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Abstract

In this thesis, we propose the development of an optimal control system for autonomous robots. Our
design aims to efficiently guide the robot, determining the best possible route to its destination. We
leverage the state-of-the-art Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm to direct
the robot. By utilizing a precise navigation system, we can ascertain the robot’s position in real-time and
manage its movements by adjusting its components. This algorithm, which integrates principles from
deep learning and reinforcement learning, offers superior optimization capabilities for robot navigation
and control. Notably, our approach facilitates navigation optimization without relying on a pre-existing
map and ensures collision avoidance throughout the journey.
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1. Introduction

Reinforcement learning (RL) has become a key method for making smart control policies in
service robotics. For these robots to perform effectively in navigating and adapting to dynamic
environments. As we use service robots for more tasks, they should be flexible and adaptive
in navigation.[1, 2, 3, 4]. The big challenge in service robotics is making good navigation
plans that can deal with the surprises of everyday settings. When choosing RL method, a
robot’s performance and ability to adapt can change a lot. In this paper, we will discuss two
significant algorithms: TRPO (Trust Region Policy Optimization) and PPO (Proximal Policy
Optimization)[5, 6]. Both algorithms utilize the Trust Region Method (TRM) for optimization
[7, 8]. TRM focuses on efficiently refining policies within a designated region, using the Kullback-
Leibler divergence as a tool for gauging differences between policies. We will focus on two
state-of-the-art methods, Twin Delayed Deep Deterministic Policy Gradient (TD3) and Soft
Actor-Critic (SAC), which represent the latest advancements in the field[9, 10, 11, 12, 13], Twin
Delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC)[14, 15, 16], have
stood out. This research looks at how well policy gradient methods[17], especially TD3 and SAC,
work in planning paths for service robots. We use a free online platform and special control
settings to test this. We’ll see how strong the plans are, if they can work in different situations,
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and how well the robots move in new places. The paper is set up like this: In Section 1, it
confirms the significance of TRPO, PPO, TD3, and SAC algorithms. Section 2 offers a firsthand
account of the author’s PhD journey, detailing three experiments that explore and compare
these algorithms. Lastly, Section 3 outlines a forward-looking plan, pinpointing challenges and
queries aimed at optimizing deep reinforcement learning models.

2. PhD Research Journey: From Deep Reinforcement Learning
Review to Comparative Experiments

Since the beginning of my PhD research, I began with an extensive literature review on recent
advancements in deep reinforcement learning, paying particular attention to state-of-the-art
(SOTA) Policy gradient methodologies. This review process also involved a thorough selection of
SOTA algorithms based on various established criteria. My research then progressed to a series
of experiments: The initial experiment was dedicated to comparing the performance of the Trust
Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) algorithms in the
context of robot control. Subsequently, in the second experiment I investigated the efficiency of
the Twin Delayed Deep Deterministic Policy Gradient (TD3) in optimizing navigation strategies.
The final experiment sought to compare TD3 with another recent SOTA method, the Soft
Actor-Critic (SAC), particularly in navigating unseen motion control environments[18].

2.1. First Experiment

In this Experiment I aimed to compare the effectiveness of the TRPO and PPO algorithms in
controlling robots within two specific environments: ANT and Humanoid, with the goal of
directing the robot to move forward and fast. This experiment provides a basis for upcoming,
deeper explorations in this field. this experiment presented several limitations.

2.1.1. The limitations

Reliability in Real-world Scenarios: The study encountered potential issues in achieving
consistent results, suggesting that the solutions might not be reliable when implemented in real
scenarios.

Overfitting: There was a notable risk of the algorithms fitting too closely to the training
data, especially in the Humanoid environment, which may affect their performance in unseen
or varied situations.

Transferability: The results were tailored for ANT and Humanoid robots, limiting their
broader application to different robotic designs or environments.

Evaluation metrics: The primary metrics used for evaluation were average returns and
training time. However, important aspects such as algorithm robustness, safety concerns, and
potential scalability were not evaluated.



Absence of ROS Integration: The study did not utilize the ROS (Robot Operating System)
framework, a standard in many robotic applications. This omission could pose challenges when
trying to integrate or deploy the solutions on platforms that rely on ROS[19].

2.2. Second Experiment

The goal of this experiment is to assess how well the TD3 algorithm optimizes navigation
policies in three varied environments: static, dynamic-wall, and dynamic-box. assessing its
adaptability, effectiveness in handling diverse challenges, and its ability to generalize across
different environments, Expanding upon the insights from our first experiment, this experiment
addresses several of its limitations. Specifically, the training of the model was conducted within
the ROS operating system.

2.2.1. The limitations

Limited Training Scenarios: Ifthe range of training environments is too narrow, the learned
policies may face difficulties when introduced to new or different settings.

Overfitting: When an algorithm is trained on a limited number of environments or datasets,
it may become specialized, which can affect its performance in unfamiliar scenarios.

Incomplete Training: The training process might require additional time to fully converge
and identify the most optimal policy.

Resource Limitations: Having enough computing power, including CPU and GPU, along
with memory and storage, is vital. Lack of these resources can affect both learning and deploy-
ment of the algorithms.

2.3. Third Experiment

In our third experiment, our research efforts are conducted within the Robotic Operating System
(ROS) framework. One of the major adjustments made in this experiment, compared to the
previous ones, is the expansion of the training environments. This strategic adjustment was
based on challenges identified in our previous experiments. By incorporating more numbers
of environments, we aim to enhance the adaptability of our model from training scenarios
to test environments. The primary objective of this experiment is to reevaluate the TD3
algorithm, which was a significant component of our second experiment. We are particularly
interested in comparing its performance with the SAC algorithm. SAC, known for its high-
entropy policy methodology, offers a different approach to robotic navigation optimization.
This comparison, in both training and testing stages, aims to understand the effectiveness and
robustness of these algorithms when applied to robotic navigation within the ROS framework.
In this third experiment, we made efforts to reduce some of the limitations identified in the
second experiment, robot start point and end point simulation, As shown in Figure 1, the robot
navigates from the starting point to the destination..



2.3.1. The limitations

Time to Convergence: The model requires an extended period to converge and ascertain
optimal policies.

Computational Resources: Addressing the convergence time limitation necessitates the
deployment of heightened computational resources.

Distribution Shift: difference between the training and testing environments. If the test sce-
narios have different characteristics or distributions of states that the model has not encountered
during training.

3. PhD Final Year: A Comprehensive Plan challenges

Deep reinforcement learning (DRL) is rapidly advancing, and there are key challenges we need
to address. in this section, there are important elements we can consider to improve the DRL
model, In light of the unresolved issues in my research, during my participation in the Doctoral
Consortium, I aim to garner answers to the following key questions, with the guidance of my
mentors and feedback from attendees:

Transfer-ability with Minimal Distribution Shift: Optimizing the packages to simplify
the transition from training to testing, aiming to minimize distribution shift from training
environments to testing, and ultimately to deployment scenarios, especially when each of these
stages possesses its own distinct characteristics and complexities?

Adaptabilitywith Minimal Distribution Shift: How can we incorporate advanced tech-
niques within the deep reinforcement learning model, that enable it to adapt in real-time to
environmental changes, ensuring effective navigation?

Generalizability: What technique can we employ in deep reinforcement learning models to
enhance navigation effectively in unseen environments?

Efficient Training in DRL Models: How can I optimize deep reinforcement learning models
to significantly reduce both training time and the need for computational resources, while still
ensuring their ability to adapt to unfamiliar environments? Additionally, which strategies are
most effective in achieving this goal?

Addressing Memory and Speed Challengess: How can we design training scenarios
that eliminate the need for detailed simulations, thereby cutting down on memory usage and
possibly accelerating the speed at which models learn? This approach aims to overcome the
high memory consumption and inefficiencies often seen with traditional simulation methods.
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Figure 1: Robot navigation from start to end. Left: Starting point. Right: Destination.
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