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Abstract
Heuristic search is a key technique in almost all types of automated planning approaches. Various works
have shown that black-box approaches, such as neural networks and deep neural networks, can be used
to learn an heuristic competitive with the state of the heuristics for classical planning problems [1, 2, 3].
However little to no work has been done regarding numeric planning problems. In our work we are
investigating if similar methods can also be applied to numeric planning problems, and how they can be
improved in a numeric planning context.
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1. Starting point

The starting point for our work has been how the model defined in [1] can be applied to a
numeric planning context.
The model takes as an input a state, and return a heuristic value as output, such a value can be
used as a heuristic function for a specific planning problem.
We will now discuss briefly about all the components that must be defined, and what the results
seen up to this point are.

1.1. Planning Framework

A numeric planning problem is a tuple Π =< 𝑠0, 𝐴, 𝐺, 𝑉 > where 𝑉 is the set of variables, which
can be either propositional or numeric, 𝑠0 is the initial state of the problem, 𝐴 is a set of actions,
either numeric or propositional, and 𝐺 is the goal of the problem, which consists in a set of
propositional and numeric goal conditions.
An action 𝑎 ∈ 𝐴 is a pair < 𝑃𝑟𝑒(𝑎), 𝐸𝑓 𝑓 (𝑎) >, in which 𝑃𝑟𝑒(𝑎) represents the set of preconditions
that must be verified in a state s before executing the action, and 𝐸𝑓 𝑓 (𝑎) represents the set of
effects of the action, that will be applied to the actual state to reach the next state.
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A plan 𝜋 =< 𝑎1, ..., 𝑎𝑛 > is a sequence of actions, and is considered a solution for the planning
problem if applying the sequence of actions, starting from the initial state of the problem, leads
to a final state in which all the goals of the problem are satisfied.

1.2. Model of the network

The starting model for the neural network, as previously said, is the one defined in [1].
Themodel is a multi-label classification network [4], in which the inputs of the network are states
generated extracted from a valid plan. The outputs are represented with a unary encoding, which
basically consists in a multi-label approach with ordered labels [5], and represents heuristic
values.
Regarding hyperparameters, the model has three hidden layers, with a number of neurons that
scales in equal size steps from the input layer size to output layer size. Therefore, the number of
trainable weights is strictly correlated to the number of non-static facts of the planning problem
and the maximum heuristic value that we want to have as output.
All the layers in the network use sigmoid activation functions, without regularization.

1.3. Creation of the samples

In order to generate enough samples to train the neural network, for each task we use a
Random Walk to generate new initial states for that task. Then, for each initial state generated
in this way, the teacher search, which in our case is ENHSP [6] using 𝐺𝐵𝐹𝑆 as search algorithm
and ℎ𝑎𝑑𝑑 [7] as heuristic function, solves the task. For each plan found this way, one state is
selected randomly and used as a sample for the neural network.

Greedy best-first search (𝐺𝐵𝐹𝑆) [Doran and Michie, 1996] is a suboptimal search algo-
rithm. It takes a greedy approach to explore the state-space, always prioritizing the node with
the lowest heuristic value.
ℎ𝑎𝑑𝑑 [8] is an inadmissible heuristic, that considers all the subgoals of a problem independent.
In our case we use a version of ℎ𝑎𝑑𝑑 generalized for numeric planning problems [7].

1.4. Preliminary Results

Preliminary results on the previously described models show that, compared to classical
planning, the heuristics defined this way works much worse with respect to traditional numeric
planning heuristics.
In particular, while in classical planning the generated heuristics, despite being slower than
traditional ones, still manages to expand a smaller number of nodes, in the numerical case this
difference does not exist with the current model.

Preliminary experiments have been conducted on two numerical domains: block grouping and
counters [9], the first consists of grouping blocks of the same colour in the same cell, while the
latter aims to find a specific numeric value for each defined counter, with the purpose of satisfy
all the numeric constraints between the counters.
The results, as said before, show that the described model cannot learn a competitive heuristic.



In particular, in the case of block grouping, the heuristics found works worse than ℎ𝑎𝑑𝑑 both in
terms of time and in terms of expanded nodes. In the case of counters the results are even
worse: the model fails to apprehend and predict the heuristic value methodically, and therefore,
using the resulting heuristics the planner often can’t find a plan.

2. Future Work

In order to assess if what was done for classical planning can also be achieved for numeric
planning, there are two possible directions, complementary to each other.
The first direction is to understand if the model can be improved, first and foremost via
hyperparameter optimization.
Given that the starting model was built to work with boolean values, it is natural to think that a
similar model with numerical values could have very different best configurations.
Furthermore, we have no guarantees that a multi-label classification network is still the better
solution. Different approaches may work better in this case, such as a regression model, or a
multi-classification model with a one-hot encoding to interpret the output.
Lastly, different approaches to generate the samples might be taken into consideration, such as
taking as samples all the states of the generated plans.

The latter is to find numeric problems in which traditional heuristics struggles to guide the
planner correctly. For example one domain that is particularly challenging for traditional
heuristics, is called Settlers [10]. This domain revolves around the management of resources,
with the objective to construct a variety of structures in specific locations. Its difficulty lies
in the fact that actions often have complex interactions and dependencies, which traditional
heuristics often fail to detect, due to the approximations on which they are based.
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