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Abstract 
Protein subcellular localization refers to the specific compartments within a cell where proteins are 
situated, a critical aspect influencing their functions. Understanding subcellular localization is 
paramount in deciphering cellular processes, as proteins operate optimally within distinct cellular 
niches. This knowledge holds significance in areas such as cytobiology, proteomics, and drug design, as 
it unveils crucial insights into the intricate organization and functioning of cells. This work uses a large 
dataset that includes features like mcg, gvh, lip, chg, aac, alm1, alm2, and site to predict the subcellular 
localization of E. coli bacteria using machine learning classifiers. Classification and Regression Trees, 
Naive Bayes, K-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression, Support Vector 
Machine, Linear Support Vector Machine, Extra Trees Classifier, and Random Forest Classifier are 
among the classifiers that are being examined. Performance measures including recall, accuracy, 
precision, and F1-score are carefully assessed to give a detailed picture of each classifier's effectiveness. 
With an accuracy of 87.16%, precision of 85.70%, recall of 86.86%, and an F1-score of 85.77%, SVM 
stands out as the most effective classifier. This study adds significant knowledge to the field of microbial 
biology by demonstrating how machine learning may be used to forecast the subcellular location of E. 
coli bacteria, which has implications for more general predictive modeling applications 
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1. Introduction 

Eukaryotic cells exhibit intricate compartmentalization within distinct membrane-bound 
structures, encompassing components such as the extracellular space, plasma membrane, 
cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, 
vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix, and ribosomes. In a similar vein, 
bacterial cells showcase subcellular localizations discernible through cell fractionation. Essential 
localizations include the cytoplasm, cytoplasmic membrane (referred to as the inner membrane 
in Gram-negative bacteria), cell wall (typically thicker in Gram-positive bacteria), and 
extracellular environment. While the cytoplasm, cytoplasmic membrane, and cell wall constitute 
subcellular localizations, the extracellular environment stands apart. Gram-negative bacteria 
additionally feature an outer membrane and periplasmic space. Unlike eukaryotes, bacteria 
typically lack membrane-bound organelles, although exceptions like magnetosomes exist [1]. 

The localization of proteins within a cell is intricately tied to their functions. Proteins operate 
effectively only when positioned in specific subcellular compartments, underscoring the 
significance of studying protein localization in cytobiology, proteomics, and drug design. The 
prediction of protein subcellular localization through machine learning has emerged as a timely 
and highly engaging area within bioinformatics. This paper conducts a comprehensive review of 
the current research landscape surrounding protein subcellular localization prediction, focusing 
on four key facets. First and foremost, our initial undertaking involved the careful selection of a 
benchmark dataset for our study on protein subcellular localization prediction. Subsequently, we 
meticulously analyzed the chosen dataset, delving into its characteristics and intricacies to ensure 
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a comprehensive understanding of the underlying biological information. Following this, we 
proceeded to select state-of-the-art machine learning models tailored to the specific task of 
predicting protein subcellular localization. Our model selection process considered the nuanced 
features of the dataset and the diverse methodologies employed by various classifiers. The 
culmination of our work involved a thorough analysis and comparison of the results obtained 
from the chosen machine learning algorithms, providing valuable insights into their performance 
and efficacy for the given biological prediction task. 

Microbial biology, at the intersection of microbiology and computational sciences, has 
witnessed significant advancements with the advent of machine learning techniques. The 
accurate prediction of subcellular localization in bacteria, such as Escherichia coli (E. coli) [2, 3], 
is a critical aspect of understanding their cellular functions, metabolic pathways, and potential 
roles in both health and disease. E. coli, a well-studied bacterium, serves as an ideal model 
organism for such investigations due to its ubiquity in scientific research and its importance in 
various fields, including biotechnology and medicine. 

Subcellular localization [4], referring to the specific cellular compartments or structures 
where proteins and biomolecules are localized, is a key determinant of their functions. Predicting 
the subcellular localization of E. coli proteins can unravel insights into its pathogenicity, virulence 
factors, and contribute to our understanding of its adaptation strategies in different 
environments. 

Machine learning, a subset of artificial intelligence, has proven to be an invaluable tool in 
deciphering complex biological data [5]. In this study, we harness the power of diverse machine 
learning classifiers to predict the subcellular localization of E. coli bacteria. The dataset employed 
encompasses a range of biological features, including mcg, gvh, lip, chg, aac, alm1, alm2, and site, 
each serving as a molecular signature influencing subcellular localization.  

The classifiers selected for evaluation comprise a comprehensive set, including Logistic 
Regression (LR) [6], Linear Discriminant Analysis (LDA) [7], K-Nearest Neighbors (KNN) [8], 
Classification and Regression Trees (CART) [9], Naive Bayes (NB) [10], Support Vector Machine 
(SVM) [11], Linear Support Vector Machine (L-SVM) [12], Extra Trees Classifier (ETC) [13], and 
Random Forest Classifier (RFC) [14]. These classifiers are chosen for their diverse methodologies 
and suitability for different types of data. 

The evaluation of performance metrics, such as accuracy, precision, recall, and F1-score, is 
central to our analysis. These metrics provide a holistic view of each classifier's ability to make 
accurate predictions, balance precision and recall, and effectively discern subcellular localization 
patterns in E. coli. 

This study not only contributes to the growing body of knowledge in microbial biology but 
also underscores the potential of machine learning in unraveling the complexities of bacterial 
subcellular organization. The outcomes hold implications for advancements in predictive 
modeling, offering a nuanced understanding of E. coli biology and paving the way for broader 
applications in microbial research and biotechnology. 

2. Related Works 

The exploration of subcellular localization prediction in microorganisms, particularly bacteria 
like Escherichia coli (E. coli), has been a focal point in bioinformatics and computational biology. 
The task involves predicting the cellular compartments or locations within a cell where proteins 
are likely to reside. Several studies have delved into this domain, employing diverse 
methodologies ranging from traditional bioinformatics approaches to more contemporary 
machine learning techniques. In this section, we will review and analyze the most significant 
contributions in the field of subcellular localization prediction over the past decade, focusing 
specifically on work published in the last 10 years. 

Developing on the previous Hum-mPLoc predictor, the enhanced Hum-mPLoc 2.0 tackles 
challenges in predicting subcellular localization of human proteins [17], especially those with 
multiplex characteristics. Unlike its predecessor, Hum-mPLoc 2.0 eliminates the need for protein 



accession numbers, making it applicable to proteins without such identifiers. Additionally, it 
incorporates functional domain and sequential evolution information through an ensemble 
classifier, resulting in a substantially improved prediction capability. The freely accessible web 
server for Hum-mPLoc 2.0 offers an efficient solution to address these shortcomings in 
subcellular localization prediction. 

CELLO2GO [18] is a web-based system offering a comprehensive screening of targeted 
proteins, providing gene ontology (GO)-type categories, and subcellular localization information. 
The platform utilizes BLAST homology searching and CELLO localization prediction, combining 
these approaches to generate detailed GO annotations and predict subcellular localization based 
on the identified homologous sequences. CELLO2GO's output includes informative pie charts 
summarizing the functional annotations, making it a valuable tool for complex subcellular system 
research by integrating CELLO and BLAST functionalities into a user-friendly platform. 

The author has proposed a novel SVM-based approach, MultiLoc [20], with the aim of 
enhancing proteomic functional annotation. This method integrates N-terminal targeting 
sequences, amino acid composition, and protein sequence motifs for comprehensive subcellular 
localization prediction. Through comparisons with existing methods, the study demonstrates 
improved predictions based on N-terminal targeting sequences using our method, TargetLoc. 
MultiLoc exhibits superior or comparable performance to specialized methods focused on fewer 
localizations or specific organisms when predicting major eukaryotic subcellular localizations. 

The paper [15] explores the spatial organization of proteins in bacterial cells, highlighting 
specific locations where proteins congregate. It emphasizes the role of cellular shapes, self-
assembly, and designated sites in guiding proteins to their functional positions. Using examples 
such as FtsZ for cell division and proteins involved in chemotaxis and spore formation, the paper 
elucidates how proteins contribute to vital processes, including growth, cell cycle regulation, and 
behavioral changes in bacterial cells. The authors anticipate advancements in microscopy and 
tracking techniques to unveil intricate details of protein movement and function in bacteria, 
underscoring the significance of understanding protein localization and suggesting avenues for 
further research [25, 44]. 

The paper [28] introduces LOCALIZER, a novel computational method designed to predict 
plant and effector protein localization accurately within chloroplasts, mitochondria, and nuclei. 
Exhibiting enhanced accuracy compared to existing methods, LOCALIZER proves invaluable for 
prioritizing effector candidates and sheds light on subcellular localization dynamics in plant-
pathogen interactions. 

The paper [43] introduces COMPARTMENTS, a comprehensive tool serving as a knowledge 
hub for protein subcellular localization. By aggregating data from diverse sources and utilizing 
text mining, it continuously updates with confidence scores, simplifying information visualization 
through cell diagrams, categorizing evidence, and assigning reliability scores, aiming to facilitate 
researchers in comprehending and comparing protein location information within cells. 

The paper [23, 30] presents a support vector machine method for precise protein subcellular 
localization prediction using amino acid sequences. This method maintains effectiveness despite 
errors in the initial protein sequence, and comparative analysis highlights its superiority over 
other methods, proving valuable for large-scale genetic information analysis and contributing 
significantly to biology and genetics research. 

The paper introduces Dynamic Organellar Maps [42], enabling comprehensive mapping of 
protein translocation in HeLa cells with over 8700 proteins, providing detailed spatial and 
abundance information for quantitative analysis of cell anatomy and organellar composition, 
both statically and dynamically in response to stimuli like EGF. This method allows proteome-
wide exploration of physiological protein movements without requiring process-specific 
reagents, offering broad applicability in cell biology.  

The author has proposed a stacked ensemble-based deep learning model [41] for the multi-
label classification of protein subcellular localization, showcasing superior performance 
compared to existing approaches in the Human Protein Atlas database. 



3. Proposed Methodology 

3.1. Dataset 

We have used the E.coli (Escherichia coli) bacteria dataset, taken from UC Irvine machine 
learning repository database. The data is containing 336 instances and 7 features. Table 1 
displays the attribute information of the dataset, with the first column containing attribute names 
and the second column providing descriptions. The distribution of localization sites is presented 
in Table 2, where the first column denotes location names and the second column indicates the 
count for each specific location. 

 
Table 1 
Attribute information [31, 32] 

Sequence Name Accession number for the SWISS-PROT database 

mcg McGeoch's method for signal sequence recognition. 
gvh von Heijne's method for signal sequence recognition 
lip von Heijne's Signal Peptidase II consensus sequence score. Binary attribute. 
chg Presence of charge on N-terminus of predicted lipoproteins. Binary attribute. 
aac score of discriminant analysis of the amino acid content of outer membrane and 

periplasmic proteins. 
alm1 score of the ALOM membrane spanning region prediction program. 
alm2 score of ALOM program after excluding putative cleavable signal regions from the 

sequence. 

 
Table 2 
Distribution of localization site 

Locations Count 

cytoplasm (cp) 143 
inner membrane without signal sequence (im) 77 
perisplasm (pp)   52 
inner membrane, uncleavable signal sequence (imU) 35 
outer membrane (om)   20 
outer membrane lipoprotein (omL) 5 
inner membrane lipoprotein (imL) 2 

 
The statistical description of the Ecoli bacteria data reveals important insights about the dataset in 

Table 3. There are 336 observations for each attribute, indicating a consistent dataset size. The mean 
values provide an average measure for each attribute. Notably, the means for the attribute’s mcg, 
gvh, lip, chg, aac, alm1, alm2, and site vary. The standard deviation provides a measure of the 
dispersion or spread of the data. A lower standard deviation suggests that the data points tend to be 
closer to the mean. The minimum and maximum values highlight the range of each attribute. For 
example, the site attribute has a minimum value of 1.000 and a maximum value of 8.000, indicating 
the range of classes or categories. 

 
Table 3 
Statistical description of E.coli bacteria data 

 mcg          gvh          lip          chg          aac         alm1 alm2 site 

count   335.00   335.00   335.00   335.00   335.00   335.00   335.00   335.00   
mean      0.500     0.5017     0.496     0.501     0.500     0.501 0.500     2.245 
std         0.195     0.148     0.089     0.027     0.123     0.216 0.210     1.443   
min           0.000     0.160     0.480     0.500     0.000 0.030   0.000       1.000 



max                     0.890 1.000 1.000     1.000     0.880 1.000 0.990     8.000 

Note: The Table 3 provides a statistical summary of various attributes (mcg, gvh, lip, chg, aac, alm1, 
alm2, site) in the Ecoli bacteria dataset, including the count, mean, standard deviation (Std), minimum 
(Min), and maximum (Max) values for each attribute. 

3.2. Model 

The classifiers selected for assessment are a broad and varied group, each chosen for its own 
approach and suitability for different kinds of data. The ensemble comprises a model of the 
likelihood of class membership called Logistic Regression (LR); Classification and Regression 
Trees (CART), which uses tree-like models to make judgments; K-Nearest Neighbors (KNN), a 
non-parametric technique based on similarity measurements; Linear Discriminant Analysis 
(LDA), which looks for the linear combinations of characteristics that best discriminate classes; 
Extra Trees Classifier (ETC), which uses an ensemble of decision trees with random feature splits; 
Support Vector Machine (SVM), which builds hyperplanes for optimal class separation; Linear 
Support Vector Machine (L-SVM), an SVM variant intended for linearly separable data; and as well 
as the Random Forest Classifier (RFC), an ensemble technique that combines forecasts from 
several decision trees. This broad selection guarantees a comprehensive analysis, taking into 
account the advantages and flexibility of each classifier to different features in the dataset being 
analyzed. Incorporating classifiers with disparate underlying concepts enhances the 
comprehensiveness of the research by providing insights into their relative performance and 
appropriateness for various types of data. 

3.3. Performance 

In our study, a critical insight emerges-acknowledging that not all correct or incorrect matches 
carry the same significance. Relying on a singular metric falls short of providing a comprehensive 
assessment of classification performance. Consequently, we have opted for a multi-faceted 
approach, utilizing accuracy, recall, precision, and F1 score as performance metrics, which will be 
elaborated upon in the subsequent section. Table 4 presents the comprehensive set of 
performance metrics utilized in our study.  

3.3.1. Accuracy 

Accuracy stands out as the most instinctive performance measure, representing the ratio of 
correctly predicted observations to the total number of observations. A model is deemed optimal 
when achieving high accuracy or nearing perfection [33, 34] 

3.3.2. Precision 

Put simply, precision can be conceptualized as a gauge of a classifier's precision-the    extent 
to which identifications are accurate. It reflects the ratio of correctly predicted positive instances 
to the total predicted positive instances [37, 38]. A lower precision value may suggest a higher 
count of False Positives 
 
Table 4 
Performance metrics 

Performance Metrices Description 

Accuracy (TP + TN) / (TP+TN+PF+FN) 
Precision TP/ (TP+FP) 
Recall TP/ (TP+FN) 
F1-Score (2 * Precision * Recall) / (Precision + Recall) 



3.3.3. Recall 

Recall serves as a metric reflecting a classifier's comprehensiveness, revealing the proportion 
of actual positives correctly identified by the predictive model [35, 36, 37]. It is the ratio of 
correctly predicted positive instances, encompassing both true positives and false negatives. 
Additionally, known as Sensitivity, a low recall value indicates a notable count of False Negatives. 

3.3.4. F1-Score 

In scenarios with imbalanced class distribution, F1 emerges as a suitable performance metric. 
Being the weighted average of Precision and Recall, this score incorporates considerations for 
both false negatives and false positives [39, 40]. Alternatively, one might express that the F1 score 
encapsulates the equilibrium between precision and recall. An effective information retrieval or 
text classification classifier is anticipated to yield high or close-to-high values for precision, recall, 
and F1 score. 

4. Results and Analysis 

4.1. Execution environments 

Our experimental setup utilized a Lenovo ThinkPad E14 Ultrabook operating on the Windows 
10 Professional 64-bit system, equipped with a 10th Generation Intel Core i7-10510U Processor. 
The processor operates at a clock speed of 1.8 GHz, and the system is configured with a 16 GB 
DDR4 memory size. 

4.2. Results 

The performance classification results for the E. coli dataset reveal distinctive characteristics 
of various machine learning classifiers. These findings are crucial in understanding the strengths 
and limitations of each model. Table 4 summarizes the performance of classifiers such as LR, LDA, 
KNN, CART, NB, SVM, L-SVM, ETC, and RFC. Each classifier is evaluated based on Accuracy, 
Precision, Recall, and F1-Score. Figure 1 visually represents the confusion matrices of different 
machine learning models, offering insights into their performance in predicting the subcellular 
localization of E. coli bacteria. These matrices provide a comprehensive overview, detailing true 
positive, true negative, false positive, and false negative predictions, facilitating a thorough 
analysis of the effectiveness of each classifier in the prediction task. Table 5 presents a summary 
of the classification performance. 

Support Vector Machine (SVM) emerges as a top performer, achieving the highest accuracy of 
87.16%. This indicates the SVM's robust ability to correctly classify instances in the Ecoli dataset. 
The SVM also demonstrates commendable precision (85.70%) and recall (86.86%), striking a 
well-balanced trade-off between false positives and false negatives, as evident from the high F1-
score of 85.77%. 

Linear Discriminant Analysis (LDA) showcases balanced performance across multiple metrics, 
standing out with an accuracy of 86.84%. LDA's precision (88.08%) and recall (86.90%) 
contribute to a high F1-score of 86.98%, reinforcing its reliability in correctly identifying positive 
instances. 

K-Nearest Neighbors (KNN) aligns closely with LDA, achieving an accuracy of 86.87%. While 
KNN's precision (84.00%) and recall (84.80%) are slightly lower than LDA, the F1-score remains 
robust at 83.87%, highlighting its competence in classification.  

Random Forest Classifier (RFC) delivers competitive results with an accuracy of 86.25%. RFC 
exhibits high precision (86.32%) and recall (84.49%), striking a balance reflected in the F1-score 
of 84.63%. 

 



 
Figure 1: Confusion matrices for the models LR, LDA, KNN, CART, NB, SVM, L_SVM, ETC, and RFC 
 
Table 5 
Performance classification summary for the E.coli dataset 

Classifier Accuracy Precision Recall F1-Score 

LR 0.793850 0.749978 0.803000 0.764240 
LDA 0.868449 0.880774 0.869000 0.869843 
KNN 0.868717 0.840020 0.848000 0.838716 
CART 0.794118 0.808639 0.798000 0.791203 
NB 0.752317 0.748441 0.753000 0.733291 
SVM 0.871569 0.857038 0.868627 0.857711 
L-SVM 0.859626 0.863019 0.865597 0.856470 
ETC 0.865597 0.838753 0.845009 0.844410 

RFC 0.862478 0.863171 0.844920 0.846348 

 
 



 
Figure 2: Algorithmic performance comparison on the E. coli dataset 
 

 
Figure 3: Algorithmic training times comparison on the E. coli dataset 
 

Logistic Regression (LR) and Classification and Regression Trees (CART) show comparable 
performance with accuracies of 79.39% and 79.41%, respectively. However, LR demonstrates a 
precision-recall trade-off, leading to a lower F1-score of 76.42%. CART, on the other hand, 
maintains a more balanced F1-score of 79.12%. 

Naive Bayes (NB) exhibits a slightly lower performance with an accuracy of 75.23%. The 
model's precision (74.84%) and recall (75.30%) contribute to an F1-score of 73.33%, indicating 
potential challenges in correctly classifying positive instances.  

Figure 2 illustrates a comparative analysis of algorithmic performance and training times 
across various machine learning models on the E. coli dataset. 



5. Conclusion 

The investigation into predicting subcellular localization of E. coli bacteria through machine 
learning classifiers yields valuable insights into the strengths and nuances of various models. 
Notably, Support Vector Machine (SVM) emerges as a standout performer with high accuracy, 
precision, recall, and F1-score, showcasing its robust predictive capabilities. Linear Discriminant 
Analysis (LDA) and K-Nearest Neighbors (KNN) also demonstrate commendable performances, 
emphasizing the importance of selecting classifiers tailored to specific application requirements. 
The comprehensive evaluation, considering precision, recall, and F1-score alongside accuracy, 
provides a holistic understanding of classifier effectiveness in real-world scenarios. Beyond the 
specific application to E. coli, these findings contribute to microbial biology, illustrating the 
potential of machine learning in subcellular localization prediction with implications for broader 
applications in microbial research and biotechnology. 

In conclusion, this study advances our understanding of E. coli biology while providing 
valuable insights into the landscape of microbial research. The future trajectory of this work 
involves exploring advanced visualization techniques, hyperparameter tuning, and incorporating 
larger datasets for a more extensive evaluation of classifier generalization across diverse 
microbial species. Ensemble methods and deep learning approaches present promising avenues 
for further refinement, and the integration of biological context could enhance classifiers' 
interpretability. Ongoing advancements in machine learning and computational biology offer 
exciting opportunities for refining predictive capabilities in microbial subcellular localization 
[26], positioning this research at the forefront of interdisciplinary advancements. 

6. Future Works 

Anticipating the subcellular location of microorganisms, specifically E. coli bacterium, offers 
numerous avenues for investigation and advancement in the future. First, to capitalize on the 
advantages of several classifiers and maybe improve overall prediction performance, the 
integration of ensemble techniques [16], like stacking or boosting, should be researched. 
Investigating the use of deep learning models-like neural networks-could provide a more 
comprehensive comprehension of intricate correlations seen in biological data, opening the door 
to predictions that are more correct. Moreover, it is imperative that machine learning models 
prioritize interpretability and explainability, particularly when applied to biological research 
[46]. In the future, the models' biological relevance could be increased by using methods such as 
attention mechanisms or SHAP (SHapley Additive exPlanations) values to identify the features 
affecting predictions. Furthermore, domain-specific information like functional annotations or 
protein-protein interactions [45] may help produce predictions that are more context-aware. 
Growing the dataset to include a wider variety of microbial species and subcellular compartments 
would offer a more thorough assessment of classifier generalization as high-throughput 
technologies continue to progress [24, 27]. Furthermore, the creation of user-friendly web 
servers [19, 21] or applications built on the verified models may enable these predictive tools to 
be more widely accessible and used by the scientific community. Additionally, our study can be 
expanded using the Markov clustering algorithm (MCL) to analyze patterns within subcellular 
localization data. Employing MCL enables the identification of protein groups sharing similar 
localization patterns [22, 29], enhancing insights into cellular organization and protein functions. 
Utilizing TF-IDF [47] for predicting the cellular location of proteins represents a promising 
avenue for improving accuracy and reliability in subcellular localization. 
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