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Abstract.   We propose a hybrid model based on self-regulatory 
feedback.  It is a connectionist network, which can be composed in 
a modular fashion.  It can be composed of simple constructs that 
can be combined together to interact logically without requiring a-
priori declaration of ‘interaction-type’ connections.  It is primarily 
a classifier but resolves binding and is pliable to certain symbolic 
manipulations.  We show that 1) compositions can simply be 
combined to create a hybrid-recognition/symbolic network. 2) 
Demonstrate how these compositions perform binding logic. 3)  
Lastly, show how representations can be manipulated in a 
symbolic-like fashion. These properties are an integral part of 
intelligent inference and such networks provide a new direction for 
future research.   

 

INTRODUCTION 
Artificial Intelligence researchers continue to face huge challenges 
in their quest to develop truly intelligent systems.   Neural-
symbolic integration may bring an opportunity to integrate well-
founded symbolic artificial intelligence.  Hybrid models may 
inherit the best of both approaches. 
We propose a hybrid model based on self-regulatory feedback.  It 
is a connectionist network, but is modular.  It can be composed of 
simple constructs that can be combined together to interact 
logically without requiring a-priori declaration of ‘interaction-type’ 
connections.  It is primarily a classifier but resolves binding and is 
pliable to certain symbolic manipulations. 
 
Self-Regulatory Feedback Networks (RFN) are unique because 1) 
they only require connections between inputs and outputs (simple 
connectivity that is resistant to a combinatorial explosion) and 2) 
they do not require conventional connection weights (maintain 
flexibility).  They function in a recursive fashion [1-4]. 
This type of network is be better suited for symbolic manipulation 
than conventional connection-weight models and represents its own 
flavor of network symbolism. 
Section 1 introduces the theory and equations of this network.  
Section 2 & 3 shows how compositions can simply be combined to 
create a hybrid-recognition/symbolic network.  Section 3 shows 
how these compositions perform binding logic.  Section 4 we show 
how representations can be manipulated in a symbolic-like fashion. 
 
1.    Model 
RFNs use top-down regulatory feedback to modify input 
activation.  The modified input activity is then re-distributed to 
the network.  This is repeated iteratively to dynamically 
determine stimuli relevance.  In this manner top-down 
regulatory feedback determines the relevance of inputs to an 
output node. 
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This model does not assume calculations are based on 
predetermined connection weights.  All input features are 
connected equally to associated output nodes.  Thus each 
representation is equally connected to all of its parts.  Since 
connection weights are not relevant, only qualitative relations 
between feature membership to classes need to be determined 
during setup; e.g. y1є{x1, x3…}, y2є{x2,x3…}.  These represent 
symbolic-like interconnections.   
Regulatory feedback has been proposed as an alternate model of 
lateral inhibition [5].  Regulatory feedback was separately 
developed as a model for classification [1, 2], for binding and 
distributed processing [3], and as a multiclass classifier that can 
process multiple stimuli simultaneously [4].  This work focuses on 
the flexibility within this model to manipulate representations in a 
symbolic-like manner.   

1.1 Model Function 

Using our approach features weights are not assigned. Instead, a 
feature’s information content is dynamically evaluated under 
different contexts. RFN inhibits ambiguous inputs during 
classification.  An input is ambiguous if multiple candidate 
representations using that input are active. Thus, RFNs are more 
flexible towards combinations of priors since no weighted relations 
between features or nodes are defined a-priori.  This distinction is 
crucial – traditional Neural Network (NN) notions of a feature 
being uninformative are associated statically between 
representation and its input feature(s).  NN feature extraction 
methods will assign reduced weights to features that are generally 
uninformative as determined by the training set.  

1.2 Model Schematic 

RFN is unique due to the tight association between input features 
and outputs representations.  This is implemented by a triad of 
interconnections between an input, the output it supports and 
feedback from that output (Figure 1).  Every input has a 
corresponding feedback ‘Q’, which samples the output processes 
that the input cell activates.  The feedback modulates the input.   
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Every output must project to the feedback Q processes that 
correspond to its inputs.  For example if an output process receives 
inputs from I1 and I2 it must project to Q1 and Q2.  If it receives 
inputs from I1, it only needs to project to Q1.   

This creates a situation where an output cell can only receive full 
activation from an input if that input’s Q is low.  The Q is low if the 
sum of activation of the outputs that use that input is low.  Thus, if 
representations that share the input are very active, no cell will 
receive full activation from that input.  If outputs share inputs, they 
inhibit each other at their common inputs, forcing the outcome of 
competition to rely on other non-overlapping inputs.  The more 
cells have overlapping inputs, the more competition exists between 
them.  The less overlap between two output cells, the less 
competition, more independent from each other the output cells can 
be. 
The networks dynamically test recognition of representations using 
1) regulatory feedback to the individual inputs of representations 2) 
modifying the next input state based on the input’s use 3) re-
evaluating representations based on new activity.  Steps 1-3 are 
continuously cycled through.  This requires a tight association 
between inputs and outputs and feedback processes.  

RFN is flexible because it doesn’t a-priori define which input is 
ambiguous.  Which input is ambiguous depends on which 
representation(s) are active which in turn depends on which stimuli 
and task are being evaluated. 

1.3 Equations 

This section introduces general nonlinear equations governing 
RFN.  Borrowing nomenclature from engineering control theory, 
this type of inhibitory feedback is negative feedback, in other 
words stabilizing or regulatory feedback.      

For any output cell Y denoted by index a, let Na denote the input 
connections to cell Ya.  For any input cell I denoted by index b, let 
Mb denote the feedback connections to input cell Ib.  The feedback 
to input Ib is defined as Qb.  Qb, is a function of the sum of activity 
from all cells Yj that receive activation from that input: 
                

 

Input Ib is regulated based on Qb, which is determined by the 
activity of all the cells that project to the input, and driven by Xb 
which is the raw input value.   

 

 

The activity of Ya is a product of its previous activity and the input 
cells that project to it.  This property can arise biologically from 
NMDA channels that are found within neuron membranes.  These 
channels are mediated by previous neuron activity.  If a self-
multiplicative (delay) term is not included in equation 3, the 
network can immediately change values and the feedback will not 
be a function of previous activity.  Thus the equations are designed 
so the output cells are proportional to their input activity, inversely 
proportional to their Q feedback and also depend on their previous 
activity [1-4].  na represents the number of processes in set Na. 

 

 

 

 

1.4 Simple Connectivity 

Feedback networks do not require a vast number of connections; 
the number of connections required for competition is a function of 
the number of inputs the cell uses.  Addition of a new cell to the 
network requires only that it forms symmetrical connections about 
its inputs and not directly connect with the other output cells.  Thus 
the number of connections of a specific cell in feedback 
competition is independent of the size or composition of the 
classification network, allowing large and complex feedback 
networks to be combinatorially and biologically practical.   
 
2.  Simple Modular Composition  
Networks can be created in a symbolic/modular fashion.  Suppose 
a node to represent the patterns associated the letter P and another 
node represents the patterns associated the letter R.  R shares some 
patterns with P.  We can intuitively combine these nodes into one 
network, by ignoring this overlap and just connect the network.  
This defines a functioning network without formally learning how 
nodes R and P should interact.  

 
The two nodes are connected such that the inputs of Y1 (input 
pattern ‘P’) completely overlaps with a larger Y2.  But node Y2 also 
receives an independent input pattern’\’.  The solutions are 
presented as (input values) → (output vectors) in the pattern 
(X1,X2,)→(Y1,Y2).   The steady state solution for example 1 is (X1, 
X2)→(X1 – X2, X2).  Substituting our input values  we get 
(1,1)→(0,1), (1,0)→(1,0).   Given only input pattern X1 (‘P’) the 
smaller node wins the competition for representation.  Given both 
input patterns (‘P’ & ’\’) the larger node wins the competition for 
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Figure 2 (A-C): Modular nodes Y1 and Y2 (A & B respectively) can be 
simply combined to form a combined network (C).  Since I & Q are 
symmetric, the network can be drawn using bidirectional connections. 
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Figure 1: Regulatory Feedback Schematic. Each external input Xi is 
modified by feedback Qi to produce a feedback-updated input Ii.  Each feed-
forward connection has an associated feedback connection.  For example, if 
I1 projects to Y1 & Y2, then Q1 must receive projections from Y1 & Y2 and 
feedback to the input I1.  Similarly if I2 projects to Y1, Y2, Y3, & Y4, then Q2
receives projections from Y1, Y2, Y3, & Y4 and projects to I2.  Since the 
connections between I & Q are symmetric, thus can be drawn using 
bidirectional connections (fig 2). 
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representation. Though we used binary inputs, the solution is 
defined for any positive real X input values (Achler 2007).  The 
mathematical equations and their derivation can be found in the 
Appendix.   
Descriptively, Y1 has one input connection, thus by definition its 
fixed connection weight is one.  Its maximal activity is 1 when all 
of its inputs are 1.  Y2 has two input connections so its fixed input 
connection weights are one-half.  When both inputs (‘P’ & ’\’) are 
1 the activity of Y2 sums to 1.  Note these weights are 
predetermined by the network.  Connections are permanent and 
never adjusted.  Input I1 projects to both Y1 & Y2, thus receives 
inhibitory feedback from both Y1 & Y2.  Input I2 projects only to Y2 
so it receives inhibitory feedback from Y2.  The most encompassing 
representation will predominate without any special mechanism to 
adjust the weighting scheme.  Thus, if inputs ‘P’ & ’\’ are active Y2 
wins. This occurs because when both inputs are active, Y1 must 
compete for all of its inputs with Y2, however Y2 only needs to 
compete for half of its inputs (the input shared with Y1) and it gets 
the other half ‘free’.  This allows Y2 to build up more activity and 
in doing so inhibit Y1.     
Thus smaller representation completely encompassed by a larger 
representation becomes inhibited when the inputs of the larger one 
are present.  The smaller representation is unlikely given features 
specific only to the large representation. It demonstrates that RFN 
determines negative associations (‘Y1’ is unlikely given feature 
‘XB’) even though they are not directly encoded.  In order to 
encode such negative associations using conventional methods, 
they would have to be ‘hard-wired’ into the network.  With NN, 
each possible set of stimuli combinations would have to be trained.  
With direct Competition each possible negative association would 
have to be explicitly connected. 
 
3 Binding with Simple Modular Composition  

 
We simultaneously evaluate the criteria of three representations.  In 
e.g. 2, expanded from e.g. 1, three cells partially overlap.  As in 
e.g. 1, Y1 competes for its single input with Y2.  However, now Y2 
competes for its other input with Y3 and Y3 competes for only one 
of its inputs.   
The steady state solution is (X1, X2, X3) → (Y1 = X1 – X2 + X3, Y2 = 
X2 – X3, Y3 = X3).  

If X2 ≤ X3 then Y2=0 and the equations become (X1 , 0, 
2

32 XX + ).  

If X3 = 0 the solution becomes that of e.g. 1: (X1, X2, 0) → (X1 – X2, 
X2, 0).   
The results are:  (1, 0, 0) → (1, 0, 0);  

 (1, 1, 0) → (0, 1, 0);   
 (1, 1, 1) → (1, 0, 1).   

Derivations can be found in the appendix.   
Thus if input X1 is active, Y1 wins.  If inputs X1 and X2 are active 
and Y2 wins for the same reasons this occurs in e.g 1.  However, if 
inputs X1, X2 and X3 are active then Y1 and Y3 win.  The network as 
a whole chooses the cell or cells that best represent the input 
pattern with the least amount of competitive overlap.   
In e.g. 2, Y2 must compete with all of its inputs: X1 with Y1, X2 with 
Y3.  Y3 only competes for half of its inputs (input X2) getting input 
X3 ‘free’.  Since Y2 is not getting its other input X1 ‘free’ it is at a 
competitive disadvantage to Y3.  Together Y1 and Y3, mutually 
benefit from each other and force Y2 out of competition. 
Competitive information travels indirectly ‘through’ the 
representations.  Given active inputs X1 and X2 =1, the activity state 
of Y1 is determined by input X3 through Y3. If input X3 is 0 then Y1 
becomes inactive.  If input X3 is 1, Y1 becomes active.  However, Y3 
does not even share input X1 with Y1. 

3.1 Binding 

Choosing Y2 given (1,1,1)       is equivalent to choosing the 
irrelevant features for binding.  If the inputs represent spatially 
invariant features where feature X1 represents circles, X3 represents 
the body shape and feature X2 represents a horizontal bar.  Y1 is 
assigned to represent wheels and thus when it is active, feature X1 
is interpreted as wheels.  Y2 represents a barbell      composed of a 
bar adjacent to two round weights (features X1 and X2).  Note: even 
though Y2 includes circles (feature X1), they do not represent 
wheels (Y1), they represent barbell weights.  Thus if Y2 is active 
feature X1 is interpreted as part of the barbell.  Y3 represents a car 
body without wheels (features X2 and X3), where feature X2 is 
interpreted as part of the chassis.  Now given an image of a car 
with all features simultaneously (X1, X2 and X3), choosing the 
barbell (Y2) even though technically a correct representation, is 
equivalent to a binding error within the wrong context in light of 
all of the inputs.  Most classifiers if not trained otherwise are as 
likely to choose barbell or car chassis (see figure 4).  In that case 
the complete picture is not analyzed in terms of the best fit given 
all of the information present.  Similar to case 1, the most 
encompassing representations mutually predominate without any 
special mechanism to adjust the weighting scheme.  Thus the 
networks are able to evaluate and bind representations in a sensible 
manner for these triple cell combinations. 

Figure 3(A-D): Modular combination 
of nodes display binding.  Nodes Y1, Y2,
Y3 (A, B & C) can be simply combined to 
form a combined network (D). Y1 & Y3

represent car with wheels, Y2 represents 
barbell.  These alternate interpretations 
use the same input features presenting a 
binding problem. 
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Optimized NN and SVM learning is performed using the most 
recent version of the Waikato Environment for Knowledge Analysis 
(WEKA) package currently available [6].   
 
4. Symbolic-like Manipulation  
The behavior of the network can be changed by forcing the values 
of the output nodes.  The value of a node can be artificially 
increased or decreased.  For example, forcing a representation to 
have a zero value is equivalent to eliminating it from the network.  
Artificially activating a representation gives it priority over other 
nodes and can forces its representation to override inherent binding 
processes. 
 
We repeat example 2 but can ask the question: can a barbell shape 
be found in any form?  We introduce a small bias to Y2 
(representing barbell) according to the equation modified from 
example 2:  

 
 
 

Choosing a bias b of 0.2 and activating all inputs, such as car, the 
network results are: (1, 1, 1) → (0.02, 0.98, 0.71). The network 
now overrides its inherent properties and responds to whether 
inputs matching Y2 are present.  Each representation can be 
manipulated in a similar manner.  This is a form of symbolic 
manipulation closely tied to recognition.  This demonstrates how a 
symbolic-like manipulation can manipulate a classification 
scenario.   

CONCLUSION 
Further symbolic manipulation may be possible by changing 
internal node properties.  The equations currently sum inputs (I’s) 
in a linear fashion.   However they can be summed using a sigmoid 
or other function.  The activation function can be designed so that 
when any of a node’s inputs are matched, the node becomes active.  
Conversely it can be designed so that when only one input is active 
that node is active.  Initial results show that a sigmoid function 
gives the node an ‘AND’-like function.   The location of the 
sigmoid slope can be manipulated determining node behavior 
between ‘AND’-like nodes to more ‘OR’-like nodes.    Since RFNs 

are nonlinear, at this point, we can simulate general cases, but not 
provide analytical axioms.  This is left for future work. 
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Figure 4:  Presentation of this binding problem to conventional 
classifier approaches.  The Neural Networks (NN) and Support Vector 
Machines (SVM) were trained on y1,y2, y3 based on x1 x2 and x3, using 
the WEKA classifier tool.  K-nearest neighbors was determined by the 
closest neighbor, 1-N. 

 
Using a very simple set-up process, RFN allows modular 
combination of nodes.  It is robust in multiple scenarios and 
computationally economical because it does not require many 
variables. It only requires simple combinatorialy-plausible 
connectivity between inputs and outputs.  RFN offers a flexible and 
dynamic approach to intelligent applications. The network can also 
be manipulated to perform search tasks by biasing output 
representations.  These properties demonstrate that such networks 
can be an integral part of intelligent inference and provide a new 
direction for future research.   
 
APPENDIX 
Example 1.  RFN equations are:  
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The network solution at steady state is derived by setting 
y1(t+dt)=y1(t) and y2(t+dt)=y2(t) and solving these equations.   The 
solutions are y1 = x1 – x2 and y2 = x2.  If x1 ≤ x2 then y1 = 0 and the 
equation for y2 becomes: 
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Example 2. Equation y1 (t+dt) remains the same as example 1.  y2 
(t+dt) and y3 (t+dt) become: 
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Solving for steady state by setting y1(t+dt)=y1(t), y2(t+dt)=y2(t), 
and y3(t+dt)=y3(t), we get y1=x1–x2+x3, y2=x2–x3, y3= x3. If x3 =0 
the solution becomes that of e.g. 1: y1=x1–x2 and y2=x2.  If x2 ≤ x3 

then y2=0 and the equations become y1 = x1 and 
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