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Abstract

Protein subcellular localization refers to the specific compartments within a cell where proteins are
situated, a critical aspect influencing their functions. Understanding subcellular localization is
paramount in deciphering cellular processes, as proteins operate optimally within distinct cellular
niches. This knowledge holds significance in areas such as cytobiology, proteomics, and drug design, as
it unveils crucial insights into the intricate organization and functioning of cells. This work uses a large
dataset that includes features like mcg, gvh, lip, chg, aac, alm1, alm2, and site to predict the subcellular
localization of E. coli bacteria using machine learning classifiers. Classification and Regression Trees,
Naive Bayes, K-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression, Support Vector
Machine, Linear Support Vector Machine, Extra Trees Classifier, and Random Forest Classifier are
among the classifiers that are being examined. Performance measures including recall, accuracy,
precision, and F1-score are carefully assessed to give a detailed picture of each classifier's effectiveness.
With an accuracy of 87.16%, precision of 85.70%, recall of 86.86%, and an F1-score of 85.77%, SVM
stands out as the most effective classifier. This study adds significant knowledge to the field of microbial
biology by demonstrating how machine learning may be used to forecast the subcellular location of E.
coli bacteria, which has implications for more general predictive modeling applications

Keywords

Protein, protein subcellular localization, E.coli, machine learning, microbial biology

1. Introduction

Eukaryotic cells exhibit intricate compartmentalization within distinct membrane-bound
structures, encompassing components such as the extracellular space, plasma membrane,
cytoplasm, nucleus, mitochondria, Golgi apparatus, endoplasmic reticulum (ER), peroxisome,
vacuoles, cytoskeleton, nucleoplasm, nucleolus, nuclear matrix, and ribosomes. In a similar vein,
bacterial cells showcase subcellular localizations discernible through cell fractionation. Essential
localizations include the cytoplasm, cytoplasmic membrane (referred to as the inner membrane
in Gram-negative bacteria), cell wall (typically thicker in Gram-positive bacteria), and
extracellular environment. While the cytoplasm, cytoplasmic membrane, and cell wall constitute
subcellular localizations, the extracellular environment stands apart. Gram-negative bacteria
additionally feature an outer membrane and periplasmic space. Unlike eukaryotes, bacteria
typically lack membrane-bound organelles, although exceptions like magnetosomes exist [1].
The localization of proteins within a cell is intricately tied to their functions. Proteins operate
effectively only when positioned in specific subcellular compartments, underscoring the
significance of studying protein localization in cytobiology, proteomics, and drug design. The
prediction of protein subcellular localization through machine learning has emerged as a timely
and highly engaging area within bioinformatics. This paper conducts a comprehensive review of
the current research landscape surrounding protein subcellular localization prediction, focusing
on four key facets. First and foremost, our initial undertaking involved the careful selection of a
benchmark dataset for our study on protein subcellular localization prediction. Subsequently, we
meticulously analyzed the chosen dataset, delving into its characteristics and intricacies to ensure
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a comprehensive understanding of the underlying biological information. Following this, we
proceeded to select state-of-the-art machine learning models tailored to the specific task of
predicting protein subcellular localization. Our model selection process considered the nuanced
features of the dataset and the diverse methodologies employed by various classifiers. The
culmination of our work involved a thorough analysis and comparison of the results obtained
from the chosen machine learning algorithms, providing valuable insights into their performance
and efficacy for the given biological prediction task.

Microbial biology, at the intersection of microbiology and computational sciences, has
witnessed significant advancements with the advent of machine learning techniques. The
accurate prediction of subcellular localization in bacteria, such as Escherichia coli (E. coli) [2, 3],
is a critical aspect of understanding their cellular functions, metabolic pathways, and potential
roles in both health and disease. E. coli, a well-studied bacterium, serves as an ideal model
organism for such investigations due to its ubiquity in scientific research and its importance in
various fields, including biotechnology and medicine.

Subcellular localization [4], referring to the specific cellular compartments or structures
where proteins and biomolecules are localized, is a key determinant of their functions. Predicting
the subcellular localization of E. coli proteins can unravel insights into its pathogenicity, virulence
factors, and contribute to our understanding of its adaptation strategies in different
environments.

Machine learning, a subset of artificial intelligence, has proven to be an invaluable tool in
deciphering complex biological data [5]. In this study, we harness the power of diverse machine
learning classifiers to predict the subcellular localization of E. coli bacteria. The dataset employed
encompasses a range of biological features, including mcg, gvh, lip, chg, aac, alm1, alm2, and site,
each serving as a molecular signature influencing subcellular localization.

The classifiers selected for evaluation comprise a comprehensive set, including Logistic
Regression (LR) [6], Linear Discriminant Analysis (LDA) [7], K-Nearest Neighbors (KNN) [8],
Classification and Regression Trees (CART) [9], Naive Bayes (NB) [10], Support Vector Machine
(SVM) [11], Linear Support Vector Machine (L-SVM) [12], Extra Trees Classifier (ETC) [13], and
Random Forest Classifier (RFC) [14]. These classifiers are chosen for their diverse methodologies
and suitability for different types of data.

The evaluation of performance metrics, such as accuracy, precision, recall, and F1-score, is
central to our analysis. These metrics provide a holistic view of each classifier's ability to make
accurate predictions, balance precision and recall, and effectively discern subcellular localization
patterns in E. coli.

This study not only contributes to the growing body of knowledge in microbial biology but
also underscores the potential of machine learning in unraveling the complexities of bacterial
subcellular organization. The outcomes hold implications for advancements in predictive
modeling, offering a nuanced understanding of E. coli biology and paving the way for broader
applications in microbial research and biotechnology.

2. Related Works

The exploration of subcellular localization prediction in microorganisms, particularly bacteria
like Escherichia coli (E. coli), has been a focal point in bioinformatics and computational biology.
The task involves predicting the cellular compartments or locations within a cell where proteins
are likely to reside. Several studies have delved into this domain, employing diverse
methodologies ranging from traditional bioinformatics approaches to more contemporary
machine learning techniques. In this section, we will review and analyze the most significant
contributions in the field of subcellular localization prediction over the past decade, focusing
specifically on work published in the last 10 years.

Developing on the previous Hum-mPLoc predictor, the enhanced Hum-mPLoc 2.0 tackles
challenges in predicting subcellular localization of human proteins [17], especially those with
multiplex characteristics. Unlike its predecessor, Hum-mPLoc 2.0 eliminates the need for protein



accession numbers, making it applicable to proteins without such identifiers. Additionally, it
incorporates functional domain and sequential evolution information through an ensemble
classifier, resulting in a substantially improved prediction capability. The freely accessible web
server for Hum-mPLoc 2.0 offers an efficient solution to address these shortcomings in
subcellular localization prediction.

CELLO2GO [18] is a web-based system offering a comprehensive screening of targeted
proteins, providing gene ontology (GO)-type categories, and subcellular localization information.
The platform utilizes BLAST homology searching and CELLO localization prediction, combining
these approaches to generate detailed GO annotations and predict subcellular localization based
on the identified homologous sequences. CELLO2GO's output includes informative pie charts
summarizing the functional annotations, making it a valuable tool for complex subcellular system
research by integrating CELLO and BLAST functionalities into a user-friendly platform.

The author has proposed a novel SVM-based approach, MultiLoc [20], with the aim of
enhancing proteomic functional annotation. This method integrates N-terminal targeting
sequences, amino acid composition, and protein sequence motifs for comprehensive subcellular
localization prediction. Through comparisons with existing methods, the study demonstrates
improved predictions based on N-terminal targeting sequences using our method, TargetLoc.
MultiLoc exhibits superior or comparable performance to specialized methods focused on fewer
localizations or specific organisms when predicting major eukaryotic subcellular localizations.

The paper [15] explores the spatial organization of proteins in bacterial cells, highlighting
specific locations where proteins congregate. It emphasizes the role of cellular shapes, self-
assembly, and designated sites in guiding proteins to their functional positions. Using examples
such as FtsZ for cell division and proteins involved in chemotaxis and spore formation, the paper
elucidates how proteins contribute to vital processes, including growth, cell cycle regulation, and
behavioral changes in bacterial cells. The authors anticipate advancements in microscopy and
tracking techniques to unveil intricate details of protein movement and function in bacteria,
underscoring the significance of understanding protein localization and suggesting avenues for
further research [25, 44].

The paper [28] introduces LOCALIZER, a novel computational method designed to predict
plant and effector protein localization accurately within chloroplasts, mitochondria, and nuclei.
Exhibiting enhanced accuracy compared to existing methods, LOCALIZER proves invaluable for
prioritizing effector candidates and sheds light on subcellular localization dynamics in plant-
pathogen interactions.

The paper [43] introduces COMPARTMENTS, a comprehensive tool serving as a knowledge
hub for protein subcellular localization. By aggregating data from diverse sources and utilizing
text mining, it continuously updates with confidence scores, simplifying information visualization
through cell diagrams, categorizing evidence, and assigning reliability scores, aiming to facilitate
researchers in comprehending and comparing protein location information within cells.

The paper [23, 30] presents a support vector machine method for precise protein subcellular
localization prediction using amino acid sequences. This method maintains effectiveness despite
errors in the initial protein sequence, and comparative analysis highlights its superiority over
other methods, proving valuable for large-scale genetic information analysis and contributing
significantly to biology and genetics research.

The paper introduces Dynamic Organellar Maps [42], enabling comprehensive mapping of
protein translocation in HeLa cells with over 8700 proteins, providing detailed spatial and
abundance information for quantitative analysis of cell anatomy and organellar composition,
both statically and dynamically in response to stimuli like EGF. This method allows proteome-
wide exploration of physiological protein movements without requiring process-specific
reagents, offering broad applicability in cell biology.

The author has proposed a stacked ensemble-based deep learning model [41] for the multi-
label classification of protein subcellular localization, showcasing superior performance
compared to existing approaches in the Human Protein Atlas database.



3. Proposed Methodology

3.1.Dataset

We have used the E.coli (Escherichia coli) bacteria dataset, taken from UC Irvine machine
learning repository database. The data is containing 336 instances and 7 features. Table 1
displays the attribute information of the dataset, with the first column containing attribute names
and the second column providing descriptions. The distribution of localization sites is presented
in Table 2, where the first column denotes location names and the second column indicates the
count for each specific location.

Table 1
Attribute information [31, 32]

Sequence Name  Accession number for the SWISS-PROT database

mcg McGeoch's method for signal sequence recognition.
gvh von Heijne's method for signal sequence recognition
lip von Heijne's Signal Peptidase Il consensus sequence score. Binary attribute.
chg Presence of charge on N-terminus of predicted lipoproteins. Binary attribute.
aac score of discriminant analysis of the amino acid content of outer membrane and
periplasmic proteins.
alm1 score of the ALOM membrane spanning region prediction program.
alm2 score of ALOM program after excluding putative cleavable signal regions from the
sequence.
Table 2
Distribution of localization site
Locations Count
cytoplasm (cp) 143
inner membrane without signal sequence (im) 77
perisplasm (pp) 52
inner membrane, uncleavable signal sequence (imU) 35
outer membrane (om) 20
outer membrane lipoprotein (omL) 5
inner membrane lipoprotein (imL) 2

The statistical description of the Ecoli bacteria data reveals important insights about the dataset in
Table 3. There are 336 observations for each attribute, indicating a consistent dataset size. The mean
values provide an average measure for each attribute. Notably, the means for the attribute’s mcg,
gvh, lip, chg, aac, alm1, alm2, and site vary. The standard deviation provides a measure of the
dispersion or spread of the data. A lower standard deviation suggests that the data points tend to be
closer to the mean. The minimum and maximum values highlight the range of each attribute. For
example, the site attribute has a minimum value of 1.000 and a maximum value of 8.000, indicating
the range of classes or categories.

Table 3
Statistical description of E.coli bacteria data
mcg gvh lip chg aac alm1 alm?2 site
count 335.00 335.00 335.00 335.00 335.00 335.00 335.00 335.00
mean 0.500 0.5017 0.496 0501 0.500 0.501 0.500 2.245
std 0.195 0.148 0.089 0.027 0.123 0.216 0.210 1.443

min 0.000 0.160 0.480 0.500 0.000 0.030 0.000 1.000



max 0.890 1.000 1.000 1.000 0.880 1.000 0.990 8.000
Note: The Table 3 provides a statistical summary of various attributes (mcg, gvh, lip, chg, aac, alm1,
alm2, site) in the Ecoli bacteria dataset, including the count, mean, standard deviation (Std), minimum
(Min), and maximum (Max) values for each attribute.

3.2.Model

The classifiers selected for assessment are a broad and varied group, each chosen for its own
approach and suitability for different kinds of data. The ensemble comprises a model of the
likelihood of class membership called Logistic Regression (LR); Classification and Regression
Trees (CART), which uses tree-like models to make judgments; K-Nearest Neighbors (KNN), a
non-parametric technique based on similarity measurements; Linear Discriminant Analysis
(LDA), which looks for the linear combinations of characteristics that best discriminate classes;
Extra Trees Classifier (ETC), which uses an ensemble of decision trees with random feature splits;
Support Vector Machine (SVM), which builds hyperplanes for optimal class separation; Linear
Support Vector Machine (L-SVM), an SVM variant intended for linearly separable data; and as well
as the Random Forest Classifier (RFC), an ensemble technique that combines forecasts from
several decision trees. This broad selection guarantees a comprehensive analysis, taking into
account the advantages and flexibility of each classifier to different features in the dataset being
analyzed. Incorporating classifiers with disparate underlying concepts enhances the
comprehensiveness of the research by providing insights into their relative performance and
appropriateness for various types of data.

3.3.Performance

In our study, a critical insight emerges-acknowledging that not all correct or incorrect matches
carry the same significance. Relying on a singular metric falls short of providing a comprehensive
assessment of classification performance. Consequently, we have opted for a multi-faceted
approach, utilizing accuracy, recall, precision, and F1 score as performance metrics, which will be
elaborated upon in the subsequent section. Table 4 presents the comprehensive set of
performance metrics utilized in our study.

3.3.1. Accuracy

Accuracy stands out as the most instinctive performance measure, representing the ratio of
correctly predicted observations to the total number of observations. A model is deemed optimal
when achieving high accuracy or nearing perfection [33, 34]

3.3.2. Precision

Put simply, precision can be conceptualized as a gauge of a classifier's precision-the extent
to which identifications are accurate. It reflects the ratio of correctly predicted positive instances
to the total predicted positive instances [37, 38]. A lower precision value may suggest a higher
count of False Positives

Table 4
Performance metrics

Performance Metrices  Description

Accuracy (TP + TN) / (TP+TN+PF+FN)
Precision TP/ (TP+FP)
Recall TP/ (TP+FN)

F1-Score (2 * Precision * Recall) / (Precision + Recall)




3.3.3. Recall

Recall serves as a metric reflecting a classifier's comprehensiveness, revealing the proportion
of actual positives correctly identified by the predictive model [35, 36, 37]. It is the ratio of
correctly predicted positive instances, encompassing both true positives and false negatives.
Additionally, known as Sensitivity, a low recall value indicates a notable count of False Negatives.

3.3.4. F1-Score

In scenarios with imbalanced class distribution, F1 emerges as a suitable performance metric.
Being the weighted average of Precision and Recall, this score incorporates considerations for
both false negatives and false positives [39, 40]. Alternatively, one might express that the F1 score
encapsulates the equilibrium between precision and recall. An effective information retrieval or
text classification classifier is anticipated to yield high or close-to-high values for precision, recall,
and F1 score.

4. Results and Analysis
4.1.Execution environments

Our experimental setup utilized a Lenovo ThinkPad E14 Ultrabook operating on the Windows
10 Professional 64-bit system, equipped with a 10th Generation Intel Core i7-10510U Processor.
The processor operates at a clock speed of 1.8 GHz, and the system is configured with a 16 GB
DDR4 memory size.

4.2. Results

The performance classification results for the E. coli dataset reveal distinctive characteristics
of various machine learning classifiers. These findings are crucial in understanding the strengths
and limitations of each model. Table 4 summarizes the performance of classifiers such as LR, LDA,
KNN, CART, NB, SVM, L-SVM, ETC, and RFC. Each classifier is evaluated based on Accuracy,
Precision, Recall, and F1-Score. Figure 1 visually represents the confusion matrices of different
machine learning models, offering insights into their performance in predicting the subcellular
localization of E. coli bacteria. These matrices provide a comprehensive overview, detailing true
positive, true negative, false positive, and false negative predictions, facilitating a thorough
analysis of the effectiveness of each classifier in the prediction task. Table 5 presents a summary
of the classification performance.

Support Vector Machine (SVM) emerges as a top performer, achieving the highest accuracy of
87.16%. This indicates the SVM's robust ability to correctly classify instances in the Ecoli dataset.
The SVM also demonstrates commendable precision (85.70%) and recall (86.86%), striking a
well-balanced trade-off between false positives and false negatives, as evident from the high F1-
score of 85.77%.

Linear Discriminant Analysis (LDA) showcases balanced performance across multiple metrics,
standing out with an accuracy of 86.84%. LDA's precision (88.08%) and recall (86.90%)
contribute to a high F1-score of 86.98%, reinforcing its reliability in correctly identifying positive
instances.

K-Nearest Neighbors (KNN) aligns closely with LDA, achieving an accuracy of 86.87%. While
KNN's precision (84.00%) and recall (84.80%) are slightly lower than LDA, the F1-score remains
robust at 83.87%, highlighting its competence in classification.

Random Forest Classifier (RFC) delivers competitive results with an accuracy of 86.25%. RFC
exhibits high precision (86.32%) and recall (84.49%), striking a balance reflected in the F1-score
of 84.63%.
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Figure 1: Confusion matrices for the models LR, LDA, KNN, CART, NB, SVM,
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Figure 3: Algorithmic training times comparison on the E. coli dataset

Logistic Regression (LR) and Classification and Regression Trees (CART) show comparable
performance with accuracies of 79.39% and 79.41%, respectively. However, LR demonstrates a
precision-recall trade-off, leading to a lower F1-score of 76.42%. CART, on the other hand,
maintains a more balanced F1-score of 79.12%.

Naive Bayes (NB) exhibits a slightly lower performance with an accuracy of 75.23%. The
model's precision (74.84%) and recall (75.30%) contribute to an F1-score of 73.33%, indicating
potential challenges in correctly classifying positive instances.

Figure 2 illustrates a comparative analysis of algorithmic performance and training times
across various machine learning models on the E. coli dataset.



5. Conclusion

The investigation into predicting subcellular localization of E. coli bacteria through machine
learning classifiers yields valuable insights into the strengths and nuances of various models.
Notably, Support Vector Machine (SVM) emerges as a standout performer with high accuracy,
precision, recall, and F1-score, showcasing its robust predictive capabilities. Linear Discriminant
Analysis (LDA) and K-Nearest Neighbors (KNN) also demonstrate commendable performances,
emphasizing the importance of selecting classifiers tailored to specific application requirements.
The comprehensive evaluation, considering precision, recall, and F1-score alongside accuracy,
provides a holistic understanding of classifier effectiveness in real-world scenarios. Beyond the
specific application to E. coli, these findings contribute to microbial biology, illustrating the
potential of machine learning in subcellular localization prediction with implications for broader
applications in microbial research and biotechnology.

In conclusion, this study advances our understanding of E. coli biology while providing
valuable insights into the landscape of microbial research. The future trajectory of this work
involves exploring advanced visualization techniques, hyperparameter tuning, and incorporating
larger datasets for a more extensive evaluation of classifier generalization across diverse
microbial species. Ensemble methods and deep learning approaches present promising avenues
for further refinement, and the integration of biological context could enhance classifiers'
interpretability. Ongoing advancements in machine learning and computational biology offer
exciting opportunities for refining predictive capabilities in microbial subcellular localization
[26], positioning this research at the forefront of interdisciplinary advancements.

6. Future Works

Anticipating the subcellular location of microorganisms, specifically E. coli bacterium, offers
numerous avenues for investigation and advancement in the future. First, to capitalize on the
advantages of several classifiers and maybe improve overall prediction performance, the
integration of ensemble techniques [16], like stacking or boosting, should be researched.
Investigating the use of deep learning models-like neural networks-could provide a more
comprehensive comprehension of intricate correlations seen in biological data, opening the door
to predictions that are more correct. Moreover, it is imperative that machine learning models
prioritize interpretability and explainability, particularly when applied to biological research
[46]. In the future, the models' biological relevance could be increased by using methods such as
attention mechanisms or SHAP (SHapley Additive exPlanations) values to identify the features
affecting predictions. Furthermore, domain-specific information like functional annotations or
protein-protein interactions [45] may help produce predictions that are more context-aware.
Growing the dataset to include a wider variety of microbial species and subcellular compartments
would offer a more thorough assessment of classifier generalization as high-throughput
technologies continue to progress [24, 27]. Furthermore, the creation of user-friendly web
servers [19, 21] or applications built on the verified models may enable these predictive tools to
be more widely accessible and used by the scientific community. Additionally, our study can be
expanded using the Markov clustering algorithm (MCL) to analyze patterns within subcellular
localization data. Employing MCL enables the identification of protein groups sharing similar
localization patterns [22, 29], enhancing insights into cellular organization and protein functions.
Utilizing TF-IDF [47] for predicting the cellular location of proteins represents a promising
avenue for improving accuracy and reliability in subcellular localization.
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