-
searchers over the last 30 years; [4, 21, 15, 14, 8, 26, 27, 1, 28].

1 INRIA Sophia Antipolis, France, email: ekate-
rina.komendantskaya@inria.fr

The way of performing unification that I propose here is novel,
fast and simple, and can be easily integrated into a number of various
existing neuro-symbolic networks. The paper develops ideas which
were first spelt out in [18, 19]. Here, I simplify the construction of
the networks, generalise the theorem about unification by error cor-
rection and give a more subtle analysis of the new functions intro-
duced into the neural networks. Notably, the statement and the proof
of the main theorem do not depend anymore on Gödel numbers, as
in [18, 19].

The structure of the paper is as follows. Section 2 outlines the clas-
sical algorithm of unification. Section 3 defines artificial Neurons and
Neural Networks following [12, 13]. Section 4 describes the error-
correction learning algorithm. In Section 5, I re-express several logic
notions in terms of recursive functions over terms. These functions
are then embedded into the network. In Section 6, I prove that the
algorithm of Unification for two arbitrary first-order atoms can be
simulated by a two-neuron network with error-correction function.
Finally Section 7 concludes the discussion.

2 Unification algorithm
The algorithm of unification for first-order atoms was introduced in
[24] and has been extensively used in Logic programming [22] and
theorem proving.

I fix a first-order language L consisting of constant symbols
a1, a2, . . ., variables x1, x2, . . ., function symbols of different ar-
ities f1, f2, . . ., predicate symbols of different arities Q1, Q2, . . .,
connectives ¬,∧,∨ and quantifiers ∀, ∃. This syntax is sufficient to
define first-order language or first-order Horn clause programs, [22].

I follow the conventional definition of a term and an atomic for-
mula. Namely, a constant symbol is a term, a variable is a term,
and if fn

i is a n-ary function symbol and t1, . . . , tn are terms, then
fn

i (t1, . . . tn) is a term. If Qn
i is an n-ary predicate symbol and

t1, . . . , tn are terms, then Qi(t1, . . . tn) is an atomic formula, also
called an atom.

Let S be a finite set of atoms. A substitution θ is called a unifier for
S if Sθ is a singleton. A unifier θ for S is called a most general unifier
(mgu) for S if, for each unifier σ of S, there exists a substitution γ
such that σ = θγ. To find the disagreement set DS of S locate the
leftmost symbol position at which not all atoms in S have the same
symbol and extract from each atom in S the term beginning at that
symbol position. The set of all such terms is the disagreement set.

The unification algorithm [24, 20, 22] is described as follows.
Unification algorithm:

1. Put k = 0 and σ0 = ε.
2. If Sσk is a singleton, then stop; σk is an mgu of S. Otherwise,

find the disagreement set Dk of Sσk.
3. If there exist a variable v and a term t in Dk such that v does not

occur in t, then put σk+1 = σk{v/t}, increment k and go to 2.

6

Otherwise, stop; S is not unifiable.

The Unification Theorem establishes that, for any finite S, if S is
unifiable, then the unification algorithm terminates and gives an mgu
for S. If S is not unifiable, then the unification algorithm terminates
and reports this fact.

3 Connectionist Neural Networks

I follow the definitions of a connectionist neural network given in
[16, 17], see also [7, 13, 9].

A connectionist network is a directed graph. A unit k in this graph
is characterised, at time t, by its input vector (vi1(t), . . . vin(t)),
its potential pk(t), its threshold Θk, and its value vk(t). Note that
in general, all vi, pi and Θi, as well as all other parameters of a
neural network can be performed by different types of data, the most
common of which are real numbers, rational numbers [16, 17], fuzzy
(real) numbers [23], complex numbers, numbers with floating point,
Gödel numbers [19], and some others, see also [12].

Units are connected via a set of directed and weighted connec-
tions. If there is a connection from unit j to unit k, then wkj denotes
the weight associated with this connection, and ik(t) = wkjvj(t)
is the input received by k from j at time t. The units are up-
dated synchronously. In each update, the potential and value of a
unit are computed with respect to an activation and an output func-
tion respectively. Most units considered in this paper and [16] com-
pute their potential as the weighted sum of their inputs minus their
threshold: pk(t) =

“Pnk
j=1 wkjvj(t)

”
−Θk. The units are updated

synchronously, time becomes t + ∆t, and the output value for k,
vk(t + ∆t) is calculated using pk(t) by means of a given output
function F , that is, vk(t + ∆t) = F (pk(t)). For example, F can be
an identity function id, or the binary threshold function H , that is,
vk(t + ∆t) = H(pk(t)), where H(pk(t)) = 1 if pk(t) > 0 and
H(pk(t)) = 0 otherwise.

Example 3.1 Consider two units, j and k, having thresholds Θj ,
Θk, potentials pj , pk and values vj , vk. The weight of the connection
between units j and k is denoted by wkj . Then the following graph
shows a simple neural network consisting of j and k. The neural
network receives signals v′, v′′, v′′′ from external sources and sends
an output signal vk.

v′

((QQQQQQQ pj wkj pk

v′′ // ONMLHIJKΘj // ONMLHIJKΘk
//vk

v′′′

66mmmmmm
j k

4 Error-Correction Learning

Error-correction learning is one of the algorithms among the
paradigms that advocate supervised learning; see [12, 11] for further
details.

Let dk(t) denote some desired response for unit k at time t. Let the
corresponding value of the actual response be denoted by vk(t). The
input signal ik(t) and desired response dk(t) for unit k constitute a
particular example presented to the network at time t. It is assumed
that this example and all other examples presented to the network are
generated by an environment. It is common to define an error signal
as the difference between the desired response dk(t) and the actual
response vk(t) by ek(t) = dk(t)− vk(t).

The error-correction learning rule is the adjustment ∆wkj(t)
made to the weight wkj at time n and is given by

∆wkj(t) = ηek(t)vj(t),

where η is a positive constant that determines the rate of learning.
Finally, the formula wkj(t + 1) = wkj(t) + ∆wkj(t) is used

to compute the updated value wkj(t + 1) of the weight wkj . I use
formulae defining vk and pk as in Section 3.

Example 4.1 The neural network from Example 3.1 can be trans-
formed into an error-correction learning neural network as follows.
I introduce the desired response value dk into the unit k, and the
error signal ek computed using dk must be sent to the connection
between j and k to adjust wkj .

v′

''NNNNNNN pj wkj + ∆wkj

��

ek

v′′ // ONMLHIJKΘj // _^]\XYZ[Θk, dk
//ek, vk

ss

v′′′

77pppppp
j wkj k

This learning rule has been extensively used for “recognition”
tasks, such as image and speech recognition.

5 The data type of parameters of the neural
network

In order to perform the algorithm of unification in neural networks
and not to depend on truth values of formulae, I need to allow the
syntax of first-order formulae directly into the neural network.

Initially, Gödel numbers were used as parameters of the novel neu-
ral networks, [19]. It was inspired by the idea that some sort of nu-
merical representation is crucial because Neural networks are numer-
ical machines, and can process only numbers. However, from compu-
tational point of view the numerical encoding of the first-order syntax
plays no crucial role in the development of the neural networks, and
so I omit enumeration here. Instead, I give a more subtle analysis of
the new functions that I embed into neural networks.

The significant feature of the Gödel enumeration in [19] was that
the notions of the disagreement set, substitution, and application
of the computed substitutions were formally expressed as functions
over first-order atoms viewed as lists. These functions were embed-
ded into the neural network. The appearance of new functions in the
neural network architecture was natural because the neural networks
used the new data type - Gödel numbers of atoms.

The algorithm of Unification from Section 2 can be reformulated
functionally. Thus, we can define a function	 computing a disagree-
ment set of two given atoms, or a function � applying substitutions,
and some other functions, and then compose them into a more com-
plex function that is able to unify terms. There exist several func-
tional formalisations of the algorithm of unification in different func-
tional languages, [6, 10, 29]. It can be quite hard to formalise this
algorithm, as [6, 10, 29] indicate. In this paper, we will use only two
simple auxiliary functions � and 	, and will not go into further de-
tails.

In the rest of the section, we give an example of how the two func-
tions � and 	 can be formalised using the language of Coq. The
reader not familiar with functional languages can pass on to the next
Section, simply bearing in mind that	 will denote the function com-
puting a disagreement set, and � is a function that applies substitu-
tions. The complete Coq file containing more details and examples
can be found in [30].

7

When formalised functionally, the definitions of the disagreement
set, substitution, and application of the computed substitutions de-
fined over first-order terms and atoms bear no serious computational
difference from formalisations of arithmetic functions +, −, ∗ de-
fined over integers. In fact, all of the above-mentioned operations,
both logical and arithmetic, are defined recursively by computing a
fixpoint.

Example 5.1 This is how conventional + over natural numbers is
defined in Coq:

Fixpoint plus (n m: nat){struct n}: nat :=
match n with
O => m | S p => S (plus p m) end.

We will see in this section that logical operations can be defined
analogously, by fixpoint. I will define functions that find a disagree-
ment set, a substitution, and apply the computed substitutions using
the Coq code, the same functions expressed in terms of Gödel num-
bers can be found in [19, 18].

We need to specify the inductive data type of first-order terms and
atoms. We will define recursive functions over this data type:

Inductive term : Set :=
App (t1 t2: term) | Const (c: cindex)

| Var (v: vindex).

Example 5.2 For example, Q(x , y) will be denoted by (App
(App (Const 0) x) y).

I start with the function applying substitutions:

Fixpoint subst (v: vindex) (t1 t2: term)
{struct t2} : term := match t2 with

| App t3 t4 =>
App (subst v t1 t3) (subst v t1 t4)

| Const _ => t2
| Var v1 => if v_eq v v1 then t1 else t2
end.

To define the function computing the disagreement set, one needs
to inductively define the type of possible outputs of the function.
Unification algorithm of Section 2 could output either “failure”, or
a computed mgu, or an “empty” substitution ε:

Inductive dresult: Set :=
Dempty | Dfail | Dsubst (v: vindex) (t: term).

The function computing the disagreement set reformulated in
Gödel numbers was called 	 in [19].
Operation 	, written (t1 	 t2), or delta (t1 t2):

Fixpoint delta (t1 t2: term)
{struct t1} : dresult :=

match t1, t2 with
| Var v1, Var v2 =>

if v_eq v1 v2 then Dempty else Dsubst v1 t2
| Var v1, _ =>

if v_is_in v1 (free_vars t2) then
Dfail else Dsubst v1 t2

| _, Var v2 =>
if v_is_in v2 (free_vars t1) then

Dfail else Dsubst v2 t1

| Const c1, Const c2 =>
if c_eq c1 c2 then Dempty else Dfail

| App t11 t12, App t21 t22 =>
match delta t11 t21 with Dempty =>

delta t12 t22 | r => r end
| _, _ => Dfail

end.

The function above is built using another function, free vars,
that performs the occur check. The definition of this function can be
found in [30]; it is a simple recursive function defined by fixpoint.

The function that applies computed substitutions was formulated
in Gödel numbers and denoted � in [19]. We give its Coq code here:
Operation �, written (t� d) or apply delta t d:

Definition apply_delta t d :=
match d with Dsubst v t1 =>

subst v t1 t | _ => t end.

The functions 	,� will be taken as new parameters of a neural
network.

6 Unification in Neural Networks
Neural networks constructed in this section perform unification by
error-correction.

The next theorem and its proof present this novel construction. The
construction is effectively based upon the error-correction learning
algorithm defined in Section 4 and makes use of the operations �
and 	 defined in Section 5. I will also use ⊕ - the conventional list
concatenation that, given lists x and y, forms the list x ⊕ y. The
standard Coq formalisation of this function can be found in [5].

Remark 1. The next Theorem requires the last short remark. The
item 3 in the Unification algorithm of Section 2 requires compo-
sition of computed substitutions at each iteration of the algorithm.
That is, given a set S of atoms, the unification algorithm will com-
pute S(σ0σ1 . . . σn), which means that the composition of substi-
tutions σ0σ1 . . . σn is applied to S. However, one can show that
S(σ0σ1 . . . σn) = (...((Sσ0)σ1) . . . σn). That is, one can alterna-
tively concatenate substitutions and apply them one by one to atoms
in S. We will use this fact when constructing the neural networks.
The two functions - concatenation ⊕ and application � of substitu-
tions will be used to model S(σ0σ1 . . . σn).

Theorem 1 Let k be a neuron with the desired response value dk =
gB , where gB is (the encoding of) a first-order atom B, and let vj =
1 be the signal sent to k with weight wkj = gA, where gA is (the
encoding of) a first-order atom A. Let h be a unit connected with k.
Then there exists an error signal function ek and an error-correction
learning rule ∆wkj such that the unification algorithm for A and B
is performed by error-correction learning at unit k, and the unit h
outputs (the encoding of) an mgu of A and B if an mgu exists, and it
outputs 0 if no mgu of A and B exists.

Construction:
We construct the two neuron network as follows. The unit k is the
input unit, the signal from the unit k goes to the unit h, and the unit
h outputs the signal.

Parameters:
Set thresholds Θk = Θh = 0, and the initial weight whk(0) = 0
of the connection between k and h. The input signal ik(t) =
vj(t)wkj(t) = wkj(t). The initial input ik(0) = wkj(0) = gA.

8

Because vj(t) = 1 for all t, the standard formula that computes po-
tential pk(t) = vj(t)wkj(t) − Θk transforms into pk(t) = wkj(t).
We put vk(t) = pk(t).

The error signal is defined as follows: ek(t) = dk(t)	vk(t). The
initial desired response dk(0) = gB .

The error-correction learning rule is as defined in Section 4:
∆wkj(t) = vj(t)ek(t). In our case vj(t) = 1, at every time t, and
so ∆wkj(t) = ek(t). The ∆wkj(t) is used to compute

wkj(t+1) = wkj(t)�∆wkj(t), and dk(t+1) = dk(t)�∆wkj(t).

Connection between k and h is “trained” as follows:

whk(t+1) =

8<:
whk(t)⊕∆wkj(t), if ∆wkj(t) = Dsubst v t
whk(t)⊕ 0, if ∆wkj(t) = Dempty
0, if ∆wkj(t) = Dfail.

Reading the resulting mgu.
Compute ph(t+∆t) = whk(t+∆t). Put vh(t+∆t) = ph(t+∆t).

If the signal vh(t + ∆t) 6= 0 and the first and the last symbol
constituting the list vh(t + ∆t) is 0, stop. The signal vh(t + ∆t) is
the mgu of A and B.
If vh(t + ∆t) = 0, then stop. Unification failed.

Sketch of a proof: Item 1 of Unification algorithm (Section 2).
The network works in discrete time, and the sequence of time steps,
starting with 0, corresponds to the parameter k in the Unification
algorithm, that changes from 0 to 1, from 1 to 2, etc. The initial empty
substitution σ0 = ε corresponds to the initial weight whk(0) = 0.

Item 2 of Unification algorithm. The application Sσ0 . . . σk of
substitution σ0 . . . σk to S is performed by the function � that, by
Remark 1, applies σk to (. . . (Sσ0) . . . σk−1). The check whether
the disagreement set Dk for Sσ1 . . . σk is empty is done by 	. If
it is empty, dk(t) 	 vk(t) = Dempty. If this happens at time t,
ek(t) = ∆wkj(t) = Dempty, and vh(t + 1) = whk(t + 1) =
whk(t) ⊕ ∆wkj(t) = 0 ⊕ ek(0) ⊕ . . . ⊕ ek(t − 1) ⊕ ek(t) =
0 ⊕ ek(0) ⊕ . . . ⊕ ek(t − 1) ⊕ 0 is sent as an output from the unit
h. This will be read as “Stop, the mgu is found”. In case Dk for
Sσ1 . . . σk is not empty, the function dk(t)	vk(t) computes the dis-
agreement set for gB(σ1 . . . σk) = dk(t) and gA(σ1 . . . σk) = vk(t)
in Sσ1 . . . σk; ∆wkj(t) is computed, and the new iteration starts.

Item 3 of Unification algorithm. The occur check is hidden inside
the function 	 used to define the error signal ek, thanks to the aux-
iliary function free vars used when defining 	. The step “put
σk+1 = σk{v/t}” is achieved by using concatenation of substitu-
tions by function ⊕: whk(t + 1) = whk(t)⊕∆wkj(t). By Remark
1, we concatenate the substitutions σ0 . . . σkσk+1, and apply them to
atoms in S stepwise, that is, at each iteration of the network we use�
to apply the new computed substitution σk+1 given by ∆wkj(t + 1)
to the two atoms in Sσ1 . . . σk given by wkj(t) and dk(t).

The step “increment k and go to 2” is achieved by starting a
new iteration. The condition “otherwise, stop; S is not unifiable” is
achieved as follows. When the substitution is not possible, or the “oc-
cur check” is not passed, ∆wkj(t) = dk(t)	 vk(t) = Dfail, and
this sets whk(t + 1) = 0. But then, ph(t + 1) = whk(t + 1) = 0.
But then, the output value vh(t+1) = ph(t+1) is set to 0. And this
will be read as “substitution failed”.

Note that in case when A = B and hence the mgu of A and B is
ε, the neural networks will give output vh(t + 2) = 0⊕ 0.

Unlike the Unification algorithm of Section 2, the neural network
outputs the concatenation of the substitutions computed at each iter-
ation, and not their composition. However, given an ordered list of
computed substitutions, composing them is trivial, and can be done

using the function � instead of ⊕ in the networks above. The func-
tion ⊕ bears an advantage that one can easily check whether the out-
put list of substitutions ends with 0, and thus it is easy to decide
whether Unification algorithm has come to an answer. In general,
there is no serious obstacles for using� instead of⊕ in the construc-
tion above, and thus to output composition of substitutions instead of
their concatenation.

The next example illustrates how the construction of Theorem 1
works.

Example 6.1 Let S = (Q1(f(x1, x2)), Q1(f(a1, a2))) be a set of
first-order atoms. Then θ = {x1/a1; x2/a2} is the mgu.

Next I show how this can be computed by neural networks.
Let g1 and g2 denote the chosen encoding for Q1(f(x1, x2)) and
Q1(f(a1, a2)).

The neural network I build will consist of two units, k and h. Exter-
nal signal vj(t0) = 1 is sent to the unit k. I use the numbers g1 and
g2 as parameters of the neural network, as follows: wkj(t0) = g2;
and hence ik(t0) = vjwkj = g2. The desired response dk(t0) is set
to g1. See the next diagram.

vj = 1

g2

��_^]\XYZ[dk(t0) = g1

whk(t0)=0

FFFFFF

##FF
FF

FF
FF

?>=<89:;h

��
vh(t0) = 0

At time t0, this neural network computes ek(t0) = dk(t0)	vk(t0)
- the disagreement set {x, a}:

1

g2

��_^]\XYZ[dk(t0) = g1

PPPP
P

ek(t0)

whk(t0)=0

CC
CC

C

!!CCC
CC

?>=<89:;h

��
vh(t0) = 0

The error signal ek(t0) will then be used to change the weight
of the outer connection wkj to k and some other parameters; and
∆w(t0) is computed for this purpose as follows: ∆w(t0) = ek(t0).
And this is shown on the next diagram.

9

1

g2

��

∆w(t0)

_^]\XYZ[dk(t0) = g1

PPPP
P

ek(t0)

FF

whk(t0)=0

CC
CC

C

!!CCC
CC

?>=<89:;h

��
vh(t0) = 0

At time t1, the input weight wkj is amended using ek(t0), and
the desired response value dk(t1) is “trained”, too: wkj(t1) =
wkj(t0) � ∆wkj(t0) and dk(t1) = dk(t0) � ∆wkj(t0). At this
stage the computed substitution ek(t0) = ∆wkj(t0) is applied to
the numbers g1 and g2 of the atoms Q1(f(x1, x2)), Q1(f(a1, a2))
that we are unifying.

The weight between k and h is amended at this stage: whk(t1) =
whk(t0)⊕∆wkj(t0) = 0⊕ ek(t0).

As a result, at time t1 all the parameters are updated as follows:
input signal vj(t1)wkj(t1) = g2 is the encoding of Q1(f(a1, a2));
the desired response dk(t1) = g3 is Q1(f(a1, x2)). And this is
shown on the next diagram:

1

g2

��_^]\XYZ[dk(t1) = g3

whk(t1)=0⊕ek(t0)

FFFFFF

""FF
FF

FF
FF

?>=<89:;h

��
0⊕ ek(t0)

Note that on the diagram above, the unit h emits its first non-zero
output signal, that is, the number of substitution ek(t0).

Because the parameters wkj(t1) = g2 and dk(t1) = g3 are not
equal yet and the list vh does not end with 0, the same iteration as
above starts again. And at times t1 − t2, the number ek(t1) of a new
substitution {x2/a2} is computed and applied, as follows:
ek(t1) = g2 	 g3; the input signal vj(t2)wkj(t2) = wkj(t1) �
ek(t1) = g2 is the encoding of Q1(f(a1, a2));
dk(t2) = dk(t1)� ek(t1) = g2 is Q1(f(a1, a2)):

1

g2

��_^]\XYZ[dk(t2) = g2

whk(t2)=0⊕ek(t0)⊕ek(t1)
JJJ

JJJ
JJ

%%JJJJJJJJJ

?>=<89:;h

��
0⊕ ek(t0)⊕ ek(t1)

At time t2, new iteration will be initialised. But, because dk(t2) =
wkj(t2) = g2, the error signal ek(t2) = Dempty and the error-
correction learning rule will compute ∆wkj(t2) = Dempty. And
then, whk(t3) = 0⊕ ek(t0)⊕ ek(t1)⊕ 0.

Note that the neuron h finally emits the signal that contains both
substitutions computed by the network. The fact that the last symbol
of the list 0⊕ ek(t0)⊕ ek(t1)⊕ 0 is 0, tells the outer reader that the
unification algorithm finished its computations.

7 CONCLUSIONS
The main conclusions to be made from the construction of Theorem
1 are as follows:

• First-order atoms are embedded directly into a neural network.
That is, I allow not only binary threshold units (or binary truth
values 0 and 1) as in traditional neuro-symbolic networks [16, 17,
1], but also units that can receive and send a code of first-order
formulae.

• Numerical encoding of first-order atoms by means of neural net-
work signals and parameters forced us to introduce new functions,
	 and � that work over these encodings.

• Resulting neural network is finite and gives deterministic results.
• The error-correction learning recognised in Neurocomputing is

used to perform the algorithm of unification.
• Unification algorithm is performed as an adaptive process, which

corrects one piece of data relatively to the other piece of data.

Discussion
The main result of this paper can raise the following questions.
Does Theorem 1 really define a connectionist neural network?
The graph defined in Theorem 1 complies with the general defini-
tion of a neural network of Section 3. Indeed, it is a directed graph,
with usual parameters such as thresholds, weights, with potentials
and values computed using the same formulae as in Section 3. The
main new feature of these novel neural networks is the new data type
of inputs and outputs, that is the type of first-order terms.

Does the network really learn?
The network follows the same scheme of error-correction learning as
conventional error-correction learning neural networks, [12]. That is,
we introduce the desired response value dk in the neuron k, which
is repeatedly compared with the output value vk of the neuron k.
Through the series of computations, the network amends the weight
wkj in such a way that the difference between dk and vk diminishes.

10

This agrees with the conventional error-correction learning rule that
“trains” the weight of the given connection, and minimises the dif-
ference between the desired response and the output value. The main
novelty is that the error signal is defined using	, - the function com-
puting the difference between terms, as opposed to using conven-
tional “−” in Section 4. The error-correction learning rule is defined
using �, - the function applying substitutions, as opposed to using
conventional “+” in Section 4.

Can we use these neural networks for massively parallel compu-
tations?
There is no obstacles for composing the networks of Theorem 1. One
can unify arbitrary many sets S1, S2, Sn, using composition of n net-
works from Theorem 1 working in parallel.

What is the significance of these networks?
As was shown in [18, 19], the networks of Theorem 1 can be con-
veniently used to formalise the algorithm of SLD-resolution for
first-order logic programs. This construction can be further devel-
oped and refined in order to obtain the first neuro-symbolic theorem
prover. The main advantages of the networks simulating SLD res-
olution [18, 19] as opposed to those simulating semantic operators
[17, 8, 15, 7, 1] are their finiteness, possibility to extend to higher-
order terms and the use of unification and variable substitutions, as
opposed to working with ground instances of atoms and their truth
values in case of semantic operators. This opens new horizons for
implementing a goal-oriented proof search in neural networks.

Further work
The construction we have given here can be extended to higher-order
terms and atoms. This should be relatively easy, because we do not
depend on ground instances anymore.

Another direction for research would be to embed the neurons per-
forming unification into the existing neuro-symbolic networks, such
as those described in [7, 9].

The networks we present here can be useful for further develop-
ment of neuro-symbolic networks formalising inductive logic and in-
ductive reasoning.

Finally, we envisage to complete in the near future the full Coq
formalisation of Theorem 1.

ACKNOWLEDGEMENTS

I would like to thank Laurent Théry for Coq formalisations of func-
tions 	, � ([30]), and for stimulating discussions of the unification
algorithm in Coq.

I thank the anonymous referees for their useful comments and sug-
gestions.

REFERENCES
[1] S. Bader and P. Hitzler, ‘Dimensions of neural symbolic integration -

a structural survey’, in We will show them: Essays in honour of Dov
Gabbay, ed., S. Artemov, volume 1, 167–194, King’s College, London,
(2005).

[2] S. Bader, P. Hitzler, S. Hölldobler, and A. Witzel, ‘A fully connectionist
model generator for covered first-order logic programs’, in Proceedings
of the 20th International Conference On Artificial Intelligence IJCAI-
07, Hyderabad, India, (2007).

[3] S. Bader, P. Hitzler, and A. Witzel, ‘Integrating first-order logic pro-
grams and connectionist systems — a constructive approach’, in Pro-
ceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and
Reasoning, NeSy’05, eds., A. S. d’Avila Garcez, J. Elman, and P. Hit-
zler, Edinburgh, UK, (2005).

[4] J.A. Barnden, ‘On short term information processing in connectionist
theories’, Cognition and Brain Theory, 7, 25–59, (1984).

[5] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development, Coq’Art: the Calculus of Constructions, Springer-Verlag,
2004.

[6] A. Bove, General Recursion in Type Theory, Ph.D. dissertation, De-
partment of Computing Science, Chalmers University of Technology,
2002.

[7] A. d’Avila Garcez, K. B. Broda, and D. M. Gabbay, Neural-Symbolic
Learning Systems: Foundations and Applications, Springer-Verlag,
2002.

[8] H. W. Güsgen and S. Hölldobler, ‘Connectionist inference systems’, in
Parallelization in Inference Systems, eds., B. Fronhöfer and G. Wright-
son, Springer, LNAI 590, (1992).

[9] B. Hammer and P. Hitzler, Perspectives of Neural-Symbolic Integration,
Studies in Computational Intelligence, Springer Verlag, 2007.

[10] J. Harrison, Introduction to Logic and Automated Theorem Proving,
2004.

[11] S. Haykin, Neural Networks. A Comprehensive Foundation, Macmillan
College Publishing Company, 1994.

[12] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, 1990.
[13] P. Hitzler, S. Hölldobler, and A. K. Seda, ‘Logic programs and connec-

tionist networks’, Journal of Applied Logic, 2(3), 245–272, (2004).
[14] S. Hölldobler and F. Kurfess, ‘CHCL – A connectionist inference sys-

tem’, in Parallelization in Inference Systems, eds., B. Fronhöfer and
G. Wrightson, 318 – 342, Springer, LNAI 590, (1992).

[15] S. Hölldobler, ‘A structured connectionist unification algorithm’, in
Proceedings of the AAAI National Conference on Artificial Intelligence,
pp. 587–593, (1990).

[16] S. Hölldobler and Y. Kalinke, ‘Towards a massively parallel compu-
tational model for logic programming’, in Proceedings of the ECAI94
Workshop on Combining Symbolic and Connectionist Processing, pp.
68–77. ECCAI, (1994).

[17] S. Hölldobler, Y. Kalinke, and H. P. Storr, ‘Approximating the seman-
tics of logic programs by recurrent neural networks’, Applied Intelli-
gence, 11, 45–58, (1999).

[18] E. Komendantskaya, ‘First-order deduction in neural networks’, Sub-
mitted to the Journal of Information and Computation Postproceedings
volume of LATA’07, 26 pages, (2007).

[19] E. Komendantskaya, Learning and Deduction in Neural Networks and
Logic, Ph.D. dissertation, Department of Mathematics, University Col-
lege Cork, Ireland, 2007.

[20] R. A. Kowalski, ‘Predicate logic as a programming language’, in Infor-
mation Processing 74, pp. 569–574, Stockholm, North Holland, (1974).

[21] T. E. Lange and M. G. Dyer, ‘High-level inferencing in a connectionist
network’, Connection Science, 1, 181 – 217, (1989).

[22] J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 2nd
edn., 1987.

[23] D. Nauck, F. Klawonn, R. Kruse, and F.Klawonn, Foundations of
Neuro-Fuzzy Systems, John Wiley and Sons Inc., NY, 1997.

[24] J.A. Robinson, ‘A machine-oriented logic based on resolution princi-
ple’, Journal of ACM, 12(1), 23–41, (1965).

[25] A. K. Seda, ‘On the integration of connectionist and logic-based sys-
tems’, in Proceedings of MFCSIT2004, Trinity College Dublin, July,
2004, eds., T. Hurley, M. Mac an Airchinnigh, M. Schellekens, A. K.
Seda, and G. Strong, volume 161 of Electronic Notes in Theoretical
Computer Science, pp. 109–130. Elsevier, (2005).

[26] L. Shastri and V. Ajjanagadde, ‘An optimally efficient limited inference
system’, in Proceedings of the AAAI National Conference on Artificial
Intelligence, pp. 563–570, (1990).

[27] L. Shastri and V. Ajjanagadde, ‘From associations to systematic rea-
soning: A connectionist representation of rules, variables and dynamic
bindings using temporal synchrony’, Behavioural and Brain Sciences,
16(3), 417–494, (1993).

[28] P. Smolensky, ‘On the proper treatment of connectionism’, Behavioral
and Brain Sciences, 11, 1–74, (1988).

[29] L. Théry. Formalisation of unification algorithm, 2008.
[30] L. Théry. Functions for neural unification: Coq code, 2008.

www.cs.ucc.ie/˜ek1/Neuron.v.

11

The Reusable Symbol Problem
A position paper for NeSy’08

Matthew Cook
ETH Zürich

Abstract. Examining the major differences between how traditional
programs compute and our current understanding of how brains com-
pute, I see only one key gap in our ability to carry out logical reason-
ing within neural networks using standard methods. I refer to this
gap as the reusable symbol problem: How can neural systems use
multiply-instantiatable symbols to represent arbitrary objects? This
problem is fundamental and cannot be readily decomposed into sim-
pler problems. Solving this problem would solve many individual
problems such as the problem of representing relations between ob-
jects represented as neural activation patterns, the problem of im-
plementing grammars in neural networks, and the well-known bind-
ing problem [3] for neural models. In this paper I discuss the use of
reusable symbols and I give a concrete simple canonical example of
the reusable symbol problem.

Introduction
It is perfectly possible to train a neural network with logical data.
However, the learned logical system typically has a fixed structure,
on the order of the size of the neural network, and rules must be
learned at each position in the structure where they are to be used.
The network is unable to re-apply abstract logical rules at multiple
locations in the structure.

Some systems expressly designed for logical reasoning have been
enhanced with probabilistic capabilities, giving them many of the
benefits of neural systems (e.g. [2]), but at the top level they remain
rigidly structured, missing neural advantages at the highest level.

Solving the reusable symbol problem defined here would solve
several of the integration challenge problems of [1]. For example,
logical statements (including ones with quantifiers) can be processed
just as in formal logic, using axioms and axiom schemas as the
“larger patterns” (discussed below) into which reusable symbols are
placed, with the sequence of statements in a proof creating a coherent
structure much like the tiling in the problem discussed below. This
approach is not such a new idea (note the title and date of [4]), but
so far it has not been successful, simply because the reusable symbol
problem has not yet been solved.

In this paper, first I will examine in detail what symbols are and
how they are useful, then I will briefly dispel the illusion that pointers
are the key to the power of traditional computation (as compared with
neural network approaches), and finally I will give a clear instance
of the reusable symbol problem.

Symbols: a mechanism for encapsulation and reuse
The symbolic processing that arises in neural networks occurs among
a fixed set of symbols with fixed relationships to each other. The fixed

set of symbols is not so worrisome, as people also tend to be content
with existing symbols when manipulating information. But the fixed
relationships are a more of a problem. The reason we are happy to
use the symbols A and B over and over again is because we can
easily remap the relationships between them. If we are told that two
A’s must always be followed by a B, we can immediately understand
and apply this new constraint on old symbols. Perhaps surprisingly,
this is even easier to understand than using dedicated symbols for
this constraint, e.g. two ℘ς’s must always be followed by a ıC .

This sort of symbol reuse matches with our experience of pro-
gramming, but contrasts sharply with the kind of symbolic process-
ing that appears in neural networks (even in modern network archi-
tectures such as graphical model based designs). In these networks,
we typically do not have any notion of reuse of symbols.

We are so used to symbolic reasoning that it is worth reminding
ourselves what kinds of computational primitives are implicit when
one uses symbols. The most basic fact about a symbol is that it rep-
resents something. That is, there are two objects: the symbol, and
the object it represents. The symbol could be a letter representing a
mathematical variable, or a street sign representing a particular rule
of the road, or a name representing a variable in some computer code,
or a word representing an idea, or any of many other possibilities.
The symbol itself is typically relatively small, while the represented
object can be quite complicated. The symbol “stands for” the rep-
resented object, meaning that wherever the symbol appears, we un-
derstand that the represented object is essentially there (although this
substitution may be hard to imagine in cases such as a variable name
in code, or a particular bitmap representing a letter of the alphabet,
or other cases where the represented object does not have any other
practical form in which it could appear). This link from symbol to
represented object is one-way: the represented object is not tied to the
symbol, and could equally well be represented by any other available
symbol.

Importantly, a symbol can appear an arbitrary number of times.
Once we know how to recognize the symbol and what the symbol
stands for, we are ready to use the symbol. Using the symbol means
that the symbol can appear in some larger pattern which provides
a context for this instantiation of the represented object. This larger
pattern may be visual, or may be textual, or grammatical, or it may
simply be a fixed relationship between a fixed number of objects.
For example, the larger pattern could be “ comes between and

”, and this larger pattern might get filled with the symbols A, B,
and C, with A representing noon, B representing morning, and C rep-
resenting evening. The symbol carries the meaning of the represented
object into the larger pattern, meaning that the represented object has
some kind of structure, and the larger pattern indicates some kind of

12

structure between the elements of the pattern, and the symbol rep-
resents the presence of the represented object’s structure within the
structure of the larger pattern. Typically there exist constraints on the
represented object imposed either by the larger pattern itself or by the
larger pattern in conjunction with other represented objects that also
symbolically appear in the larger pattern. For example, in the above
example, if A represents noon and B represents morning, then C is
fairly strongly constrained to also represent a time, perhaps a time in
the afternoon or evening.

In language or imagery we are used to reasoning along lines like
“this can go here, that can go there,” meaning that certain symbols
can fit into the larger pattern in certain places, subject to the con-
straint that the represented object should fit well into the larger pat-
tern. Even when putting the pieces together of anything conceptual or
abstract, we appear to operate in terms of building up coherent larger
patterns of represented objects. In this construction process, why do
I say we are placing symbols? Why not skip the symbols and simply
place subpatterns into larger patterns? One reason is that if we reuse
an object, then in the result we know that the two instances are ex-
actly the same object, without having to inspect the subpatterns (ob-
ject instances) to see if all their details match. Another reason is that
pattern parts have their own structure of subparts, each part of which
again has its own structure of subparts, and so on, and it seems un-
reasonable to assume that this unbounded detail is copied into each
instance of pattern use, or even fully present in a single use. Symbols
break this cycle of substructure, allowing there to be parts whose de-
tails can be recalled only if needed. Symbols also obviate the need to
copy larger structures, limiting copying to duplication of symbols.

Symbols encapsulate their represented object, allowing multiple
uses of the object in larger patterns. This fundamental operation is
generally lacking in neural network models of information process-
ing.

Pointers and copying

One of the immediately noticeable differences between neural net-
works and computer programs is that programming languages have
pointers. For example, every data structure is found using a pointer.
Indeed, much of the symbolic manipulation carried out by computers
is done by using pointers as symbols for the objects they point to. As
with symbols, it is worth reminding ourselves how it is that pointers
are useful.

In computer memory a pointer is typically not replaced by what
it points to. Rather, the use of a pointer is to allow the CPU to find
(copy into the ALU) parts of the pointed-to object. Once an object
part has been copied to the ALU, data processing operations can be
performed, perhaps calculating another pointer. Finally, if part of an
object needs to change, that part is copied back into memory.

In the electronic hardware, data is represented by bits, which are in
turn represented by voltage levels, which are capable of existing on
(and importantly, traveling along) any set of wires. Indeed, we often
think of information processing in terms of data moving around.

Pointers are simply what allow this copying to occur. The pointers
themselves do not provide any great functionality – after all, neural
networks don’t have trouble finding information even without flexi-
ble pointers. Rather, it is the movability and copyability of the chosen
data format that lies behind our current approach to electronic com-
puting. (And it is our symbolic approach to reasoning that led us to
choose such a data format in the first place, having the properties
needed by symbols: copyability, and usability as the “address” of ad-
dressable memory, which is a one-way associative memory, just what

is needed for symbols.)
After decades of neuroscience electrophysiology experiments,

there is no evidence that the brain uses such copying operations (al-
though it cannot be ruled out with certainty, and there is not universal
agreement). Instead, in the brain, to the extent that we understand the
signals we find, they appear to have meaning based on their location
(which neuron), rather than based on a spatial or temporal pattern
which would have the same meaning even if coming from a com-
pletely different set of cells. This makes it unclear how symbolic
reasoning is performed in the brain.

The open problem
Here I propose a concrete canonical instance of the reusable sym-
bol problem. Solving this instance would clearly illuminate how this
problem could be solved in general.

The goal is to design a neural-style architecture (I will leave this
undefined) which permits activations corresponding to solutions of a
Wang tiling problem [4]. Wang tiles are square tiles (not to be rotated
or flipped) with a color on each edge. A tiling must use tiles from the
finite set of available reusable tiles to cover a grid. Two tiles may
be used at adjacent locations in the tiling only if they have the same
color on the edge where they meet.

The overall architecture of the neural network should consist of
two parts: a workspace, and a set of allowed tiles. Each of these may
be of a fixed size in a given network, although it should be clear how
to expand the network to allow a larger workspace or a larger set
of allowed tiles. The workspace should consist of some form of a
grid of positions where tiles may go. The set of allowed tiles should
be implemented in such a way so that if one wants to change the
definition of a tile, then this change can be made in one place, within
the “set of allowed tiles” portion of the architecture.

This problem is easily solved by a Markov random field if ev-
ery location in the workspace knows about the set of possible tiles
and their color constraints. The problem with this solution is that ev-
ery location in the workspace must be independently trained to learn
which tiles can go next to which other tiles. In other words, it violates
the constraint that a tile definition should only appear in one place.

The challenge is to solve the problem using reusable symbols
(whose implementation I also leave undefined). The workspace
should be fillable with symbols which represent tiles from the set
of allowed tiles, but this should only be stable when done in ways
that satisfy the matching edge color constraints.

If this problem could be solved in a neurally plausible way, es-
pecially in a way that allows the set of allowed tiles to be learnable
from example tilings, then this would represent a significant advance
in our understanding of how neural systems can perform symbolic
processing.

REFERENCES
[1] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler, ‘The integration

of connectionism and first-order knowledge representation and reasoning
as a challenge for artificial intelligence’, Journal of Information, 9(1),
(2006).

[2] Kathryn Laskey and da Costa Paulo, ‘Of starships and klingons:
Bayesian logic for the 23rd century’, in Proceedings of the 21th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-05), pp. 346–
353. AUAI Press, (2005).

[3] Christoph von der Malsburg, ‘The correlation theory of brain function’,
Technical Report 81-2, Max Planck Institute for Biophysical Chemistry,
(1981).

[4] Hao Wang, ‘Proving theorems by pattern recognition II’, Bell System
Technical Journal, 40, 1–42, (1961).

13

Symbolic Computing with Incremental Mind-maps to
Manage and Mine Data Streams - Some Applications

Claudine Brucks and Michael Hilker and Christoph Schommer
and Cynthia Wagner and Ralph Weires 1

Abstract. In our understanding, a mind-map is an adaptive en-
gine that basically works incrementally on the fundament of ex-
isting transactional streams. Generally, mind-maps consist of sym-
bolic cells that are connected with each other and that become either
stronger or weaker depending on the transactional stream. Based on
the underlying biologic principle, these symbolic cells and their con-
nections as well may adaptively survive or die, forming different cell
agglomerates of arbitrary size. In this work, we intend to prove mind-
maps’ eligibility following diverse application scenarios, for exam-
ple being an underlying management system to represent normal and
abnormal traffic behaviour in computer networks, supporting the de-
tection of the user behaviour within search engines, or being a hidden
communication layer for natural language interaction.

1 ABOUT MIND-MAPS

Transactional streams are to be understood as an endless flow of data
that is lost once it is read. Furthermore, the data can be classified into
categories, for example sentences or paragraphs inside a text doc-
ument. These categories form the transaction, having items inside,
for example words or paraphrases. An example for a transactional
stream may be the reading of a book, where the text is read exactly
once but lost if it is pronounced. The management, and moreover,
the analysis of transactional streams is often problematic for several
reasons. One of them is that data streams are potentially infinite or
at least their end is not known until it is actually reached. Storing
the whole data stream is therefore not an option, and the analysis
cannot rely on traditional mining techniques that require the whole
dataset to be available or that need random access or multiple passes
over the data. Currently a lot of research focuses on the processing of
such streams of different kind. Some of the typical techniques used
with data streams are sliding windows, incremental approaches, or
synopses of the data. Surveys of current methods and issues can be
found in [4], [7], [9], [18].

With the discussion around mind-maps, we argue for its eligi-
bility by demonstrating its applicability on a couple of algorithmic
ideas. In our understanding, mind-maps are to be seen as adap-
tive and incremental knowledge structures, which live from depend-
ing on the occurrence of an input stream. A first approach in stream
data analysis with mind-maps had been done in the processing of
transactional streams with the creation of mini-networks. These
base on transactional data ([19]), the mini-network consists of simple

1 University of Luxembourg, Campus Kirchberg, Dept. of Computer Science
and Communication (CSC). MINE Research Group @ ILIAS Laboratory.
Address: 6, Rue Coudenhove Kalergi, 1359 Luxembourg, Luxembourg.
Email: { name . surname } @ uni.lu

symbolic cells that share a weight value and that represent an individ-
ual item in a transaction. The symbolic cells are interconnected with
other cells that occur in the transaction as well. In a subsequent step,
the mini-network becomes integrated to the mind-map itself, where
those cells become merged with those in the mind-map in case that
they are identical (merge). Using the fundamental principle of adap-
tation and Hebbian Learning, the mind-map can be seen as a living
engine as it is initially empty but grows over time. Since the states of
connections and cells change over time the cells may die or revive as
well. Focusing on the skeleton of the mind-map, a retrieve yields
on delivering the strongest cell connections.

Although mind-maps often refer to such a structure to process
fluid signals like text streams, mind-maps often claim to have its as-
sociative nature as the fundamental principle. This is true, however,
we believe that a temporal character of such systems may be accepted
as well to manage temporal stimulation that comes in. Secondly,
mind-maps can be seen both from a verificative and an explorative
perception: talking about mind-map software mostly refers to a top-
down directed production of logically connected entities, for exam-
ple work-flows or coherent cogitations ([5], [8], [10]), whereas the
word of explorative more related to a learning or discovering
process of such logical structures. In this respect, the following ap-
plications refers to the second class of mind-maps and present some
algorithmic ideas for the temporal processing of text streams to map
contextual information. A simple implementation of mind-maps is
the system ANIMA. It refers to a mind-map model of incremental and
adaptive nature and allows to manage associations between symbolic
cells while having a transaction stream as input. The aim of ANIMA
is the efficient processing and management of transactions over time,
to present related patterns inside a stream [19].

2 APPLICATIONS
2.1 TARGETING NETWORK PROTECTION
Network-based anomaly detection [11] [21] refers to a system-based
understanding of what the structure and the behaviour of network
traffic is, and in this respect to identify abnormal situations. Here,
the mind-map model ANIMA-AR is implemented to represent net-
work traffic events while having network packets including header
and content as one transaction, is one promising application. It frag-
ments such packet transactions into meaningful symbolic cells within
the mind-map and connects the packet cells. Additionally, connec-
tion values are established relating to the corresponding frequencies,
respectively. Due to the architecture, we may rate the usual network
traffic by a lower connection weight - although the frequency is high
- but may rate an abnormal/unusual network behaviour by a higher

14

value - although it appears more seldom. We identify the abnormal
traffic as it is rated significantly and therefore tolerant against tem-
poral connection updates between the symbolic cells. The follow-
ing sequence of pictures gives an example on how the mind-map is
used; it refers to the management of bad signatures as described in
[11], taking several insertion rules into account. First, the incoming
signature ABC is considered and assigned to symbolic cells, being
equal-weighted.

Then, if a new signature CDEF is added to the mini-network, and
the weights are adapted. At each step, substrings are considered and
evaluated as follows: given a sub-string, then if the sum of all activa-
tion states . . .

• . . . is exactly 1, then a virus alert takes place.
• . . . is exactly 0, then no virus alert takes place.
• . . . is between 0 and 1, an alert takes place with a probability value.
• . . . increases 1, then it is not considered.

For example, ABC forces a virus alert as it is infected for 100%,
whereas only H is unlikely to be infected. To continue the example,
as C is already known, this value stays constantly.

The following photographs of the mind-map refers to the situation
when the signatures CDE

and CDGH are being inserted. With this, the probability values for
each signatures is clearly available through the whole life-time of the
mind-map. More information can be found in [11].

The mind-map model ANIMA-AR is implemented to detect well-
known viruses. The signature of viruses is stored in a graph-like
structure; virus signatures are managed and stored, incoming packets
- to identify intrusions - evaluated. The scanning speed and the re-
quired storage space outperforms current approaches and emerges
out of the compression of the signature database. ANIMA-AR is
theoretically analysed showing that viruses and similarities are de-
tected. Simulations substantiate the theoretical analysis and show
the low false-positive rate tolerating the normal system. In addition,
ANIMA-AR is able to automatically detect similar viruses as small
mutations or new variants.

2.2 MANAGING IMPLICIT FEEDBACK
The consideration of implicit feedback in the field of information re-
trieval and the automatic collection of information about the user’s

behaviour [15] [24] is an application of interest. Without an explic-
itly request of information, we intend to gain some information about
what really interesting is. The aim is to use the mind-map as an adap-
tive storage for such kind of information and consequently, for the
enhancement of user-based research requests. We therefore moni-
tor the user’s behaviour in interaction with a search engine, keeping
an eye on queries and their results, links that the user follows, and
diverse time-related information, for example how long he or she
stays on web sites. Search sessions like this are considered as sin-
gle transactions for the mind-map. And, building up such a network
provides information about typical queries, results, and measures, es-
pecially regarding the relevance of search results, namely towards an
enhancement of further queries.

An example might be a giving of additional hints or altering the re-
sults themselves. One concrete step is a re-ranking of search results,
which may help to place those results further on the top of the list that
are probably of greater importance according to the given query. Fol-
lowing this, the strengthens of the mind-map are mainly due to the
ability to cope with transactional streaming data. We concern with
information about search sessions of users, which can easily be bro-
ken down into transactions. Moreover, the mind-map is able to store
only the most important aspects of the information without the need
of storing all feedback data. This helps to keep the network at a rea-
sonable size. Furthermore, the dynamic nature of this mind-map fits
quite well to the purpose of this approach: if there is a change of
the user’s feedback over time, then this trend will be reflected in the
mind-map as well. Figure 1 shows an architectural snapshot of the
mind-map, where we use three different types of cells:

• The query terms are single terms that are observed in user queries.
• Queries that form the transactional input to the mind-map.
• The resulting list of documents that have been provided by the

underlying search engine for one or more queries.

Figure 1. Architecture of the mind-map [24]

There may exist different connections between these nodes, which
might be weighted indicating the strength of the relationship. These
are for example connections that indicate relationships between dif-
ferent query terms, connections between queries and query terms,
and connections between queries and documents. More information
can be found in [24] [25].

2.3 TARGETING DBLP
Bibliographical databases such as Citeseer, Google
Scholar, and DBLP serve as a bibliographic source with lots
of information concerning a publication. This compounds the names

15

of the authors, the publication title, the conference, and many other
attributes. A bibliography database is accessible online, where all
entries share an electronic index to articles, journals, magazines, etc.
containing citations and abstracts. Understanding the bibliographic
database as a digital collection that is intelligently managed and that
supports a search for and the retrieve of bibliographic information
to defined queries is a convenient procedure in demanding infor-
mation right in time. Regularly, the retrieve bases on a collection
of queries that consists of keywords in the publication title or the
keyword list. For example with DBLP, the querying using a keyword
plagiarism leads to an answer set of almost 70 articles, and a
search refinement with detection and pattern to 34 and 2
bibliographic entries, respectively. Accordingly, the two referenced
publications pledge close; and the names of the authors overlap:

1 NamOh Kang, Sang-Yong Han: Document Copy
Detection System Based on Plagiarism Patterns.
CICLing 2006: 571-574.
2 NamOh Kang, Alexander F. Gelbukh, Sang-Yong
Han: PPChecker: Plagiarism Pattern Checker in
Document Copy Detection. TSD 2006: 661-667.

With this, we reference to a graph structure representing the as-
sociation of the three authors Han, Kang and Gelbukh. This is
similar to [12] who introduces mini-networks. The double edges sig-
nalise a double connection as the single (and parallel) edge between
Han to Gelbukh and Kang to Gelbukh refers to a one-way asso-
ciation. Whereas the meaning of a double connection is unique while
having two publications, the double entries to Gelbukh seem to be
ambiguous: on the one side, it refers to one common publication with
both individually, on the other to two single publications with one of
the other authors. However, the graph is node-oriented in a way that
it simply represents the situation as it is: Gelbukh has one common
publication with both of them, and here, it plays no role if this is a
common one or not.

For static databases, the discovery of associative patterns has been
an area of extensive research, and multiple approaches and solutions
to the static problem have been presented in the past. A major prob-
lem in these approaches is the combinatorial explosion of the search
space and the research has therefore mainly focused on reducing this
space. Since mind-maps are targeted to data streams, it can not pos-
sibly make use of the methods developed for static databases, since
these algorithms require multiple passes over the data to calculate
frequencies of associated items. This is indeed not acceptable when
dealing with data streams, because data streams are potentially in-
finite, or at the very least their end cannot be foreseen. In this re-
spect, the idea of searching for temporal patterns in a bibliographic
database like DBLP while taking the time as the core medium leads
to a couple of interesting questions, for example

• In general, may we discover scientific communities? While ob-
serving the visualisation of associative relationships between au-
thors, we might ask if such dependencies generally form a com-
munity, and secondly, how strong these communities may be. Fur-
thermore, if dependencies of of communities exist, are these tem-
poral or visiting, recurring, or constant as it has been mentioned
in section 1?

• Do there exist diverse trends in publishing? For example, the oc-
currence of a common publication may be the initiator for a fruit-
ful collaboration (which is proven by following publications on
the same or a different research topic)

With this, we may perform mind-mapping over a period of time,
for example moving a corresponding window temporarily over time.

Figure 2. Temporary mind-map (DBLP, year of 1993), consisting of
associated author nodes.

2.4 SEMANTIC NET-LEARNING
The mind-map model WYWI stands for a simple communication
paradigm that focus on natural language communication. The model
uses a mind-map to manage words and their relationship to others
associatively. A sentence is read incrementally and threatened as a
transaction with concepts and roles. Currently, only adjectives,
nouns, and verbs are considered as worth, they are extracted and put
into the mind-map as a semantic structure. Adjectives are considered
as sub-concepts of nouns. For example,

#S(CONCEPT :NAME MAN :CAT N :FATHER (ROOT)
:CHILDREN (YOUNG) :ROLES (READ) :ACT 0.9577)

#S(ROLE :NAME READ :CAT V :CONNECTION ((MAN
BOOK 0.9577)) :ACT 0.9577)

#S(ROLE :NAME SEE :CAT V :CONNECTION ((LION
PETER 0.8253)) :ACT 0.9014)

Here, the word READ acts as relationship (role) connects both
MAN and BOOK, sharing a connection and activation value of 0.9577,
respectively. Other roles exist, but are unrelated. Each time-step, the
activation values are decreased unless the role or the associated con-
cepts remain inactive. As for the ANIMAmind-map model, the under-
lying net structure is refreshed after each transaction; it adapts to the
given stimulation. However, WYWI does not use any extern source
(for example thesaurus) but actively interacts with the user in case
a word is unknown. This is to understand the morphologic basis or
the lexical category. WYWI also establishes a semantic representation
through micro-features: here, the user must rate a word semantically
against given (predefined) entities. This produces a k-dimensional
space, having k as the number of independent micro-features, for ex-
ample

...
MAN is ((1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 ...))
LION is ((0.0 0.0 0.0 0.0 0.7 0.0 0.4 ...))
...

The communication in WYWI is performed as a conversation.
For a sentence like The yellow lion sees Peter, the word

16

YELLOW becomes a sub-concept of a word LION, whereas LION
and PETER are connected by SEE. Additionally, SEE is becomes
higher activated. Additionally, all concepts are represented in the k-
space. As a consequence, transactional (dialogue) stream can be pro-
cessed and queries be sent at each time.

...
WYWI: (ENTER THE NEXT WORD OR CLOSE BY ’-’)
USER: Peter
WYWI: COULD YOU PLEASE GIVE SOME EXPLANATION,

LIKE THE MORPHOLOGIC BASIS?
USER: Peter
WYWI: AND WHAT IS THE LEXICAL BASIS OF peter?
USER: person
WYWI: I NEED SOME SEMANTIC INFORMATION ABOUT

peter. HAVE A LOOK AND RATE peter FROM
0 to 1:
TALL?

USER: 0.9
WYWI: And with HEAVY?
...

An extended version of the semantic net-learning from text
streams is to define a temporal mind-map for a certain actor of a
text: where the text stream is consolidated over time by a seman-
tic graph structure. In this work, an important issue for building an
author-related mind-map is the resolution of linguistic anaphors.

So far, the major idea is to process each sentence incrementally
so that a general and pre-defined scheme structure of subject -
verb - object is instantiated every time ([14]). At the moment,
we only concern with nouns, verbs, and adjectives, where other lin-
guistic categories are disregarded. In this respect, verbs act as a role
between the concepts (noun, object). Each concept may have sub-
concepts that correspond to attributes, for example the sentence the
old man likes the green juicy grassland is trans-
lated into

Figure 3. A semantic graph having man as the centric concept. Attributes
are adjunct by dashed lines, whereas roles are connected as a circle.

Figure 4. The anaphor he is recognized as to be related to man, whereas
the two sentence structures are merged by the concept man.

where man and grassland represent main concepts and
green, juicy, and old sub-concepts. The process of relating
identical concepts together is accomplished by a matching of iden-
tical words and a resolution of linguistic anaphors ([13], [17]). The
following Figure 4 shows the semantic structure after having read the
sentence He walks into the forest.

So far, the incremental processing of texts can be stopped at any
moment. The semantic structure is a mind-map with concepts and
relationships of consistent states. Beside focusing on the elaboration
of methods to realize pronominal anaphora and co-reference in text
streams, we will assign weight values to concepts and roles in order
to prove their importance for an actor.

The idea of content zoning is to refer to a segmentation of a text
document into semantic zones. As indicated in [3] and moreover as
firstly discussed in [22] with Argumentative Zoning, the basic
idea here is to structure texts on the basis on pre-defined categories.
An example might be the following text, having the actors Harry,
Hedwig, and owl:

“Harry got up off the floor, stretched, and moved across to his
desk. Hedwig made no movement as she began to flick through news-
papers, throwing them into the rubbish pile one by one. The owl was
asleep or else faking; she was angry with Harry about the limited
amount of time she was allowed out of her cage at the moment. As
her neared the bottom of the pile of newspapers. Harry slowed down,
searching for one particular issue that he knew had arrived shortly
after he had returned to Privet Drive for the summer, he remembered
that there had been a small mention on the front about the resignation
of Charity Burbage, the Muggle Studies teacher at Hogwarts.”

an then be zoned to
• Harry <ACTOR=HARRY> got up off the floor, stretched,

and moved across to his (→his ⇒ HARRY) desk.
</ACTOR=HARRY>

• Hedwig <ACTOR=HEDWIG> made no movement as she (→she
= HEDWIG) began to flick through newspapers, throwing them
(→them = newspaperss) into the rubbish pile one by one.

• The owl <ACTOR=OWL> was asleep or else faking; she (→she
= OWL) was angry with Harry (→Harry = HARRY) about the
limited amount of time she (→she = OWL) was allowed out of
her (→her⇒ OWL) cage at the moment. As her (→her⇒ OWL)
neared the bottom of the pile of newspapers, </ACTOR=OWL>.

• Harry<ACTOR=HARRY> slowed down, searching for one par-
ticular issue that he (→he = HARRY) knew had arrived shortly
after he (→he = HARRY) had returned to Privet Drive for the
summer, he (→he = HARRY) remembered that there had been
a small mention on the front about the resignation of Charity
Burbage, the Muggle Studies teacher at Hogwarts. At last he
(→he = HARRY) found it.</ACTOR=HARRY>

where linguistic anaphors are solved depending on the current ac-
tor, the gender, and/or between different candidates that have already
occurred in the text. Knowing that the owl has the name Hedwig,
and moreover, having a hierarchy on site, the zoning can be updated
even more. An additional analysis can be performed to gain further
information about the separate zones. Rather simple to extract infor-
mation could be statistics about the size and layout of zones, but a
more sophisticated analysis of their text content is possible. The lat-
ter can lead to an extraction of the semantic content and purpose of
a zone. Such kind of information can be used for various purposes,
such as comparing documents to each other (regarding their analysed
zone structure and content) by simply refering to information about
the zones as zone variables ([3]).

We apply content zoning to text streams in order to establish a
semantic mind-map, while using a sliding window of user-specified

17

length; text is buffered in, immediately zoned and analysed. Inter-
mediate statistical results are managed to produce a user specific
summary on a given subject. The definition of zones is insufficient
to an effective zoning as zones only indicate a position of an in-
formation in the text, but do less give information about the con-
tent. A solution might be the introduction of zone variables, which
describe the content of the input stream and are the core parame-
ters for the summary generation. In this respect, we concern with
two categories of zones, namely document independent and
document dependent zones, for example the position of the
zone in the text stream, its length or the most occurring word (with-
out stopwords). During the zoning process, nearly all sentences are
attributed to zones. Useless sentences and sentences which cannot be
attributed to a zone are skipped or can be regrouped a user-defined
zone. After different steps as anaphor resolution for example, the val-
ues of the variables are used for statistical evaluations to generate a
summary on a user specific subject. During the process of buffering
and processing the text streams, there is an option of real-time eval-
uation, so that changing values are immediately visible to the user.
At each instant, the user has the possibility to call a summary on a
previously defined subject, as for example an actor of a fairy tale.
But, also less sophisticated results as the top most occuring words or
collocations can be called at each moment.

3 CONCLUSIONS

A mind-map is an adaptive engine that basically works incrementally
on the fundament of transactional streams. Following our model,
mind-maps consist of symbolic neural cells that are connected with
each other and that become either stronger or weaker depending on
the transactional stream: based on the underlying biologic principle,
these symbolic cells and their connections as well may adaptively
survive or die, forming different cell agglomerates of arbitrary size.

With that, mind-maps may be applicable for the management of
trust as well: every human shares an own attitude about others, for
example Person R has an attitude to Person S and vice versa.
Both are probably different from each other and different to Person
T’s view to Person R or Person S. Furthermore, one might get
the conclusion if Person R trusts Person S but not vice versa.
With this approach, we may follow a proposition by [16] who sug-
gests a model on human conversations. The attitude of someone’s
mind is modelled as a self-organising mind-map. Every person has
a model of his/her view of the world and models for other people
whom he/she has interacted with. All views including a self view
and views to other persons (others) will be modified through conver-
sations between people. We therefore intend to introduce an engine
to find regularities between human’s objects and to model trust based
on this. The creation of an artificial mind-map, where a textual data
stream is read and represented in an associative dynamic network.
Each incoming stream is decomposed to its items, for example a text
stream may be decomposed to words.

ACKNOWLEDGEMENTS

This work has been done at the MINE research group at the Labo-
ratory for Intelligent and Adaptive Systems across several research
projects funded by the University of Luxembourg and the Ministry
of Higher Education.

REFERENCES
[1] D. J. Abadi, D. Carney, U. Centitemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonkik: Aurora: a new model and
architecture for data stream management. The VLDB Journal. 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Mot-
wani, U. Srivastava, and J. Widom: STREAM - The Stanford Data Stream
Management System, Stanford University, 2004.

[3] C. Brucks, M. Hilker, C. Schommer, C. Wagner, and R. Weires: Semi-
automated Content Zoning of Spam Emails. Lecture Notes on Business
Information Processing (Springer). 2008. (to appear)

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom: Models and
issues in data stream systems. In Proceedings of PODS, 2002.

[5] K. Chen-Chuan Chang, H. Garcia-Molina: Mind Your Vocabulary: Query
Mapping Across Heterogeneous Information Sources. SIGMOD Confer-
ence 1999: 335-346.

[6] Digital Bibliography & Library Project, Computer Science Bibliography,
University of Trier, http://dblp.uni-trier.de/.

[7] P. Domingos, and G. Hulten: Catching up with the data. Research issues
in mining data streams. In Workshop on Research Issues in Data Mining
and Knowledge Discovery, Santa Barbara, CA, USA, May 2001.

[8] M. J. Eppler: A comparison between concept maps, mind maps, concep-
tual diagrams, and visual metaphors as complementary tools for knowl-
edge construction and sharing. Information Visualization 5(3): 202-210
(2006).

[9] L. Golab, and M. T. Ozsu: Issues in data stream management. SIGMOD
Record, 32(2):514, June 2003.

[10] L. M. Haas: Review - Mind Your Vocabulary: Query Mapping Across
Heterogeneous Information Sources. ACM SIGMOD Digital Review.

[11] M. Hilker, and C. Schommer: Description of bad-signatures for network
intrusion detection. In AISW-NetSec 2006 during ACSW 2006, CRPIT,
volume 54, Hobart, Australia, 2006.

[12] C. Kemke. Connectionist Parsing with Dynamic Neural Networks: Tech-
nical Report, Computing Research Laboratory, New Mexico State Univer-
sity, 2001.

[13] S. Lappin and H. J. Leass: An algorithm for pronominal anaphora reso-
lution. Computational Linguistics, 20(4):535 561, 1994.

[14] J. Leskovec, N. Milic-Frayling, and M. Grobelnik: Impact of linguis-
tic analysis on the semantic graph coverage and learning of document
extracts. In M. M. Veloso and S. Kambhampati, editors, AAAI, pages
10691074. AAAI Press / The MIT Press, 2005.

[15] L. Liu, C. Pu, and W. Tang: Continual Queries for Internet Scale Event-
Driven Information Delivery. IEEE Knowledge and Data Engineering,
1999.

[16] C. Miller: Modeling Trust in Human Conversation. 2005. Master Thesis,
Massachusetts Institute of Technology, Dept. of Computer Science and
Engineering.

[17] R. Mitkov: Robust pronoun resolution with limited knowledge. In
COLING-ACL, pages 869875, 1998.

[18] S. Muthukrishnan: Data streams - Algorithms and applications. In Pro-
ceedings of the 14th annual ACM-SIAM symposium on discrete algo-
rithms, 2003.

[19] C. Schommer: Incremental Discovery of Association Rules with Dy-
namic Neural Cells. Proceedings of the Workshop on Symbolic Networks.
ECAI 2004, Valencia, Spain, 2004.

[20] C. Schommer, and B. Schroeder: ANIMA - Associate Memories for Cat-
egorical data Streams. Proceedings of the 3rd International Conference on
Computer Science and its Applications (ICCSA-2005). San Diego, USA.

[21] M. Sullivan: A Stream Database Manager for Network Traffic Analy-
sis, Bell Communications Research, Morristown, NJ 07960, 22nd VLDB
Conference, Mumbai, India, 1996.

[22] S. Teufel: Argumentative Zoning: Information Extraction from Scientific
Text. 1999. Phd Thesis, University of Edinburgh, England.

[23] Ö. Uzuner, R. Davis, B. Katz: Using Empirical Methods for Evaluating
Expression and Content Similarity. MIT, Computer Science and aritificial
intelligence Laboratory, 200 Technology Sq.NE43-825

[24] R. Weires. B. Schroeder, and M. Hilker. Dynamic association networks
in information management. In Proceedings of the 4th International Con-
ference on Machine Learning and Data Analysis (MLDA). 2007.

[25] R. Weires, C. Schommer, and S. Kaufmann: SEREBIF - Search Engine
Result Enhancement by Implicit Feedback. 4th Intl Conference on Web
Information Systems and Technologies (WebIst 2008). Poster Presenta-
tion. Funchal, Madeira. 2008.

18

Guiding Backprop by Inserting Rules
Sebastian Bader1 and Steffen Hölldobler2 and Nuno C. Marques3

Abstract. We report on an experiment where we inserted symbolic
rules into a neural network during the training process. This was done
to guide the learning and to help escape local minima. The rules are
constructed by analysing the errors made by the network after train-
ing. This process can be repeated, which allows to improve the net-
work performance again and again. We propose a general framework
and provide a proof of concept of the usefullness of our approach.

1 Introduction and Motivation
Rule insertion prior to training can lead to faster convergence and to
better results (see e.g. [9, 4]). Here, we will investigate whether we
can do this repeatedly during the training process.

Artificial neural networks are a very powerful tool to learn from
examples in high dimensional and noisy data. Standard feed-forward
networks together with back-propagation of errors have been suc-
cessfully applied in many domains. However, in most domains, at
least some background knowledge in form of symbolic rules is avail-
able. And this knowledge can not be used easily. As mentioned
above, there have been studies in which this knowledge is embed-
ded prior to the training. But there is no way to guide the learning
process using this rules.

The following observations have triggered this research:

• Very general rules, i.e., those that cover many training samples,
are quickly acquired by back-propagation. And hence, embedding
those rules does not help too much.

• Very specific rules that are embedded prior to the training will
very likely be overwritten by newly learned rules.

• We can analyse the errors made by the network to obtain correct-
ing rules.

In the area of natural language processing, the combination of rule
based and machine learning based methods seems to be very promis-
ing. Recently, we showed that we can accuracy by inserting symbolic
rules into an artificial neural network [7]. We believe that we can even
improve even further if we embed rules repeatedly during the train-
ing. In this paper, we will describe how to do this and why we believe
that this seems to be a good idea.

We propose a general method to guide the training of artificial
neural networks. Our approach is based on the repeated embedding
of rules during the training. Here, we will focus on the description
of an experiment to verify our claims. This paper is only meant to
be a case study and to serve as a proof of concept. And shall be the
starting point for a bigger investigation. We are currently preparing
larger experiments in the area of natural language processing.
1 International Center for Computational Logic (ICCL), Technische Univer-

sität Dresden, Germany, email: sebastian.bader@inf.tu-dresden.de
2 ICCL, email: sh@iccl.tu-dresden.de
3 Centria, DI-FCT-UNL, Lisbon, Portugal, nmm@di.fct.unl.pt. Work devel-

oped while the author was a visiting the ICCL.

2 Preliminaries
We assume the reader to be familiar with basic concepts of neural
networks and the training by back-propagation as e.g., described in
[8] and implemented in [10]. Here, we will only use simple three
layer fully connected feed-forward neural networks applying the
tanh-function in hidden and output layer. We will train them using
back-propagation without enhancements like e.g., momentum and
fixed learning parameters.

The rules we will use here, are simple propositional if-then rules.
Each rule consists of multiple preconditions which have to be sat-
isfied simultaneously, and a single atomic consequence. Below we
will study a classification task for tic-tac-toe boards, hence the conse-
quence will be the class and the preconditions will be (partial) board
descriptions.

3 A General Method for Guiding Backprop
Our approach, is based on the repeated modification of the network
during the training. After a number of training cycles, the errors made
by the network are analysed. This analysis should yield a rule that
can be used to correct some of the errors. We can now embed the
rule into the network and continue with the next epoch. This process
is depicted in Figure 1. As we will see below, this will help the net-
work to escape local minima during the training. To summarise, our
approach works as follows:

1. Initialise the network.
2. Repeat until some stopping condition is satisfied:

(a) Train the network for a given number of cycles.
(b) Analyse the errors of the network to obtain correcting rules.
(c) Embed the rule(s) into the network.

In the sequel, we will show that this works using a simple classi-
fication task. This is only meant to be a proof of concept, and not to
show the superiority of this method in general.

N

N ′

Rules

initialisation training

ana
lysi

s

em
be

dd
in

g

Figure 1. The rule-insertion cycle.

19

4 The ”Tic-Tac-Toe” Classification Task
We used the ”Tic-Tac-Toe Endgame Data Set” of the UCI Machine
Learning Repository [1] for our experiments described below. The
data set contains all 958 possible board configurations that can be
reached while playing Tic-Tac-Toe starting with player X. Each con-
figuration contains a description of the board and is classified as win
or no-win for player X. A player wins the game, if he manages to
place 3 of his pieces in a line. The board contains 3 × 3 cells and
each cell can be marked by either x or o, or can be blank (b). Possi-
ble samples are [x, b, o, o, x, o, x, b, x]+, [x, x, o, o, o, x, x, o, x]− and
[x, o, x, o, o, b, x, o, x]−. The corresponding boards are shown in Fig-
ure 2 from left to right. The goal of the task is to decide whether a
given board is a win-situation for player X or not.

x o

o x o

x x

x x o

o o x

x o x

x o x

o o

x o x

Figure 2. Three board configurations, showing a win for player X, a draw
and a win for player O, i.e., this are one positive and two negative examples.

4.1 A Network to Classify Board States
We used a simple 3-layer feed-forward network with tanh as activa-
tion function in all units. It contains 9 × 3 = 27 units in the input
layer, that is three for each of the nine position on the board, cor-
responding to the three possible states. For each of this triples we
used an 1-out-of-3 activation schema. If a cell contains for example
an “x” the x-unit for this cell will be activated by setting the to output
1, while the o and b-units are set to -1. Initially, the network con-
tains one hidden units and one output unit. A board state is fed into
the network by activating the appropriate input units. This activation
pattern is propagated through the network and the networks decision
can be read from the output unit. If its activation is greater than 0 the
network evaluates the board as a win for player X, and as a no-win
otherwise. Figure 3 shows the network used in our experiments. We
will now continue by detailing the general steps of our method as
introduced in Section 3.

Initialising the Network We initialised the network with a single
hidden units and all connections as well as the bias of the units were
randomised to values between −0.2 and 0.2.

Training the Network The network was trained using standard
back-propagation in the SNNSimulator [10]. We used simple back-
propagation without any additions. The learning rate was set to
η = 0.1. During each epoch we presented all samples 100 times
to the network.

Analysis of the Errors to Obtain Correcting Rules After the train-
ing, we presented all samples again to the network and compared the
networks output to the desired output. All samples where the differ-
ence between the computed and the desired output was greater than
0.5 were collected and grouped into positive and negative samples.
Depending on whether there have been more errors on positive or on
negative samples, we continued with the bigger set. From this set, we
constructed a template that is as accurate as possible and at the same
time as general as possible. This was done by repeatedly selecting a

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

Figure 3. A 3-layer fully connected feed-forward network with 27 input
(rectangular), 6 hidden (cyclic) and a single output (cyclic) unit to classify
Tic-Tac-Toe boards. The 27 input units are arranged like the board itself.

Positive connections are shown as solid lines, while negative ones dashed.
The width corresponds to the strength and small connections are omitted.

cell and a value such that most erroneous samples agree on this. This
is a variant of the “Learn one rule”-algorithm as used in sequential
covering algorithms, but considers only one class [8].

The following rule was constructed from 99 wrongly classified
sample: [b13, b3, o23, x43, x34, x70, o7, b1, b1] 7→ +. The subscripts
show the percentage of the 99 samples which agree on the value.
E.g., 13% of those samples had an empty upper left corner and 34%
an x in the centre. We constructed the rule template by ignoring all
entries with a support < 20%. This resulted in the following template
[?, ?, o, x, x, x, ?, ?, ?] 7→ +, which actually covers 38 of the samples.

Embedding Rules into the Network The rules constructed above,
are embedded into the network following the general ideas of the
Core Method as specified in [5], [4] and [3]. A new hidden unit is
inserted into the network and the connections and the bias are set
up such that this unit becomes active if and only if the input of the
network coincides with the rules precondition.

Let us use the rule [?, ?, o, x, x, x, ?, ?, ?] 7→ + to exemplify the
idea. For all entries different from ?, a connection with weight ω
from the input unit corresponding to the value and connections with
weight −ω from the other two units are created. E.g., the x-unit for
the central cell is connected to the new hidden unit with weight ω,
while the corresponding o and b-units are connected with weight−ω.
All connections from input units for cells marked ? in the template
have been initialised to 0.0. And the connection to the output unit
has been set to ω for positive rules and to −ω otherwise. The result
is shown in Figure 4. Finally, all connections have been slightly dis-
turbed by adding some small random noise from [−0.05, 0.05]. In
the experiments described below we used different values for ω.

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

Figure 4. The embedding of the rule [?, ?, o, x, x, x, ?, ?, ?] 7→ +.
Connections are depicted as described in Figure 3.

20

4.2 Experimental Evaluation

We performed several experiments to evaluate our method, varying
the parameter ω. We used ω ∈ {0.0, 0.5, 1.0, 2.0, 5.0}. By setting it
to 0.0, we can emulate the simple addition of a free hidden unit dur-
ing the training, i.e., the new unit will be initialised randomly. There-
fore, this case should be the baseline for our experiments. Small val-
ues would only push the network slightly into the direction of a rule,
while a value of 5.0 would strongly enforce the rule. In particular, if
a rule was embedded with ω = 5.0, then as soon as the correspond-
ing hidden unit became active it’s output will very likely dominated
the sum of the outputs of the other hidden unit. This is due to the fact
that its activation of approximately 1.0 is propagated through a con-
nection with a weight of 5.0 or −5.0 to the output unit. Therefore,
the output unit will usually simply follow the rule. Consequently, as
a rule of thumb, only rules where one is absolutely certain should be
embedded with very large ω.

Figure 5 shows the result of the experiment. It shows the mean
squared error over the time for the different settings of ω. For each
value, we repeated the experiment 50 times and showed the averages.
It also shows a zoom into the lower right corner, i.e., into the final
cycles. Here, not only the averages, but also the standard deviation is
shown. There are a few points to notice in those plots, which will be
discussed in more detail below:

• For ω = 0 the network stops to improve at some point, even if
units are added.

• For ω > 0 the network outperforms the network where ω was set
to 0 in the later cycles.

• For ω = 5 the network did not learn very well.

Due to local minima in the error surface, back-propagation can
get stuck in non-optimal solutions. Usually this is the case if there
are only errors on few samples, because back-propagation follows in
principle the majority vote. This also happens in our experiments. For
ω = 0, the network fails to improve further and remains at the 0.01-
level. Our method, proposed here, can help to solve this problem
by inserting a unit which covers those few samples. Thus, we allow
back-propagation to jump to better solutions.

The bad performance for ω = 5, is due to the above mentioned
fact about big values for ω and the fact that our rules are not nec-
essarily correct. It happened several times in our experiments that
the same (only partially correct) rule was embedded again and again.
E.g., the rule [?, ?, x, ?, ?, ?, x, ?, ?] 7→ + was embedded, because
most of the positive samples on which there were errors agreed on
those values. But at the same time there are 42 negative samples with
those values. As the network blindly followed the rule, those nega-
tive samples are wrongly classified afterwards. During the training
phase, the network basically unlearnt the rule but could not improve
on the original wrong positive samples. And thus, the same bad rule
was embedded again and again. This problem could be solved using
e.g., tabu-lists preventing the re-insertion. But we believe that better
rule-generation should be used, which construct only valid rules.

There is another finding in our experiments which is worth to be
mentioned. E.g., the rule discussed in Section 4.1, covers only 38
samples, but the number of errors of the network on the training data
went down from 99 to 26, i.e., inserting the rule apparently helped to
better classify 73 samples. We think this is due to the better starting
point provided by the insertion of the rule, that helps the network to
correct errors more efficiently. This effect will be subject to further
studies because it seems to improve the performance to a level which
cannot be achieved by symbolic or connectionist learning alone.

5 Conclusions and Further Work

We presented a first experiment to support our claim that we can
positively influence the training process of a feed-forward neural net-
work by incorporating knowledge in the form of rules into the train-
ing process. Thus, we make a first attempt to solve the challenge-
problem number 4 mentioned in [2], i.e., the improvement of estab-
lished learning algorithms by using symbolic rules. Here, the rules
were obtained from wrongly classified examples after an epoch of
training the network using back-propagation.

One of the main problems was to find good rules. So far, we ap-
plied ID3 and C4.5 techniques for rule learning on all available data
prior to the training and embedded the rules. On the other hand, we
found that artificial neural networks with proper encoding learnt such
(very general) rules easily. The main problems are usually related
with infrequent data patterns. Therefore, we believe that the analysis
of the errors as proposed here is better than an a-priory generation
of rules. But the problem of finding good rules remains. In this pa-
per, we used a very naive approach to construct the correcting rules,
but more powerful methods like ID3 or others could improve the
performance even more [8]. But the method of choice will probably
depend a lot on the application domain. And it is actually the point
where background knowledge about the domain can be incorporated
into the training process. Alternatively, error-analysis and rule cre-
ation could be done by a human expert. One should observe that this
expert is only required once the network has learnt most of the rules.
I.e., the human intervention is done only for the difficult cases and
thus the expert does not need to explicitly state the simple rules.

In this work, we did not use separate training and validation sets,
because we wanted to study the improvement during learning. But
we observed in other experiments, that rule insertion can also lead to
better generalisation. But this is again very much dependant on the
quality of the rules. If the rules generalise, their embedding will also
lead to a better generalisation of the neural network. We will study
this problem in our follow-up work on natural language processing
in more detail.

We have also found that rule insertion improves results beyond
the knowledge directly expressed in rules. Indeed, similarly to work
done when trying to improve neural networks by pruning irrelevant
weights, rule insertion can also, indirectly help in the task of overrid-
ing irrelevant information. We believe this relation should be made
clear in further work. Indeed the relevance of magnitude based prun-
ing methods is well known in methods such as the ones related with
optimal brain damage [6]. In this sense, we believe that there should
be some resemblance between these methods. Therefore, we will in-
vestigate the relations with other pruning and growing techniques in
the future. This will be done empirically by comparing the perfor-
mance of different methods, but the general methodology of the core
method may even serve as a basis for a theoretical comparison be-
tween the different approaches.

We understand that this paper presents only a starting point.
But we believe that the methodology presented here can be devel-
oped into a full fledged training paradigm that allows to incorporate
domain-dependent background knowledge in a concise way. We are
currently applying our algorithm to larger data-sets. As pointed out in
the beginning, natural language processing problems seem to provide
a good challenge where neuro-symbolic integration should be advan-
tageous. As already reported in [7], we can improve the performance
of a connectionist Part-of-Speech tagger by inserting using prior to
the training. Next, we will study whether we can further imrove it by
guiding the training using error-correcting rules as proposed here.

21

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

M
SE

Training cycles

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 700 800 900 1000 1100 1200 1300 1400 1500

Omega=0.0
Omega=0.5
Omega=1.0
Omega=2.0
Omega=5.0

Figure 5. The development of the mean squared error over time for different values of ω (averaged over 50 runs). The vertical lines show the timepoints
where rules have been inserted (every 100 cycles). The zoom in the upper right corner shows also the standard deviation over all 50 runs.

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which indeed
helped to improve the paper.

REFERENCES
[1] A. Asuncion and D. J. Newman. UCI machine learning repository,

2007.
[2] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler, ‘The integra-

tion of connectionism and first-order knowledge representation and rea-
soning as a challenge for artificial intelligence’, Journal of Information,
9(1), 7–20, (January 2006).

[3] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler, ‘Connection-
ist model generation: A first-order approach’, Neurocomputing, (2008).
accepted, in press.

[4] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay, Neural-
Symbolic Learning Systems — Foundations and Applications, Perspec-
tives in Neural Computing, Springer, Berlin, 2002.

[5] Steffen Hölldobler and Yvonne Kalinke, ‘Towards a massively parallel
computational model for logic programming’, in Proceedings ECAI94
Workshop on Combining Symbolic and Connectionist Processing, pp.
68–77. ECCAI, (1994).

[6] Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel, ‘Optimal
brain damage’, in Advances in Neural Information Processing Systems
II, ed., D. S. Touretzky, San Mateo, CA, (1990). Morgan Kauffman.

[7] Nuno C. Marques, Sebastian Bader, Vitor Rocio, and Steffen
Hölldobler, ‘Neuro-symbolic word tagging’, in New Trends in Artifi-
cial Intelligence, ed., José Machado José Neves, Manuel Filipe Santos,
pp. 779–790. APPIA - Associação Portuguesa para a Inteligência Arti-
ficial, (12 2007).

[8] Tom M. Mitchell, Machine Learning, McGraw-Hill, March 1997.
[9] Geoffrey G. Towell and Jude W. Shavlik, ‘Knowledge-based artificial

neural networks’, Artificial Intelligence, 70(1–2), 119–165, (1994).
[10] Andreas Zell, ‘SNNS, stuttgart neural network simulator, user manual,

version 2.1’, Technical report, Stuttgart, (1992).

22

Hybrid Classification and Symbolic-Like Manipulation Using Self-
Regulatory Feedback Networks

Tsvi Achler1 and Eyal Amir

Abstract. We propose a hybrid model based on self-regulatory
feedback. It is a connectionist network, which can be composed in
a modular fashion. It can be composed of simple constructs that
can be combined together to interact logically without requiring a-
priori declaration of ‘interaction-type’ connections. It is primarily
a classifier but resolves binding and is pliable to certain symbolic
manipulations. We show that 1) compositions can simply be
combined to create a hybrid-recognition/symbolic network. 2)
Demonstrate how these compositions perform binding logic. 3)
Lastly, show how representations can be manipulated in a
symbolic-like fashion. These properties are an integral part of
intelligent inference and such networks provide a new direction for
future research.

INTRODUCTION
Artificial Intelligence researchers continue to face huge challenges
in their quest to develop truly intelligent systems. Neural-
symbolic integration may bring an opportunity to integrate well-
founded symbolic artificial intelligence. Hybrid models may
inherit the best of both approaches.
We propose a hybrid model based on self-regulatory feedback. It
is a connectionist network, but is modular. It can be composed of
simple constructs that can be combined together to interact
logically without requiring a-priori declaration of ‘interaction-type’
connections. It is primarily a classifier but resolves binding and is
pliable to certain symbolic manipulations.

Self-Regulatory Feedback Networks (RFN) are unique because 1)
they only require connections between inputs and outputs (simple
connectivity that is resistant to a combinatorial explosion) and 2)
they do not require conventional connection weights (maintain
flexibility). They function in a recursive fashion [1-4].
This type of network is be better suited for symbolic manipulation
than conventional connection-weight models and represents its own
flavor of network symbolism.
Section 1 introduces the theory and equations of this network.
Section 2 & 3 shows how compositions can simply be combined to
create a hybrid-recognition/symbolic network. Section 3 shows
how these compositions perform binding logic. Section 4 we show
how representations can be manipulated in a symbolic-like fashion.

1. Model
RFNs use top-down regulatory feedback to modify input
activation. The modified input activity is then re-distributed to
the network. This is repeated iteratively to dynamically
determine stimuli relevance. In this manner top-down
regulatory feedback determines the relevance of inputs to an
output node.

1 University of Illinois at Urbana Champaign, Urbana, IL 61801 USA (217-
244-7118; fax: 217-265-6591; e-mail: achler@uiuc.edu).

This model does not assume calculations are based on
predetermined connection weights. All input features are
connected equally to associated output nodes. Thus each
representation is equally connected to all of its parts. Since
connection weights are not relevant, only qualitative relations
between feature membership to classes need to be determined
during setup; e.g. y1є{x1, x3…}, y2є{x2,x3…}. These represent
symbolic-like interconnections.
Regulatory feedback has been proposed as an alternate model of
lateral inhibition [5]. Regulatory feedback was separately
developed as a model for classification [1, 2], for binding and
distributed processing [3], and as a multiclass classifier that can
process multiple stimuli simultaneously [4]. This work focuses on
the flexibility within this model to manipulate representations in a
symbolic-like manner.

1.1 Model Function

Using our approach features weights are not assigned. Instead, a
feature’s information content is dynamically evaluated under
different contexts. RFN inhibits ambiguous inputs during
classification. An input is ambiguous if multiple candidate
representations using that input are active. Thus, RFNs are more
flexible towards combinations of priors since no weighted relations
between features or nodes are defined a-priori. This distinction is
crucial – traditional Neural Network (NN) notions of a feature
being uninformative are associated statically between
representation and its input feature(s). NN feature extraction
methods will assign reduced weights to features that are generally
uninformative as determined by the training set.

1.2 Model Schematic

RFN is unique due to the tight association between input features
and outputs representations. This is implemented by a triad of
interconnections between an input, the output it supports and
feedback from that output (Figure 1). Every input has a
corresponding feedback ‘Q’, which samples the output processes
that the input cell activates. The feedback modulates the input.

(3)

(1)

(2)

(4)
Every output must project to the feedback Q processes that
correspond to its inputs. For example if an output process receives
inputs from I1 and I2 it must project to Q1 and Q2. If it receives
inputs from I1, it only needs to project to Q1.

This creates a situation where an output cell can only receive full
activation from an input if that input’s Q is low. The Q is low if the
sum of activation of the outputs that use that input is low. Thus, if
representations that share the input are very active, no cell will
receive full activation from that input. If outputs share inputs, they
inhibit each other at their common inputs, forcing the outcome of
competition to rely on other non-overlapping inputs. The more
cells have overlapping inputs, the more competition exists between
them. The less overlap between two output cells, the less
competition, more independent from each other the output cells can
be.
The networks dynamically test recognition of representations using
1) regulatory feedback to the individual inputs of representations 2)
modifying the next input state based on the input’s use 3) re-
evaluating representations based on new activity. Steps 1-3 are
continuously cycled through. This requires a tight association
between inputs and outputs and feedback processes.

RFN is flexible because it doesn’t a-priori define which input is
ambiguous. Which input is ambiguous depends on which
representation(s) are active which in turn depends on which stimuli
and task are being evaluated.

1.3 Equations

This section introduces general nonlinear equations governing
RFN. Borrowing nomenclature from engineering control theory,
this type of inhibitory feedback is negative feedback, in other
words stabilizing or regulatory feedback.

For any output cell Y denoted by index a, let Na denote the input
connections to cell Ya. For any input cell I denoted by index b, let
Mb denote the feedback connections to input cell Ib. The feedback
to input Ib is defined as Qb. Qb, is a function of the sum of activity
from all cells Yj that receive activation from that input:

Input Ib is regulated based on Qb, which is determined by the
activity of all the cells that project to the input, and driven by Xb
which is the raw input value.

The activity of Ya is a product of its previous activity and the input
cells that project to it. This property can arise biologically from
NMDA channels that are found within neuron membranes. These
channels are mediated by previous neuron activity. If a self-
multiplicative (delay) term is not included in equation 3, the
network can immediately change values and the feedback will not
be a function of previous activity. Thus the equations are designed
so the output cells are proportional to their input activity, inversely
proportional to their Q feedback and also depend on their previous
activity [1-4]. na represents the number of processes in set Na.

1.4 Simple Connectivity

Feedback networks do not require a vast number of connections;
the number of connections required for competition is a function of
the number of inputs the cell uses. Addition of a new cell to the
network requires only that it forms symmetrical connections about
its inputs and not directly connect with the other output cells. Thus
the number of connections of a specific cell in feedback
competition is independent of the size or composition of the
classification network, allowing large and complex feedback
networks to be combinatorially and biologically practical.

2. Simple Modular Composition
Networks can be created in a symbolic/modular fashion. Suppose
a node to represent the patterns associated the letter P and another
node represents the patterns associated the letter R. R shares some
patterns with P. We can intuitively combine these nodes into one
network, by ignoring this overlap and just connect the network.
This defines a functioning network without formally learning how
nodes R and P should interact.

The two nodes are connected such that the inputs of Y1 (input
pattern ‘P’) completely overlaps with a larger Y2. But node Y2 also
receives an independent input pattern’\’. The solutions are
presented as (input values) → (output vectors) in the pattern
(X1,X2,)→(Y1,Y2). The steady state solution for example 1 is (X1,
X2)→(X1 – X2, X2). Substituting our input values we get
(1,1)→(0,1), (1,0)→(1,0). Given only input pattern X1 (‘P’) the
smaller node wins the competition for representation. Given both
input patterns (‘P’ & ’\’) the larger node wins the competition for

X1

Y1 Y2

X1 X2

‘P’ ‘R’

Outputs

Inputs

Y1 Y2

X1 X2

‘P’ ‘R’A: B: C:

Figure 2 (A-C): Modular nodes Y1 and Y2 (A & B respectively) can be
simply combined to form a combined network (C). Since I & Q are
symmetric, the network can be drawn using bidirectional connections.

∑
∈ aNi

i=Δ+ a
a ItYtt)()(

an
Y

∑ ∑∑
∈

∈
∈ ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

==
a

i

a Ni
Mj

j

i

a

a

Ni i

i

a

a

tY
X

n
tY

Q
X

n
tY

)(
)()(

∑
∈

=
bMj

jb tYQ)(

b

b
b Q

X
I =

Feedforward
Process

Feedback
Process

Figure 1: Regulatory Feedback Schematic. Each external input Xi is
modified by feedback Qi to produce a feedback-updated input Ii. Each feed-
forward connection has an associated feedback connection. For example, if
I1 projects to Y1 & Y2, then Q1 must receive projections from Y1 & Y2 and
feedback to the input I1. Similarly if I2 projects to Y1, Y2, Y3, & Y4, then Q2
receives projections from Y1, Y2, Y3, & Y4 and projects to I2. Since the
connections between I & Q are symmetric, thus can be drawn using
bidirectional connections (fig 2).

Y1 Y4

Q2

Y3

 I2

Q1

 I1

Y2

Input Ii

Output Yi

Feedback Qi

Regulato ack Networks

ry Feedb

X1 X2 External Input Xi

representation. Though we used binary inputs, the solution is
defined for any positive real X input values (Achler 2007). The
mathematical equations and their derivation can be found in the
Appendix.
Descriptively, Y1 has one input connection, thus by definition its
fixed connection weight is one. Its maximal activity is 1 when all
of its inputs are 1. Y2 has two input connections so its fixed input
connection weights are one-half. When both inputs (‘P’ & ’\’) are
1 the activity of Y2 sums to 1. Note these weights are
predetermined by the network. Connections are permanent and
never adjusted. Input I1 projects to both Y1 & Y2, thus receives
inhibitory feedback from both Y1 & Y2. Input I2 projects only to Y2
so it receives inhibitory feedback from Y2. The most encompassing
representation will predominate without any special mechanism to
adjust the weighting scheme. Thus, if inputs ‘P’ & ’\’ are active Y2
wins. This occurs because when both inputs are active, Y1 must
compete for all of its inputs with Y2, however Y2 only needs to
compete for half of its inputs (the input shared with Y1) and it gets
the other half ‘free’. This allows Y2 to build up more activity and
in doing so inhibit Y1.
Thus smaller representation completely encompassed by a larger
representation becomes inhibited when the inputs of the larger one
are present. The smaller representation is unlikely given features
specific only to the large representation. It demonstrates that RFN
determines negative associations (‘Y1’ is unlikely given feature
‘XB’) even though they are not directly encoded. In order to
encode such negative associations using conventional methods,
they would have to be ‘hard-wired’ into the network. With NN,
each possible set of stimuli combinations would have to be trained.
With direct Competition each possible negative association would
have to be explicitly connected.

3 Binding with Simple Modular Composition

We simultaneously evaluate the criteria of three representations. In
e.g. 2, expanded from e.g. 1, three cells partially overlap. As in
e.g. 1, Y1 competes for its single input with Y2. However, now Y2
competes for its other input with Y3 and Y3 competes for only one
of its inputs.
The steady state solution is (X1, X2, X3) → (Y1 = X1 – X2 + X3, Y2 =
X2 – X3, Y3 = X3).

If X2 ≤ X3 then Y2=0 and the equations become (X1 , 0,
2

32 XX +).

If X3 = 0 the solution becomes that of e.g. 1: (X1, X2, 0) → (X1 – X2,
X2, 0).
The results are: (1, 0, 0) → (1, 0, 0);

 (1, 1, 0) → (0, 1, 0);
 (1, 1, 1) → (1, 0, 1).

Derivations can be found in the appendix.
Thus if input X1 is active, Y1 wins. If inputs X1 and X2 are active
and Y2 wins for the same reasons this occurs in e.g 1. However, if
inputs X1, X2 and X3 are active then Y1 and Y3 win. The network as
a whole chooses the cell or cells that best represent the input
pattern with the least amount of competitive overlap.
In e.g. 2, Y2 must compete with all of its inputs: X1 with Y1, X2 with
Y3. Y3 only competes for half of its inputs (input X2) getting input
X3 ‘free’. Since Y2 is not getting its other input X1 ‘free’ it is at a
competitive disadvantage to Y3. Together Y1 and Y3, mutually
benefit from each other and force Y2 out of competition.
Competitive information travels indirectly ‘through’ the
representations. Given active inputs X1 and X2 =1, the activity state
of Y1 is determined by input X3 through Y3. If input X3 is 0 then Y1
becomes inactive. If input X3 is 1, Y1 becomes active. However, Y3
does not even share input X1 with Y1.

3.1 Binding

Choosing Y2 given (1,1,1) is equivalent to choosing the
irrelevant features for binding. If the inputs represent spatially
invariant features where feature X1 represents circles, X3 represents
the body shape and feature X2 represents a horizontal bar. Y1 is
assigned to represent wheels and thus when it is active, feature X1
is interpreted as wheels. Y2 represents a barbell composed of a
bar adjacent to two round weights (features X1 and X2). Note: even
though Y2 includes circles (feature X1), they do not represent
wheels (Y1), they represent barbell weights. Thus if Y2 is active
feature X1 is interpreted as part of the barbell. Y3 represents a car
body without wheels (features X2 and X3), where feature X2 is
interpreted as part of the chassis. Now given an image of a car
with all features simultaneously (X1, X2 and X3), choosing the
barbell (Y2) even though technically a correct representation, is
equivalent to a binding error within the wrong context in light of
all of the inputs. Most classifiers if not trained otherwise are as
likely to choose barbell or car chassis (see figure 4). In that case
the complete picture is not analyzed in terms of the best fit given
all of the information present. Similar to case 1, the most
encompassing representations mutually predominate without any
special mechanism to adjust the weighting scheme. Thus the
networks are able to evaluate and bind representations in a sensible
manner for these triple cell combinations.

Figure 3(A-D): Modular combination
of nodes display binding. Nodes Y1, Y2,
Y3 (A, B & C) can be simply combined to
form a combined network (D). Y1 & Y3

represent car with wheels, Y2 represents
barbell. These alternate interpretations
use the same input features presenting a
binding problem.

Inputs

y1

 x2 x3

y3

Outputs

x1

y2

x2 x1

 ‘Wheels’ ‘Barbell’ ‘Car Chassis’

y1

x3

y3 y2

 x2x1

Combined:

x1,x2,x3=1:

A: B: C:

D:

Optimized NN and SVM learning is performed using the most
recent version of the Waikato Environment for Knowledge Analysis
(WEKA) package currently available [6].

4. Symbolic-like Manipulation
The behavior of the network can be changed by forcing the values
of the output nodes. The value of a node can be artificially
increased or decreased. For example, forcing a representation to
have a zero value is equivalent to eliminating it from the network.
Artificially activating a representation gives it priority over other
nodes and can forces its representation to override inherent binding
processes.

We repeat example 2 but can ask the question: can a barbell shape
be found in any form? We introduce a small bias to Y2
(representing barbell) according to the equation modified from
example 2:

Choosing a bias b of 0.2 and activating all inputs, such as car, the
network results are: (1, 1, 1) → (0.02, 0.98, 0.71). The network
now overrides its inherent properties and responds to whether
inputs matching Y2 are present. Each representation can be
manipulated in a similar manner. This is a form of symbolic
manipulation closely tied to recognition. This demonstrates how a
symbolic-like manipulation can manipulate a classification
scenario.

CONCLUSION
Further symbolic manipulation may be possible by changing
internal node properties. The equations currently sum inputs (I’s)
in a linear fashion. However they can be summed using a sigmoid
or other function. The activation function can be designed so that
when any of a node’s inputs are matched, the node becomes active.
Conversely it can be designed so that when only one input is active
that node is active. Initial results show that a sigmoid function
gives the node an ‘AND’-like function. The location of the
sigmoid slope can be manipulated determining node behavior
between ‘AND’-like nodes to more ‘OR’-like nodes. Since RFNs

are nonlinear, at this point, we can simulate general cases, but not
provide analytical axioms. This is left for future work.

0

0.2

0.4

0.6

0.8

1

Ve
ct

or
 A

ct
iv

ity

Regulatory Feedback

NN

KNN

SVM
Conventional
Approaches

‘Wheels’ ‘Barbell’ ‘Car Chassis’

y1 y2 y3

Figure 4: Presentation of this binding problem to conventional
classifier approaches. The Neural Networks (NN) and Support Vector
Machines (SVM) were trained on y1,y2, y3 based on x1 x2 and x3, using
the WEKA classifier tool. K-nearest neighbors was determined by the
closest neighbor, 1-N.

Using a very simple set-up process, RFN allows modular
combination of nodes. It is robust in multiple scenarios and
computationally economical because it does not require many
variables. It only requires simple combinatorialy-plausible
connectivity between inputs and outputs. RFN offers a flexible and
dynamic approach to intelligent applications. The network can also
be manipulated to perform search tasks by biasing output
representations. These properties demonstrate that such networks
can be an integral part of intelligent inference and provide a new
direction for future research.

APPENDIX
Example 1. RFN equations are:

)()(
)()(

21

11
1 tyty

xtydtty
+

=+ ,)
)()()(

(
2

)()(
2

2

21

12
2 ty

x
tyty

xtydtty +
+

=+ .

The network solution at steady state is derived by setting
y1(t+dt)=y1(t) and y2(t+dt)=y2(t) and solving these equations. The
solutions are y1 = x1 – x2 and y2 = x2. If x1 ≤ x2 then y1 = 0 and the
equation for y2 becomes:

2
21

2
xxy +

= .

Example 2. Equation y1 (t+dt) remains the same as example 1. y2
(t+dt) and y3 (t+dt) become:

)
)()()()(

(
2

)()(
32

2

21

12
2 tyty

x
tyty

xtydtty
+

+
+

=+ ,

)
)()()(

(
2

)()(
3

3

32

23
3 ty

x
tyty

xtydtty +
+

=+

Solving for steady state by setting y1(t+dt)=y1(t), y2(t+dt)=y2(t),
and y3(t+dt)=y3(t), we get y1=x1–x2+x3, y2=x2–x3, y3= x3. If x3 =0
the solution becomes that of e.g. 1: y1=x1–x2 and y2=x2. If x2 ≤ x3

then y2=0 and the equations become y1 = x1 and
2

32
3

xxy +
= .

ACKNOWLEDGEMENTS
b

tYtY
X

tYtY
XtYdttY +

+
+

+
=+)

)()()()(
(

2
)()(

32

2

21

12
2 We would like to thank Cyrus Omar and anonymous reviewers for

helpful suggestions. This work was supported by the U.S. National
Geospatial Agency Grant HM1582-06--BAA-0001.

REFERENCES
[1] Achler T, (2002) "Input Shunt Networks, Neurocomputing", 44-46c:

249-255.
[2] Achler T, (2007) "Object classification with recurrent feedback neural

networks", Proc. SPIE, Evolutionary and Bio-inspired Computation:
Theory and Applications, Vol. 6563.

[3] Achler, T., Amir, E. (2008) "Input Feedback Networks: Classification
and Inference Based on Network Structure", Artificial General
Intelligence Proceedings V1: 15-26.

[4] Achler, T., C. Omar, Amir, E. (2008). "Shedding Weights: More With
Less." Neural Networks IJCNN Proceedings, In Press.

[5] Reggia, J. A., C. L. Dautrechy, et al. (1992). "A Competitive
Distribution-Theory of Neocortical Dynamics." Neural Computation
4(3): 287-317.

[6] Ian H. Witten and Eibe Frank (2005) "Data Mining: Practical machine
learning tools and techniques", 2nd Edition, Morgan Kaufmann, San
Francisco, 2005. Software available at
http://www.cs.waikato.ac.nz/ml/weka/ (version 3.5.6)

http://www.cs.waikato.ac.nz/ml/weka/

	Tsvi Achler NeSy08-sumitted.pdf
	INTRODUCTION
	1.1 Model Function
	1.2 Model Schematic
	1.3 Equations
	1.4 Simple Connectivity
	3.1 Binding

	Conclusion

