
Guiding Backprop by Inserting Rules
Sebastian Bader1 and Steffen Hölldobler2 and Nuno C. Marques3

Abstract. We report on an experiment where we inserted symbolic
rules into a neural network during the training process. This was done
to guide the learning and to help escape local minima. The rules are
constructed by analysing the errors made by the network after train-
ing. This process can be repeated, which allows to improve the net-
work performance again and again. We propose a general framework
and provide a proof of concept of the usefullness of our approach.

1 Introduction and Motivation
Rule insertion prior to training can lead to faster convergence and to
better results (see e.g. [9, 4]). Here, we will investigate whether we
can do this repeatedly during the training process.

Artificial neural networks are a very powerful tool to learn from
examples in high dimensional and noisy data. Standard feed-forward
networks together with back-propagation of errors have been suc-
cessfully applied in many domains. However, in most domains, at
least some background knowledge in form of symbolic rules is avail-
able. And this knowledge can not be used easily. As mentioned
above, there have been studies in which this knowledge is embed-
ded prior to the training. But there is no way to guide the learning
process using this rules.

The following observations have triggered this research:

• Very general rules, i.e., those that cover many training samples,
are quickly acquired by back-propagation. And hence, embedding
those rules does not help too much.

• Very specific rules that are embedded prior to the training will
very likely be overwritten by newly learned rules.

• We can analyse the errors made by the network to obtain correct-
ing rules.

In the area of natural language processing, the combination of rule
based and machine learning based methods seems to be very promis-
ing. Recently, we showed that we can accuracy by inserting symbolic
rules into an artificial neural network [7]. We believe that we can even
improve even further if we embed rules repeatedly during the train-
ing. In this paper, we will describe how to do this and why we believe
that this seems to be a good idea.

We propose a general method to guide the training of artificial
neural networks. Our approach is based on the repeated embedding
of rules during the training. Here, we will focus on the description
of an experiment to verify our claims. This paper is only meant to
be a case study and to serve as a proof of concept. And shall be the
starting point for a bigger investigation. We are currently preparing
larger experiments in the area of natural language processing.
1 International Center for Computational Logic (ICCL), Technische Univer-

sität Dresden, Germany, email: sebastian.bader@inf.tu-dresden.de
2 ICCL, email: sh@iccl.tu-dresden.de
3 Centria, DI-FCT-UNL, Lisbon, Portugal, nmm@di.fct.unl.pt. Work devel-

oped while the author was a visiting the ICCL.

2 Preliminaries
We assume the reader to be familiar with basic concepts of neural
networks and the training by back-propagation as e.g., described in
[8] and implemented in [10]. Here, we will only use simple three
layer fully connected feed-forward neural networks applying the
tanh-function in hidden and output layer. We will train them using
back-propagation without enhancements like e.g., momentum and
fixed learning parameters.

The rules we will use here, are simple propositional if-then rules.
Each rule consists of multiple preconditions which have to be sat-
isfied simultaneously, and a single atomic consequence. Below we
will study a classification task for tic-tac-toe boards, hence the conse-
quence will be the class and the preconditions will be (partial) board
descriptions.

3 A General Method for Guiding Backprop
Our approach, is based on the repeated modification of the network
during the training. After a number of training cycles, the errors made
by the network are analysed. This analysis should yield a rule that
can be used to correct some of the errors. We can now embed the
rule into the network and continue with the next epoch. This process
is depicted in Figure 1. As we will see below, this will help the net-
work to escape local minima during the training. To summarise, our
approach works as follows:

1. Initialise the network.
2. Repeat until some stopping condition is satisfied:

(a) Train the network for a given number of cycles.
(b) Analyse the errors of the network to obtain correcting rules.
(c) Embed the rule(s) into the network.

In the sequel, we will show that this works using a simple classi-
fication task. This is only meant to be a proof of concept, and not to
show the superiority of this method in general.

N

N ′

Rules

initialisation training

ana
lysi

s

em
be

dd
in

g

Figure 1. The rule-insertion cycle.

19

4 The ”Tic-Tac-Toe” Classification Task
We used the ”Tic-Tac-Toe Endgame Data Set” of the UCI Machine
Learning Repository [1] for our experiments described below. The
data set contains all 958 possible board configurations that can be
reached while playing Tic-Tac-Toe starting with player X. Each con-
figuration contains a description of the board and is classified as win
or no-win for player X. A player wins the game, if he manages to
place 3 of his pieces in a line. The board contains 3 × 3 cells and
each cell can be marked by either x or o, or can be blank (b). Possi-
ble samples are [x, b, o, o, x, o, x, b, x]+, [x, x, o, o, o, x, x, o, x]− and
[x, o, x, o, o, b, x, o, x]−. The corresponding boards are shown in Fig-
ure 2 from left to right. The goal of the task is to decide whether a
given board is a win-situation for player X or not.

x o

o x o

x x

x x o

o o x

x o x

x o x

o o

x o x

Figure 2. Three board configurations, showing a win for player X, a draw
and a win for player O, i.e., this are one positive and two negative examples.

4.1 A Network to Classify Board States
We used a simple 3-layer feed-forward network with tanh as activa-
tion function in all units. It contains 9 × 3 = 27 units in the input
layer, that is three for each of the nine position on the board, cor-
responding to the three possible states. For each of this triples we
used an 1-out-of-3 activation schema. If a cell contains for example
an “x” the x-unit for this cell will be activated by setting the to output
1, while the o and b-units are set to -1. Initially, the network con-
tains one hidden units and one output unit. A board state is fed into
the network by activating the appropriate input units. This activation
pattern is propagated through the network and the networks decision
can be read from the output unit. If its activation is greater than 0 the
network evaluates the board as a win for player X, and as a no-win
otherwise. Figure 3 shows the network used in our experiments. We
will now continue by detailing the general steps of our method as
introduced in Section 3.

Initialising the Network We initialised the network with a single
hidden units and all connections as well as the bias of the units were
randomised to values between −0.2 and 0.2.

Training the Network The network was trained using standard
back-propagation in the SNNSimulator [10]. We used simple back-
propagation without any additions. The learning rate was set to
η = 0.1. During each epoch we presented all samples 100 times
to the network.

Analysis of the Errors to Obtain Correcting Rules After the train-
ing, we presented all samples again to the network and compared the
networks output to the desired output. All samples where the differ-
ence between the computed and the desired output was greater than
0.5 were collected and grouped into positive and negative samples.
Depending on whether there have been more errors on positive or on
negative samples, we continued with the bigger set. From this set, we
constructed a template that is as accurate as possible and at the same
time as general as possible. This was done by repeatedly selecting a

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

Figure 3. A 3-layer fully connected feed-forward network with 27 input
(rectangular), 6 hidden (cyclic) and a single output (cyclic) unit to classify
Tic-Tac-Toe boards. The 27 input units are arranged like the board itself.

Positive connections are shown as solid lines, while negative ones dashed.
The width corresponds to the strength and small connections are omitted.

cell and a value such that most erroneous samples agree on this. This
is a variant of the “Learn one rule”-algorithm as used in sequential
covering algorithms, but considers only one class [8].

The following rule was constructed from 99 wrongly classified
sample: [b13, b3, o23, x43, x34, x70, o7, b1, b1] 7→ +. The subscripts
show the percentage of the 99 samples which agree on the value.
E.g., 13% of those samples had an empty upper left corner and 34%
an x in the centre. We constructed the rule template by ignoring all
entries with a support < 20%. This resulted in the following template
[?, ?, o, x, x, x, ?, ?, ?] 7→ +, which actually covers 38 of the samples.

Embedding Rules into the Network The rules constructed above,
are embedded into the network following the general ideas of the
Core Method as specified in [5], [4] and [3]. A new hidden unit is
inserted into the network and the connections and the bias are set
up such that this unit becomes active if and only if the input of the
network coincides with the rules precondition.

Let us use the rule [?, ?, o, x, x, x, ?, ?, ?] 7→ + to exemplify the
idea. For all entries different from ?, a connection with weight ω
from the input unit corresponding to the value and connections with
weight −ω from the other two units are created. E.g., the x-unit for
the central cell is connected to the new hidden unit with weight ω,
while the corresponding o and b-units are connected with weight−ω.
All connections from input units for cells marked ? in the template
have been initialised to 0.0. And the connection to the output unit
has been set to ω for positive rules and to −ω otherwise. The result
is shown in Figure 4. Finally, all connections have been slightly dis-
turbed by adding some small random noise from [−0.05, 0.05]. In
the experiments described below we used different values for ω.

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

Figure 4. The embedding of the rule [?, ?, o, x, x, x, ?, ?, ?] 7→ +.
Connections are depicted as described in Figure 3.

20

4.2 Experimental Evaluation

We performed several experiments to evaluate our method, varying
the parameter ω. We used ω ∈ {0.0, 0.5, 1.0, 2.0, 5.0}. By setting it
to 0.0, we can emulate the simple addition of a free hidden unit dur-
ing the training, i.e., the new unit will be initialised randomly. There-
fore, this case should be the baseline for our experiments. Small val-
ues would only push the network slightly into the direction of a rule,
while a value of 5.0 would strongly enforce the rule. In particular, if
a rule was embedded with ω = 5.0, then as soon as the correspond-
ing hidden unit became active it’s output will very likely dominated
the sum of the outputs of the other hidden unit. This is due to the fact
that its activation of approximately 1.0 is propagated through a con-
nection with a weight of 5.0 or −5.0 to the output unit. Therefore,
the output unit will usually simply follow the rule. Consequently, as
a rule of thumb, only rules where one is absolutely certain should be
embedded with very large ω.

Figure 5 shows the result of the experiment. It shows the mean
squared error over the time for the different settings of ω. For each
value, we repeated the experiment 50 times and showed the averages.
It also shows a zoom into the lower right corner, i.e., into the final
cycles. Here, not only the averages, but also the standard deviation is
shown. There are a few points to notice in those plots, which will be
discussed in more detail below:

• For ω = 0 the network stops to improve at some point, even if
units are added.

• For ω > 0 the network outperforms the network where ω was set
to 0 in the later cycles.

• For ω = 5 the network did not learn very well.

Due to local minima in the error surface, back-propagation can
get stuck in non-optimal solutions. Usually this is the case if there
are only errors on few samples, because back-propagation follows in
principle the majority vote. This also happens in our experiments. For
ω = 0, the network fails to improve further and remains at the 0.01-
level. Our method, proposed here, can help to solve this problem
by inserting a unit which covers those few samples. Thus, we allow
back-propagation to jump to better solutions.

The bad performance for ω = 5, is due to the above mentioned
fact about big values for ω and the fact that our rules are not nec-
essarily correct. It happened several times in our experiments that
the same (only partially correct) rule was embedded again and again.
E.g., the rule [?, ?, x, ?, ?, ?, x, ?, ?] 7→ + was embedded, because
most of the positive samples on which there were errors agreed on
those values. But at the same time there are 42 negative samples with
those values. As the network blindly followed the rule, those nega-
tive samples are wrongly classified afterwards. During the training
phase, the network basically unlearnt the rule but could not improve
on the original wrong positive samples. And thus, the same bad rule
was embedded again and again. This problem could be solved using
e.g., tabu-lists preventing the re-insertion. But we believe that better
rule-generation should be used, which construct only valid rules.

There is another finding in our experiments which is worth to be
mentioned. E.g., the rule discussed in Section 4.1, covers only 38
samples, but the number of errors of the network on the training data
went down from 99 to 26, i.e., inserting the rule apparently helped to
better classify 73 samples. We think this is due to the better starting
point provided by the insertion of the rule, that helps the network to
correct errors more efficiently. This effect will be subject to further
studies because it seems to improve the performance to a level which
cannot be achieved by symbolic or connectionist learning alone.

5 Conclusions and Further Work

We presented a first experiment to support our claim that we can
positively influence the training process of a feed-forward neural net-
work by incorporating knowledge in the form of rules into the train-
ing process. Thus, we make a first attempt to solve the challenge-
problem number 4 mentioned in [2], i.e., the improvement of estab-
lished learning algorithms by using symbolic rules. Here, the rules
were obtained from wrongly classified examples after an epoch of
training the network using back-propagation.

One of the main problems was to find good rules. So far, we ap-
plied ID3 and C4.5 techniques for rule learning on all available data
prior to the training and embedded the rules. On the other hand, we
found that artificial neural networks with proper encoding learnt such
(very general) rules easily. The main problems are usually related
with infrequent data patterns. Therefore, we believe that the analysis
of the errors as proposed here is better than an a-priory generation
of rules. But the problem of finding good rules remains. In this pa-
per, we used a very naive approach to construct the correcting rules,
but more powerful methods like ID3 or others could improve the
performance even more [8]. But the method of choice will probably
depend a lot on the application domain. And it is actually the point
where background knowledge about the domain can be incorporated
into the training process. Alternatively, error-analysis and rule cre-
ation could be done by a human expert. One should observe that this
expert is only required once the network has learnt most of the rules.
I.e., the human intervention is done only for the difficult cases and
thus the expert does not need to explicitly state the simple rules.

In this work, we did not use separate training and validation sets,
because we wanted to study the improvement during learning. But
we observed in other experiments, that rule insertion can also lead to
better generalisation. But this is again very much dependant on the
quality of the rules. If the rules generalise, their embedding will also
lead to a better generalisation of the neural network. We will study
this problem in our follow-up work on natural language processing
in more detail.

We have also found that rule insertion improves results beyond
the knowledge directly expressed in rules. Indeed, similarly to work
done when trying to improve neural networks by pruning irrelevant
weights, rule insertion can also, indirectly help in the task of overrid-
ing irrelevant information. We believe this relation should be made
clear in further work. Indeed the relevance of magnitude based prun-
ing methods is well known in methods such as the ones related with
optimal brain damage [6]. In this sense, we believe that there should
be some resemblance between these methods. Therefore, we will in-
vestigate the relations with other pruning and growing techniques in
the future. This will be done empirically by comparing the perfor-
mance of different methods, but the general methodology of the core
method may even serve as a basis for a theoretical comparison be-
tween the different approaches.

We understand that this paper presents only a starting point.
But we believe that the methodology presented here can be devel-
oped into a full fledged training paradigm that allows to incorporate
domain-dependent background knowledge in a concise way. We are
currently applying our algorithm to larger data-sets. As pointed out in
the beginning, natural language processing problems seem to provide
a good challenge where neuro-symbolic integration should be advan-
tageous. As already reported in [7], we can improve the performance
of a connectionist Part-of-Speech tagger by inserting using prior to
the training. Next, we will study whether we can further imrove it by
guiding the training using error-correcting rules as proposed here.

21

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

M
SE

Training cycles

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 700 800 900 1000 1100 1200 1300 1400 1500

Omega=0.0
Omega=0.5
Omega=1.0
Omega=2.0
Omega=5.0

Figure 5. The development of the mean squared error over time for different values of ω (averaged over 50 runs). The vertical lines show the timepoints
where rules have been inserted (every 100 cycles). The zoom in the upper right corner shows also the standard deviation over all 50 runs.

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which indeed
helped to improve the paper.

REFERENCES
[1] A. Asuncion and D. J. Newman. UCI machine learning repository,

2007.
[2] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler, ‘The integra-

tion of connectionism and first-order knowledge representation and rea-
soning as a challenge for artificial intelligence’, Journal of Information,
9(1), 7–20, (January 2006).

[3] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler, ‘Connection-
ist model generation: A first-order approach’, Neurocomputing, (2008).
accepted, in press.

[4] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay, Neural-
Symbolic Learning Systems — Foundations and Applications, Perspec-
tives in Neural Computing, Springer, Berlin, 2002.

[5] Steffen Hölldobler and Yvonne Kalinke, ‘Towards a massively parallel
computational model for logic programming’, in Proceedings ECAI94
Workshop on Combining Symbolic and Connectionist Processing, pp.
68–77. ECCAI, (1994).

[6] Y. LeCun, J. Denker, S. Solla, R. E. Howard, and L. D. Jackel, ‘Optimal
brain damage’, in Advances in Neural Information Processing Systems
II, ed., D. S. Touretzky, San Mateo, CA, (1990). Morgan Kauffman.

[7] Nuno C. Marques, Sebastian Bader, Vitor Rocio, and Steffen
Hölldobler, ‘Neuro-symbolic word tagging’, in New Trends in Artifi-
cial Intelligence, ed., José Machado José Neves, Manuel Filipe Santos,
pp. 779–790. APPIA - Associação Portuguesa para a Inteligência Arti-
ficial, (12 2007).

[8] Tom M. Mitchell, Machine Learning, McGraw-Hill, March 1997.
[9] Geoffrey G. Towell and Jude W. Shavlik, ‘Knowledge-based artificial

neural networks’, Artificial Intelligence, 70(1–2), 119–165, (1994).
[10] Andreas Zell, ‘SNNS, stuttgart neural network simulator, user manual,

version 2.1’, Technical report, Stuttgart, (1992).

22

