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Abstract
UAV-assisted ground and underwater perimeter security sensor networks represent a sophisticated integration of aerial,
ground, and underwater technologies for surveillance and security purposes. This system combines Unmanned Aerial Vehicles
(UAVs) with underwater sensors to monitor and protect strategic areas like harbors, offshore installations, and coastal facilities.
Unmanned Aerial Vehicles (UAVs) have become pivotal in modern surveillance and security operations. Their versatility,
mobility, and technological adaptability make them ideal for perimeter security systems. This study examines the integration
of group of UAVs into perimeter security, evaluating their effectiveness, operational frameworks, technological advancements,
and potential future developments. We analyze and implement a PSO (Particle Swarm Optimization) algorithm, related to
group of UAVs trajectory optimization, review case studies, and identify key considerations for effective development.
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1. Introduction
UAV-assisted underwater perimeter security sensor net-
works represent a cutting-edge blend of aerial and mar-
itime technologies, designed to enhance the security of
critical aquatic areas. This integration of Unmanned
Aerial Vehicles (UAVs) and underwater sensors provides
a robust solution for monitoring and safeguarding sen-
sitive zones like naval bases, coastal areas, ports, and
offshore installations.

The key components in the UAV-assisted underwater
perimeter security sensor networks are the sensors, UAVs,
and the control center.

Underwater sensors typically include acoustic sensors
(such as sonars), geophones, hydrophones for detecting
sound under water, and magnetic anomaly detectors for
identifying metallic objects. These sensors continuously
scan underwater environments to detect and track po-
tential threats, like submarines, divers, or unmanned
underwater vehicles (UUVs).

UAVs provide real-time aerial surveillance, signifi-
cantly extending the range of observation beyond the
immediate perimeter. They act as a vital link between the
underwater sensors and the control center, especially im-
portant in deep-water areas where direct communication
is difficult.

Control center provides data processing and decision
making. Here the data from both UAVs and underwater
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sensors is analyzed, processed, and fused to form a com-
prehensive operational picture. Control center assesses
potential threats based on the gathered information and
coordinates appropriate responses.

One of the challenges in the UAVs assisted underwater
perimeter security sensor networks is the energy man-
agement. Both the UAVs and underwater sensors must
efficiently manage their power to ensure prolonged oper-
ational capabilities. The present study focuses on energy
management, especially in energy-efficient and reliable
routing of groups of UAVs. The UAVs energy-efficient
routing is a multifaceted challenge that involves optimiz-
ing the flight paths and operational strategies of UAVs.

The objective is to maintain vigilant monitoring and
rapid response capabilities while minimizing energy con-
sumption, which is critical for the longevity and effec-
tiveness of the UAVs in defense operations. The aim is
to create routes and operational patterns that minimize
energy usage while ensuring comprehensive security
coverage.

Altitude and speed optimization in UAV-supported un-
derwater perimeter security sensor networks is a critical
aspect of ensuring energy-efficient routing and effective
operation. The right balance of altitude and speed di-
rectly impacts the UAVs’ energy consumption, coverage
area, sensor effectiveness, and response times.

1.1. Altitude optimization
Higher altitudes can offer less air resistance, but the ben-
efit must be balanced against increased energy require-
ments for climbing and maintaining altitude. Higher
altitudes may increase the coverage area but could re-
duce the detail or accuracy of sensor data. The right
altitude affects UAV performance in different weather
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conditions. For example, flying above or below certain
weather layers (like fog or clouds) can be crucial.

The optimized altitude can ensure communication
with both the underwater sensor network and the control
station [1].

1.2. Speed optimization
Generally, faster speeds increase energy consumption.
The optimization algorithm should identify the most
energy-efficient cruising speed for each UAV model.
Faster speeds allow for quicker coverage of an area but
might reduce the effectiveness of sensors due to motion
blur or reduced processing time.

Speed must be optimized to balance routine surveil-
lance with the need for rapid response in case of detected
threats [2, 3]. Tailwind can be exploited to reduce energy
consumption, whereas flying into headwinds will require
more energy, affecting optimal speed decisions.

2. Related works
There are some existing solutions related to the UAVs
assisted underwater perimeter security sensor networks
as:

• DJI Enterprise Drones - the solution is used for
inspection and surveillance of commercial and
military complexes. The drone is equipped with
thermal imaging sensors, high-resolution cam-
eras, and programmable flight paths and is pro-
grammed for routine patrols or dispatched upon
alerts from ground and underwater sensors.

• AeroVironment Raven RQ-11B - the solution
is used for battlefield reconnaissance and surveil-
lance. The UAV is equipped with GA (Genetic
Algorithms), based trajectory optimization sys-
tem and interfaces with ground and underwater
control systems and sensor networks.

• Elbit Systems Skylark I-LEX – this is electri-
cally propelled UAV equipped with MPC (Model
Predictive Control) trajectory optimization sys-
tem, designed to collect data and interface with
ground and underwater sensors for a comprehen-
sive security net and is utilized by military and
homeland security for national borders and sen-
sitive areas.

• Anduril Industries’ Lattice – this is a complete
system that integrates drones, ground and under-
water sensors, and AI-powered analysis to detect,
classify, and respond to threats.

• Asylon DroneCore - automated drone deploy-
ment system that works with perimeter sensors
to conduct autonomous patrols and respond to

intrusions. The system is integrated with exist-
ing security infrastructure, providing a bird’s-eye
view when a ground sensor is triggered.

• General Atomics Predator B - used for na-
tional border surveillance, can be used in con-
junction with ground sensor arrays for detecting
and tracking movements and is equipped with
high-resolution cameras and advanced signal in-
telligence equipment that can integrate with sen-
sor network data.

All the mentioned UAVs have a custom design naviga-
tion systems with included energy-efficient software algo-
rithms for routing and altitude/speed optimization, using
various algorithms such as RL (Reinforcement Learn-
ing, Dynamic Programming, Dijkstra, GA (Genetic algo-
rithms) in different combinations.

3. Proposed solution
The current research is focused on the development and
implementation of altitude (elevation) and speed opti-
mization algorithm in custom designed UAVs.

The proposed algorithm is based on PSO (Particle
Swarm Optimization) [4, 5, 6]. This is a computational
method that optimizes a problem by iteratively trying
to improve a candidate solution with regard to a given
measure of quality.

It solves a problem by having a population of candi-
date solutions, here dubbed particles, and moving these
particles around in the search-space according to simple
mathematical formulae over the particle’s position and
velocity.

Each particle’s movement is influenced by its local
best known position but is also guided toward the best
known positions in the search-space, which are updated
as better positions are found by other particles. When ap-
plying PSO for altitude and speed optimization in UAVs
supporting underwater perimeter security sensor net-
works, the goal is to determine the optimal flight paths,
altitudes, and speeds for the UAVs to maximize coverage,
efficiency, and responsiveness while minimizing energy
consumption.

3.1. Challenges in the speed and elevation
optimization

The following challenges related to the speed/elevation
optimization problem were defined during the research:

• High Dimensionality: The speed/elevation opti-
mization problem can be high-dimensional, es-
pecially when considering 3D space and time,
making it computationally intensive [7].



• Dynamic Constraints: UAVs must respond to dy-
namic changes in the environment, which re-
quires the PSO to be adaptable and responsive
in real-time.

• Local Minima: The PSO algorithm may get
trapped in local minima. This issue can be miti-
gated by tuning the parameters (𝜔, 𝑐1, 𝑐2) or by
hybridizing PSO with other optimization tech-
niques.

• Safety and Collision Avoidance: Ensuring safety
is paramount. The algorithm must incorporate
collision avoidance with other UAVs, terrain, and
obstacles [8].

3.2. Implementation
mplementing a Particle Swarm Optimization (PSO) al-
gorithm for altitude and speed optimization in UAV-
supported underwater perimeter security sensor net-
works involves several mathematical concepts. Here’s
an mathematical overview of the proposed algorithm
[9, 10, 11] :

Objective Function

Let’s denote the objective function as 𝑓(𝑥), where 𝑥
represents a vector of the decision variables (altitude
and speed in this case) for UAVs. The function might aim
to minimize energy consumption while maximizing area
coverage, response time, or signal quality.

This could be a weighted sum or a more complex func-
tion based on the mission requirements.

Constraints

Include constraints like battery life (B), maximum and
minimum altitude (𝐴{max}, 𝐴{min}), and speed limits
(𝑆{max}, 𝑆{min}).

PSO Algorithm Structure
Particle Representation - each particle 𝑖 in the swarm rep-
resents a potential solution, with its position pi indicating
a particular set of altitudes and speeds for a UAV.

Initialization: randomly initialize the position pi and
velocity vi of each particle within the feasible space de-
fined by the constraints.

Velocity and Position Update Rules

Velocity update:

𝑣𝑡+1
𝑖 = 𝜔𝑣

(𝑡)
𝑖 + 𝑐1𝑟1

(︁
𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑝

(𝑡)
𝑖

)︁
+ 𝑐2𝑟2

(︁
𝑝𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑝

(𝑡)
𝑖

)︁
,

(1)

where 𝜔 is the inertia weight, 𝑐1 and 𝑐2 are cognitive
and social coefficients, respectively, 𝑟1, 𝑟2 are random
numbers between 0 and 1.

Position update:

𝑝𝑡+1
𝑖 = 𝑝

(𝑡)
𝑖 + 𝑣𝑡+1

𝑖 . (2)

Ensure that the updated position adheres to the con-
straints.

Evaluation:

Evaluate the fitness of each particle using the objective
function 𝑓(𝑥).

Update the personal best pbest,i if the current position
of the particle yields a better value of the objective func-
tion. Update the global best 𝑝𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 if any particle
achieves a better value than the current global best.

Termination:

Continue iterating until a maximum number of iterations
is reached or convergence criteria are met (e.g., minimal
improvement in the global best).

Example Objective Function
Consider a simplified example where the objective is to
minimize energy consumption 𝐸 while ensuring good
area coverage 𝐶 . The objective function might look like
this:

𝑓 (𝑥) = 𝛼𝐸 (𝑥)− 𝛽𝐶 (𝑥) . (3)

Here, 𝛼 and 𝛽 are weights reflecting the importance of
energy consumption versus coverage.

The functions 𝐸(𝑥) and 𝐶(𝑥) compute the energy
consumption and coverage based on the altitude and
speed parameters in 𝑥.

The mathematical overview provided here is a sim-
plified version of what could be a complex real-world
implementation. In practice, the functions and parame-
ters would need to be tailored to specific UAV capabilities,
sensor characteristics, environmental factors, and mis-
sion goals.

Additionally, various enhancements to the basic PSO,
such as constriction factors or varying inertia weight,
might be employed to improve convergence and solution
quality.

To implement the PSO algorithm for altitude and speed
optimization in UAV-supported underwater perimeter
security sensor networks, we will develop a structured
pseudocode.

This pseudocode will help visualization the flow of the
algorithm and serve as a guide for actual programming.



Remember that PSO is inherently iterative and works
with a population of solutions, adjusting them over time
based on a defined objective function.

The related PSO algorithm written in pseudocode is
shown below:

PSO algorithm for UAVs elevation/speed
optimization
Inputs:
- num_particles: Number of particles in the
swarm

- max_iterations: Maximum number of
iterations

- objective_function: Function to optimize
(minimize or maximize)

- A_max, A_min: Maximum and minimum
allowable altitudes

- S_max, S_min: Maximum and minimum
allowable speeds

- omega: Inertia weight
- c1, c2: Cognitive and social coefficients
Initialize:
- Create num_particles particles with random
positions and velocities

- for each particle i:
- position[i] = Random within
[A_min, A_max] and [S_min, S_max]

- velocity[i] = Random initial
velocity
- pbest[i] = position[i]

- gbest = position of the best particle based
on objective_function

Main Loop:
- for iter = 1 to max_iterations:

- for each particle i:
- Update velocity:
- r1, r2 = Random numbers
between 0 and 1
- velocity[i] = omega * velocity[i]
+ c1 * r1 * (pbest[i] - position[i])
+ c2 * r2 * (gbest - position[i])

- Update position:
- position[i] = position[i]

+ velocity[i]
- Ensure position[i] adheres to

[A_min, A_max] and [S_min, S_max]
- Evaluate:
- If objective_function(position[i]) is
better than objective_function(pbest[i]):

- pbest[i] = position[i]
- If objective_function(position[i]) is
better than objective_function(gbest):

- gbest = position[i]
- Return gbest as the optimal solution
End Algorithm

Related to the pseudocode above please note:
Initialization: The initial positions and velocities are

randomly assigned within the permissible ranges for al-
titude and speed. Each particle’s initial position is con-
sidered its personal best (pbest).

Updating Velocities and Positions: The velocities
are updated considering both the particle’s own best po-
sition and the global best (gbest). The updated velocity
influences the new position. It’s important to ensure that
the updated positions are within the allowed ranges.

Evaluating and Updating Best Positions: Af-
ter updating positions, evaluate them using the objec-
tive_function. If a particle’s new position is better than
its pbest, update pbest. If it’s better than the current gbest,
update gbest.

Termination: The algorithm iterates through this
process, gradually moving the swarm towards the best
solution. The process repeats either until the maximum
number of iterations is reached or some other stopping
criterion (like a convergence threshold) is met.

Returning the Optimal Solution: Finally, the gbest
after the last iteration is returned as the optimal set of
altitude and speed parameters.

Customization for the specific use-case: The ob-
jective function should be designed specifically for the
UAV’s operational requirements, taking into account fac-
tors like energy consumption, area coverage, sensor ef-
fectiveness, and other mission-specific metrics.

Parameters such as 𝜔, 𝑐1, and 𝑐2 may need tuning for
optimal performance in specific scenarios.

Additional constraints or enhancements can be inte-
grated into the algorithm based on specific requirements
and operational environments.

4. Key Takeaways
Enhanced Efficiency: The PSO algorithm effectively
optimizes UAV flight parameters (altitude and speed),
leading to improved energy efficiency. This results in
longer mission durations and reduced operational costs.

Adaptive Flight Paths: The algorithm’s ability to
dynamically adapt flight paths in response to changing
environmental conditions and mission requirements is
a significant advantage, ensuring optimal coverage and
data collection.

Collaborative Functionality: PSO inherently sup-
ports multi-UAV coordination, allowing for effective
swarm operations. This results in comprehensive area
surveillance and redundant systems for critical defense
missions.

Real-Time Decision Making: The implementation
enables UAVs to make real-time adjustments, crucial for
responding to emergent underwater threats or anomalies
detected by the sensor network.



Operational Flexibility: The algorithm’s flexibil-
ity allows it to be tailored to various mission scenarios,
UAV types, and sensor network configurations, making
it broadly applicable in underwater perimeter defense.

4.1. Challenges and Considerations
Complex Environmental Dynamics: The underwa-
ter and aerial environments present unique challenges,
including variable weather conditions and underwater
currents, which can affect the algorithm’s performance.

Communication Limitations: Ensuring reliable
communication between UAVs and underwater sensors
remains a challenge, impacting the coordination and ef-
fectiveness of the network.

Computational Demands: PSO, especially in real-
time applications, can be computationally intensive, ne-
cessitating robust onboard processing capabilities. Secu-
rity and Robustness: The system must be secured against
potential cyber threats and robust enough to handle op-
erational uncertainties and potential system failures.

5. Conclusion
The implementation of a Particle Swarm Optimization
(PSO) algorithm for altitude and speed optimization in
UAVs supporting underwater perimeter security sensor
networks is a sophisticated approach that leverages the
strengths of swarm intelligence for operational efficiency.
The conclusion drawn from this implementation can
highlight its significance, potential benefits, and areas
for future enhancement. Future steps:

• incorporating advanced variants of PSO or hybrid
algorithms could further optimize performance,
especially in highly dynamic or unpredictable
environments.

• leveraging AI for predictive analytics and ma-
chine learning for continuous improvement of
flight path algorithms based on historical data
can enhance operational efficiency.

• incorporating sustainable technologies, such as
solar-powered UAVs, can extend mission dura-
tions and reduce environmental impact.

The implementation of a PSO algorithm for optimiz-
ing a group of UAVs’ altitude and speed in underwater
perimeter security sensor networks demonstrates sig-
nificant potential in improving maritime security oper-
ations [12]. While challenges remain, the continuous
advancements in technology and algorithmic strategies
hold promise for developing more sophisticated, efficient,
and robust defense networks in the future . This ap-
proach exemplifies the innovative integration of aerial

and maritime technologies, paving the way for enhanced
security solutions in coastal and offshore environments.

In conclusion, PSO is a robust and versatile algorithm
widely used for solving complex optimization problems.
Its ongoing developments and applications across diverse
fields highlight its relevance in the current technological
landscape.

References
[1] H. He, S. Zhang, Y. Zeng, R. Zhang, Joint altitude

and beamwidth optimization for uav-enabled mul-
tiuser communications, IEEE Communications Let-
ters 22 (2017) 344–347.

[2] N. H. Chu, D. T. Hoang, D. N. Nguyen,
N. Van Huynh, E. Dutkiewicz, Joint speed control
and energy replenishment optimization for uav-
assisted iot data collection with deep reinforcement
transfer learning, IEEE Internet of Things Journal
10 (2022) 5778–5793.

[3] W. Ye, J. Luo, F. Shan, W. Wu, M. Yang, Offspeeding:
Optimal energy-efficient flight speed scheduling for
uav-assisted edge computing, Computer Networks
183 (2020) 107577.

[4] D. Wang, D. Tan, L. Liu, Particle swarm optimiza-
tion algorithm: an overview, Soft computing 22
(2018) 387–408.

[5] O. F. Aje, A. A. Josephat, The particle swarm op-
timization (pso) algorithm application–a review,
Global Journal of Engineering and Technology Ad-
vances 3 (2020) 001–006.

[6] M. Ehteram, A. Seifi, F. B. Banadkooki, Structure of
particle swarm optimization (pso), in: Hellenic Con-
ference on Artificial Intelligence, Springer, 2022, pp.
23–32.

[7] S. Schräder, D. Schleich, S. Behnke, Two-step plan-
ning of dynamic uav trajectories using iterative-
spaces, in: International Conference on Intelligent
Autonomous Systems, Springer, 2022, pp. 257–271.

[8] J. Hong, D. Chen, W. Li, Z. Fan, Trajectory plan-
ner for uavs based on potential field obtained by a
kinodynamic gene regulation network, Sensors 23
(2023) 7982.

[9] R. Poli, J. Kennedy, T. Blackwell, Particle swarm
intelligence. an overview, Swarm Intelligence 1
(2007) 33–57.

[10] Y. Yang, X. Xiong, Y. Yan, Uav formation trajectory
planning algorithms: A review, Drones 7 (2023) 62.

[11] Q. Geng, Z. Zhao, A kind of route planning method
for uav based on improved pso algorithm, in:
2013 25th Chinese control and decision conference
(CCDC), IEEE, 2013, pp. 2328–2331.

[12] H. Zhang, B. Xin, L.-h. Dou, J. Chen, K. Hirota, A re-
view of cooperative path planning of an unmanned



aerial vehicle group, Frontiers of Information Tech-
nology & Electronic Engineering 21 (2020) 1671–
1694.


	1 Introduction
	1.1 Altitude optimization
	1.2 Speed optimization

	2 Related works
	3 Proposed solution
	3.1 Challenges in the speed and elevation optimization
	3.2 Implementation

	4 Key Takeaways
	4.1 Challenges and Considerations

	5 Conclusion

