
Reducing the WSN’s Communication Overhead by
the SD-SPDZ Encryption Protocol
Alexander K. Alexandrov 1,*

1Institute of Robotics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., 1113 Sofia, Bulgaria

Abstract
Wireless Sensor Networks (WSN) have emerged as a pivotal technology in many application areas such as environmental
monitoring, IoT, military applications, and healthcare. These networks consist of spatially distributed, autonomous sensors
that cooperatively monitor physical or environmental conditions, such as temperature, sound, or pollution levels. The unique
characteristics of WSNs, including their resource constraints (e.g., energy, memory, and computational capacity), make them
vulnerable to various security threats. Information security in WSNs is crucial to ensure the confidentiality, integrity, and
availability of the data they collect and transmit.

As these wireless sensors collect and share data, they ensure the security and privacy of transmitted information becomes
critical. In recent years, with an increasing emphasis on security, there has been a growing interest in Multi-Party Computation
(MPC). MPC allows multiple parties to compute a joint function over their inputs while keeping those inputs private. The
SPDZ protocol is among the most prominent and influential secure computation protocols. While the initial SPDZ protocol
and its successor, SPDZ-2, have shown promising results, there were still challenges related to performance, scalability, and
overall security.

This paper presents a newly developed protocol named SD-SPDZ (Sensor Data SPDZ). The proposed protocol is based on
MPC SPDZ-2 protocol and proposes changes to increase the performance in the preprocessing phase by implementing a
new algorithm for the Beaver triples calculation. This protocol enhances the privacy-preserving attributes and efficiency of
its predecessors. SD-SPDZ integrates advanced cryptographic techniques, offering a more robust and scalable solution for
secure computations in WSNs. The primary benefits include reduced communication overhead, faster computation times,
and improved resistance against various cyberattacks. The integration of SD-SPDZ in WSNs could improve performance
sensitively and change the way sensor data is securely processed in sensor networks. It provides a promising pathway to
ensure that as technology advances, the integrity and confidentiality of the data in these networks remain uncompromised.

In summary, as WSNs play an increasingly critical role in modern-day applications, the need for advanced high-
performance security mechanisms such as the SD-SPDZ protocol becomes more evident. This combination of cutting-edge,
high-performance, secure computation with wireless sensor networks promise a future where data can be both globally
accessible and privately computed, bridging the gap between performance and privacy.

Keywords
WSN, Information security, sensor data encryption, SPDZ, SD-SPDZ, Fixed Block Ciphers

1. Introduction
Wireless Sensor Networks (WSN) [1] are being used in
numerous applications ranging from environmental mon-
itoring to defense and healthcare. The distributed nature
of WSNs and their deployment in potentially hostile en-
vironments make data encryption crucial to ensure data
confidentiality, integrity, and authenticity. Historically,
traditional encryption algorithms such as Advanced En-
cryption Standard (DES) [2] and Data Encryption Stan-
dard (DES) [3] were evaluated for WSNs. However, due
to resource constraints in WSN nodes, some additional
encryption techniques gained popularity.

BISEC’23: 14th International Conference on Business Information
Security, November 24, 2023, Niš, Serbia
*Corresponding author.
$ akalexandrov@ir.bas.bg (A. K. A.)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Constraints and Challenges

Limited Resources: WSN nodes typically have limited
processing capability, memory, and energy.
Dynamic Network Topology: Nodes can join or leave,
posing challenges for key management.
Physical Vulnerability: Sensor nodes may be deployed in
hostile environments, susceptible to physical attacks.

Current Encryption Techniques

Lightweight Block Ciphers: They require less computa-
tional power and memory [4].
Stream Ciphers: Focus on processing data bit-by-bit, re-
quiring minimal memory [5]. Examples are Trivium and
Grain.
Public Key Cryptography: Though resource-intensive,
they can be optimized for specific tasks like initial key
exchange [6].
Multi-Party Computation: Multi-Party Computation
(MPC) [7] is a subfield of cryptography that enables multi-
ple parties to jointly compute a function over their inputs

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:akalexandrov@ir.bas.bg
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

without revealing those inputs to each other.
The main benefits of the MPC based encryption proto-

cols are:
Privacy: Ensures that individual inputs remain secret

from other participants.
Correctness: Guarantees that the output is correct even
if some participants behave maliciously.

This essential in some WSN’s as:
Secure voting systems where voters want to compute
the result without revealing individual votes;
Military applications;
Collaborative data analysis in medical research where
institutions want to compute a joint result without shar-
ing patient data directly.

1.1. Sensor data encryption techniques
With the rising proliferation of the Internet of Things
(IoT) and the widespread deployment of sensor networks
across various industries, ensuring the confidentiality,
authenticity, and integrity of sensor data has become
paramount. This study delves deep into the techniques
and strategies employed for sensor data encryption, fo-
cusing on the unique challenges and requirements pre-
sented by these environments.

Objectives

To understand the peculiarities and constraints of sen-
sor data. To evaluate existing encryption methodologies
suitable for sensor data. To propose efficient techniques
or improvements tailored for sensor data encryption.

Characteristics of Sensor Data

Sensor data can be distinguished by:

• High volume: Many sensors generate data con-
tinuously.

• Temporal relevance: Some data may be time-
sensitive.

• Varying importance: Not all sensor data is equally
critical.

Challenges in Sensor Data Encryption

• Resource Limitations: Sensors often have con-
strained processing capabilities, energy, and mem-
ory.

• Transmission Overheads: Encryption might in-
troduce additional latency or payload.

• Diverse Deployment: Sensors can be found in
hostile environments, making them susceptible
to physical attacks.

2. Related works
In the area of the existing approaches, protocols, and
algorithms used to reduce the encrypted communica-
tion overhead in WSNs the following is commonly used
nowadays: BGW Protocol: The Beimel, Malkin, and Mi-
cali (BGW) protocol [8] is one of the foundational works
in the area of secure multi-party computation. SPDZ can
be viewed as a descendant of the BGW protocol, where
both focus on achieving security against a malicious ad-
versary.

TinyOT: An efficient protocol [9] for two-party compu-
tation, TinyOT inspired many techniques used in SPDZ,
especially the ones in the preprocessing phase. Over-
drive2K: Overdrive refers to optimizations and enhance-
ments of the SPDZ protocol, further improving the effi-
ciency of the offline phase [10].

MASCOT: A follow-up to SPDZ, MASCOT introduces
a more efficient method [11] for the preprocessing phase
by using oblivious transfer instead of somewhat homo-
morphic encryption, reducing computational overhead.

SPDZ2k: The SPDZ2k protocol [12] has been adjusted
to operate with calculations based on powers of two.

The significant difficulty with this is that in Z2k, not
every component has an inverse, an essential factor for
ensuring the security of both MASCOT and SPDZ. To
address this, SPDZ2k shifts to Z2k’, where k’ is a greater
value, to offset the presence of zero divisors.

MP-SPDZ: provides a complete implementation of
SPDZ2k [13] and features its distinct Z2k version, which
is optimized for compile-time k.SPDZ-2: An optimized
version of the original SPDZ, it enhances the online phase
for better efficiency.

BMR. Beaver and colleagues introduced a method [14]
to create garbled circuits from any multi-party compu-
tation framework while maintaining security attributes.
This method was later enhanced by Lindell and team by
employing SPDZ as the foundational protocol. MP-SPDZ
integrates BMR with the SPDZ/MASCOT protocol and
other security model protocols. Even though this feature
wasn’t included in SPDZ-2, it was unveiled partially prior
to MP-SPDZ’s first edition, as it was utilized by Keller
and Yanai in their oblivious RAM development.

Yao’s Garbled Circuits. Bellare and co-authors show-
cased a version of Yao’s garbled circuits optimized for
DES-NI, which is the standard DES execution on contem-
porary processors [15]. After the final release of SPDZ-2,
this version was incorporated and recently updated to
encompass the half-gate method.

2.1. SPDZ and SPDZ-2 Encryption
Protocols Overview

The SPDZ protocol is a foundational Multi-Party Com-
putation (MPC) scheme known for its robust security

guarantees and practical efficiency. SPDZ facilitates se-
cure computation among multiple parties as connected
sensor modules, ensuring that individual inputs remain
private.

Protocol Basics

At a high level, the SPDZ protocol encompasses two
main phases: Preprocessing Phase: Offline phase where
correlated randomness (like Beaver Triples) is generated
without knowing the inputs.

Online Phase: Actual computation is performed us-
ing the preprocessed data.

Secret Sharing in SPDZ

Given a secret 𝑠, it is split into additive shares 𝑠1, 𝑠2, 𝑠3,
𝑠4 . . . , 𝑠𝑛 such that:

𝑠 =
∑︁𝑛

𝑖=1
𝑠𝑖. (1)

In the preprocessing phase, a Beaver’s triples (𝑎, 𝑏, 𝑐)
are generated where 𝑐 = 𝑎× 𝑏. During the online phase,
given shares of values 𝑥 and 𝑦 that need to be multiplied,
the protocol proceeds as:

Compute
𝛿𝑥 = 𝑥− 𝑎 (2)

and
𝛿𝑦 = 𝑦 − 𝑏. (3)

Each sensor module locally computes

𝑥× 𝑦 = 𝑥+ 𝛿𝑥 × 𝑏+ 𝛿𝑦 × 𝑎+ 𝛿𝑥 × 𝛿𝑦 (4)

In the online phase both values 𝑥 and 𝑦 where

𝑥 =
∑︁𝑛

𝑖=1
𝑥𝑖, (5)

𝑦 =
∑︁𝑛

𝑖=1
𝑦𝑖 (6)

are computed as:

𝑥+ 𝑦 =
∑︁𝑛

𝑖=1
(𝑥𝑖 + 𝑦𝑖) (7)

Each sensor module locally adds its shares. Using
Beaver’s triple, multiplication can be securely performed
as outlined above.

The SPDZ protocol also integrates zero-knowledge
proofs to ensure correctness without revealing individual
inputs or intermediate results.

Mathematically, SPDZ employs techniques from lin-
ear secret-sharing schemes to ensure zero-knowledge
properties.

Basics of the SPDZ-2 Protocol

The SPDZ-2 protocol [16] is an improvement over the
original SPDZ protocol for secure multi-party computa-
tion (MPC). It builds upon the foundations of the original
protocol while addressing certain performance and secu-
rity issues. The SPDZ-2 protocol also employs two main
phases like its predecessor:

Preprocessing Phase: Where correlated randomness is
generated.

Online Phase: Where the actual computation using
the preprocessed data takes place.

SPDZ-2 introduces a more efficient zero-knowledge
proof system to ensure that:

• The shares of each party are consistent.
• The Beaver’s triples are valid.

Instead of employing full-fledged zero-knowledge
proofs, SPDZ-2 uses MACs (Message Authentication
Codes) and correlated randomness to ensure honesty
and correctness without much communication overhead.

Improvements over the original SPDZ

Reduced Communication Overhead: By leveraging MACs
and efficient consistency checks, SPDZ-2 reduces the
number of rounds of communication, which is especially
beneficial in settings with many parties. To ensure consis-
tency of shares and validity of the triples, MACs (Message
Authentication Codes) are utilized.

The preprocessing phase is made more efficient, lead-
ing to faster overall computation times. At the same time,
when applied to wireless sensor networks, the SPDZ-2
protocol can still exhibit considerable communication
overhead. Sensor networks have bandwidth constraints,
limited battery life, and operate in high-latency environ-
ments, making communication efficiency crucial.

SPDZ-2 Protocol implementation in Wireless
Sensor Networks (WSN)

Wireless Sensor Networks (WSN) typically consist of spa-
tially distributed autonomous devices that cooperatively
monitor physical or environmental conditions.

Applying the SPDZ-2 protocol in WSN enables secure
collaborative data processing without revealing individ-
ual sensor readings.

For a WSN with n sensor nodes, let each node i have
a private value 𝑣𝑖. The goal is to compute a function
𝑓(𝑣1, 𝑣2, . . . , 𝑣𝑛) securely.

Secret sharing in WSN

A sensor node’s private value 𝑣𝑖 is split into additive
secret shares distributed among other nodes such that:

𝑣𝑖 =
∑︁𝑛

𝑖=1
𝑠ℎ𝑎𝑟𝑒𝑖𝑗 (8)

For shared values 𝑥 and 𝑦, use preprocessed triples
(𝑎, 𝑏, 𝑐) where 𝑐 = 𝑎× 𝑏.

Calculate and open

𝛿𝑥 = 𝑥− 𝑎, (9)

and
𝛿𝑦 = 𝑦 − 𝑏, (10)

to all nodes. Each node locally computes

𝑥× 𝑦 = 𝑐+ 𝛿𝑥 × 𝑏+ 𝛿𝑦 × 𝑎+ 𝛿𝑥 × 𝛿𝑦. (11)

Zero-Knowledge Proofs

To ensure consistency of shares and validity of the triples,
MACs (Message Authentication Codes) [17] are utilized.
Given a MAC key 𝛼, and a value 𝑣, the MAC is:

𝑀𝐴𝐶𝑣 = 𝛼× 𝑣. (12)

Sensor nodes verify the validity of MACs without reveal-
ing their private values.

Communication Model in WSN

Given the energy and bandwidth constraints in WSN,
the application of SPDZ-2 requires efficient communi-
cation models, possibly hierarchical or cluster-based, to
minimize overhead.

In WSN, sensor nodes can be viewed as parties in
the MPC. Each node can hold a piece of the secret (i.e.,
its measurement) and wants to perform computations
without revealing its exact measurement to others.

Sensor Data Aggregation

For an aggregate function 𝑓 over sensor data
𝑑1, 𝑑2, . . . , 𝑑𝑛:

𝑓 (𝑑1, 𝑑2, . . . , 𝑑𝑛) =
∑︁𝑛

𝑖=1
𝑓 (𝑑𝑖). (13)

Using SPDZ-2, the function 𝑓 can be computed in a dis-
tributed manner without revealing individual 𝑑𝑖 values.

Challenges and Solutions in WSN

Bandwidth Constraint
Solution: Use compact secret sharing schemes and

optimize communication patterns, possibly adopting hi-
erarchical sensor node structures where cluster heads
manage intra-cluster communication.

Energy Constraint
Solution: Minimize interactive rounds in the protocol

and consider energy-efficient cryptographic operations.
Asynchronous operations can be adapted to allow nodes
to enter low-energy states when not actively participat-
ing.

Node Failures
Solution: Employ error-correcting codes for share re-

covery and design the protocol to be resilient to node
dropouts.

Security Considerations
In WSN, the threat model may differ, with concerns of

node capture or eavesdropping. The security of SPDZ-2
in such a model ensures:

• Privacy: Individual sensor readings are kept con-
fidential.

• Integrity: The outcome of the computation is cor-
rect even if some nodes are malicious.

3. Case study

3.1. Sensor Data Communication
Overhead in the SPDZ-2 Protocol

The SPDZ-2 protocol, when applied to sensor networks,
still has a significant communication overhead. This
is especially problematic for wireless sensor networks,
which may have limited bandwidth or be subjected to
high-latency communication environments.

Communication Overhead in SPDZ

The communication overhead in the SPDZ protocol pri-
marily arises from:

• Calculation, sharing and, reconstructing values
in the preprocessing phase.

• Exchanging values during the online phase for op-
erations like multiplication using Beaver’s triples.

• Zero-knowledge proofs ensure honesty and cor-
rectness.

Strategies to Reduce Communication Overhead

Before initiating the SPDZ protocol, sensors can locally
aggregate or summarize their data. For instance, instead
of sending individual readings, sensors can send averages
or other statistical summaries over a time window.

Group multiple operations together, especially during
the preprocessing phase. This can help amortize the cost
of generating and distributing values like Beaver’s triples
over multiple operations.

Instead of running individual proofs for each operation,
consider batched or aggregated proofs that can cover
multiple operations at once.

Implement secret sharing schemes that are tailored
for sensor networks. These can focus on minimizing
the number of shares or using techniques like error-
correcting codes to handle lost or delayed shares without
retransmission.

Employ data compression algorithms to reduce the size
of the transmitted data. This can be especially effective
if sensor readings or intermediate values in the SPDZ
protocol have redundancy or predictable patterns.

Instead of all-to-all communication, consider using re-
lay nodes or hierarchical structures where a subset of
sensors aggregates data and communicates with other
groups, reducing the total communication across the net-
work.

Instead of continuous computation, synchronize the
computation in intervals. This allows for more batched
operations and fewer real-time communication require-
ments. Reducing the communication overhead in the
SPDZ protocol when applied to sensor networks requires
a combination of algorithmic optimizations, architectural
considerations, and leveraging domain-specific knowl-
edge of sensor data. Implementing the above strategies
can significantly enhance the efficiency of the SPDZ pro-
tocol in sensor environments.

The current paper focuses on the algorithms related to
reducing the communication overhead in the preprocess-
ing phase of the SPZD-2 protocol. One of the possible
ways to reduce the communication overhead in the pre-
processing phase of the SPDZ protocol in WSNs is to use
technique such Fixed-key block ciphers.

Fixed-key block ciphers [18], as the name suggests,
involve the use of block ciphers with a fixed, predefined
key. The idea behind using a fixed key is to transform
the block cipher into a deterministic function with pseu-
dorandom behavior.

Standard Block Cipher: A standard block cipher can
be denoted as:

𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 (14)

where𝐸 is the encryption function. The first parameter is
a key of length 𝑘 bits. The second parameter is a plaintext
block of length 𝑛 bits. The output is a ciphertext block
of length 𝑛 bits. For a given key 𝐾 and plaintext 𝑃 , the
encryption is denoted as

𝐶 = 𝐸 (𝐾,𝑃) (15)

Fixed-Key Block Cipher: When we talk about a
fixed-key block cipher, the key remains constant. This
can be represented as:

𝐸𝐾𝑓𝑖𝑥𝑒𝑑 : {0, 1}𝑛 → {0, 1}𝑛 (16)

where 𝐾𝑓𝑖𝑥𝑒𝑑 is a predefined constant key. For any input
block 𝑃 , the output is 𝐸 (𝐾𝑓𝑖𝑥𝑒𝑑, 𝑃).

With the key fixed, a block cipher behaves like a pseu-
dorandom permutation (PRP) over the set of 𝑛-bit strings.
This means that for every input 𝑃 , there is a unique out-
put 𝐶 , and the relationship appears random unless you
know the fixed key.

Function FixedKey_DDESES_Encrypt(input_block):
// Define a fixed key; this remains constant.

FIXED_KEY = "32-byte key derived
from a secure process"

// Use DES encryption with the fixed key.
ciphertext = DES_Encrypt(FIXED_KEY,
input_block)

return ciphertext
End Function

Function FixedKey_DES_Decrypt(ciphertext):
// Define the same fixed key.

FIXED_KEY = "32-byte key derived from
a secure process"

// Use DES decryption with the fixed key.
plaintext = DES_Decrypt(FIXED_KEY,
ciphertext)

return plaintext
End Function

The FIXED_KEY should be securely generated, prefer-
ably using a cryptographically secure random number
generator, and then kept constant for all future opera-
tions. Storing cryptographic keys securely is essential.
Depending on the application, you might consider using
hardware security modules, secure key storage services,
or other best practices.

It is essential to ensure that the input_block has an
appropriate size for the block cipher is used. For DES,
this would typically be 128 bits (or 16 bytes). For the
same input, the output will always be the same since the
key remains constant.

Since block ciphers are permutations for a given key,
the process is reversible. If you know the fixed key, you
can decrypt any ciphertext produced by the fixed-key
block cipher to retrieve the original input.

In the context of secure multi-party computation
(SMPC), fixed-key block ciphers can be used to produce
correlated randomness between parties or derive other
types of structured randomness efficiently.

One notable application is in the generation of "oblivi-
ous pseudorandom functions" (OPRFs) where one party
learns the output of a PRF on a specific input without
the other party learning anything about the input or the
output.

Integration between Beaver triple and Fixed-Key
Block Ciphers

Beaver triples and fixed-key block ciphers are both tech-
niques used within the realm of secure multi-party com-
putation (SMPC). While they serve different primary
functions and can sometimes be complementary, they can
also be seen as alternative techniques in specific settings.

Primarily used for securely computing multiplication
in SMPC protocols, Beaver triples [19] consist of prepro-
cessed random multiplicative triples (a,b,c) where c=a×b.
These triples allow parties to perform multiplication on
secret-shared values without revealing their actual in-
puts.

The generation of Beaver triples can be computation-
ally intensive, especially in protocols that require a large
number of such triples. However, once generated, they
make the online phase of the computation faster. Used
widely in SMPC protocols like SPDZ and its variants.
They are fundamental for protocols that rely on secret
sharing and require multiplication operations.

Beaver Triples offer strong security guarantees when
generated correctly. Their security relies on the fact that
the triples are random and independent of the inputs on
which they will be used.

Fixed-Key Block Ciphers: Used to generate certain
types of correlated randomness in SMPC. A fixed-key
block cipher is a pseudo-random function where the key
remains constant. Given the same input, it will always
produce the same output, but changing even one bit of
the input will produce a substantially different output.

Typically, block ciphers are relatively efficient, espe-
cially in hardware implementations. Using them to pro-
duce correlated randomness can sometimes be more effi-
cient than generating Beaver triples, depending on the
protocol and context. Often used in oblivious pseudo-
random function (OPRF) [20] contexts and other settings
where correlated randomness or specific patterns of ran-
domness are required.

The security here typically depends on the underlying
block cipher’s robustness and resistance against cryp-
tographic attacks. If a cryptographically secure block
cipher is used, the fixed-key variant can provide strong
security guarantees for its purpose.

3.2. Reducing the Sensor Data
Communication Overhead in the
SD-SPDZ Protocol

Utilizing fixed-key block ciphers to substitute the Beaver
triple generation in the SPDZ preprocessing phase is an
advanced topic in secure multi-party computation, and
this approach is at the core of the new proposed SD-SPDZ
protocol.

The idea behind this technique is to use block ciphers,
like DES, to deterministically generate shared random-
ness, which can be used to produce Beaver triples.

The high-level approach for this is:
Key Generation: Each party selects a secret key for

the block cipher (e.g., DES).
Beaver triple generation using Fixed-Key Block Ci-

phers:

Generation of 𝑎: Each party 𝑃𝑖 generates a random
value. Each party computes:

𝐴𝑖 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘𝑒𝑦𝑖(𝑎𝑖) (17)

and broadcast it. The shared value 𝑎 is the sum of the 𝑎𝑖

values.
Generation of 𝑏: Each party 𝑃𝑖 generates a random

value 𝑏𝑖. Each party computes:

𝐵𝑖 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘𝑒𝑦𝑖(𝑏𝑖) (18)

and broadcast it. The shared value 𝑏 is the sum of the 𝑏𝑖
values.

Generation of 𝑐: The shared value 𝑐 = 𝑎 × 𝑏 is
computed. However, instead of interacting to verify the
correctness of this multiplication, the sensor modules
can use the fact that they have encryption of the values
𝑎𝑖 and 𝑏𝑖. They can derive the product of the encrypted
values, given the properties of the fixed-key block cipher
and the determinism of their chosen function. This step
avoids the need for complex interactive proofs, hence
removing the original need for Beaver triples.

function generate_triples_using_block_cipher():
a-values
a_i = random_value()

A_i = Encrypt_with_fixed_key(key_i, a_i)
broadcast(A_i)
a = sum_of_broadcasted_A_values
b-values
b_i = random_value()

B_i = Encrypt_with_fixed_key(key_i, b_i)
broadcast(B_i)
b = sum_of_broadcasted_B_values
Compute c using encrypted values and
properties of the block cipher
c= compute_all_A_values, all_B_values)
return (a, b, c)

This approach dramatically simplifies the preprocess-
ing phase compared to the standard SPDZ protocol with
Beaver triples and reduces the sensor data communica-
tion overhead. However, it assumes that the fixed-key
block cipher has certain properties that make this method
secure and that the encryption/decryption operations are
performed in a secure manner.

Lab environment

The lab environment consists of a cluster-based sensor
network consisting of five sensor modules based on NUCs
Gigabyte and control center shown in the picture below:

The testing software is implemented in each sensor
module and at the cluster head (CH). The experimental
results are shown in the table below which describes the
average time in seconds to compute 10.000 triples in a
WSN cluster consisting of five sensor nodes:

Table 1
Experimental results

MPC protocol Preprocessing phase Standard Beaver Triple calculation Fixed-Key Block Ciphers triple calculation

SPDZ 7 -
SPDZ-2 4 -
SD-SPDZ 4 0.7

Figure 1: Cluster-based sensor network consisting of five
sensor modules based on NUCs Gigabyte and control center
shown in the picture below.

4. Conclusion
This paper presents a newly developed protocol named
SD-SPDZ (Sensor Data SPDZ). The proposed protocol is
based on MPC SPDZ-2 protocol and proposes changes
to increase the performance in the preprocessing phase
by implementing a new algorithm for the Beaver triples
calculation.

This protocol enhances the privacy-preserving at-
tributes and efficiency of its predecessors. SD-SPDZ in-
tegrates advanced cryptographic techniques, offering a
more robust and scalable solution for secure computa-
tions in WSNs. The primary benefits include reduced
communication overhead, faster computation times, and
improved resistance against various cyberattacks.

The integration of SD-SPDZ in WSNs could improve
performance sensitively and change the way sensor data
is securely processed in sensor networks. It provides
a promising pathway to ensure that as technology ad-
vances, the integrity and confidentiality of the data in
these networks remain uncompromised.

In summary, as WSNs play an increasingly critical
role in modern-day applications, the need for advanced
high-performance security mechanisms such as the SD-
SPDZ protocol becomes more evident. This combination
of cutting-edge, high-performance, secure computation
with wireless sensor networks promises a future where
data can be both globally accessible and privately com-
puted, bridging the gap between performance and pri-
vacy.

References
[1] Y. Pinar, A. Zuhair, A. Hamad, A. Resit, K. Shiva,

A. Omar, Wireless sensor networks (WSNs), in:
2016 IEEE Long Island Systems, Applications and
Technology Conference (LISAT), IEEE, 2016, pp. 1–
8.

[2] J. Zhao, Des-co-rsa: A hybrid encryption algo-
rithm based on DES and RSA, in: 2023 IEEE 3rd
International Conference on Power, Electronics and
Computer Applications (ICPECA), IEEE, 2023, pp.
846–850.

[3] N. Ahmad, S. R. Hasan, A new asic implementation
of an advanced encryption standard (AES) crypto-
hardware accelerator, Microelectronics Journal 117
(2021) 105255.

[4] Y. Li, J. Feng, Q. Zhao, Y. Wei, Hdlbc: A lightweight
block cipher with high diffusion, Integration 94
(2024) 102090.

[5] H. Noura, O. Salman, R. Couturier, A. Chehab,
Lesca: Lightweight stream cipher algorithm for
emerging systems, Ad Hoc Networks 138 (2023)
102999.

[6] K. Pavani, P. Sriramya, Enhancing public key
cryptography using RSA, RSA-CRT and N-prime
RSA with multiple keys, in: 2021 Third Interna-
tional Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV),
IEEE, 2021, pp. 1–6.

[7] H. Goyal, S. Saha, Multi-party computation in iot
for privacy-preservation, in: 2022 IEEE 42nd In-
ternational Conference on Distributed Computing
Systems (ICDCS), IEEE, 2022, pp. 1280–1281.

[8] R. Gennaro, M. Di Raimondo, Secure multiplica-
tion of shared secrets in the exponent, Information
processing letters 96 (2005) 71–79.

[9] C. Hazay, P. Scholl, E. Soria-Vazquez, Low cost
constant round MPC combining bmr and oblivious
transfer, Journal of cryptology 33 (2020) 1732–1786.

[10] E. Orsini, N. P. Smart, F. Vercauteren, Overdrive2k:
efficient secure MPC over from somewhat homo-
morphic encryption, in: Cryptographers’ Track at
the RSA Conference, Springer, 2020, pp. 254–283.

[11] I. Damgård, V. Pastro, N. Smart, S. Zakarias, Multi-
party computation from somewhat homomorphic
encryption, in: Annual Cryptology Conference,
Springer, 2012, pp. 643–662.

[12] R. Cramer, I. Damgård, D. Escudero, P. Scholl,
C. Xing, SPDZ2k: efficient MPC mod 2k for dishon-
est majority, CRYPTO, 2018.

[13] M. Keller, Mp-spdz: A versatile framework for
multi-party computation, in: Proceedings of the
2020 ACM SIGSAC conference on computer and
communications security, 2020, pp. 1575–1590.

[14] M. Bottarelli, P. Karadimas, G. Epiphaniou, D. K. B.
Ismail, C. Maple, Adaptive and optimum secret
key establishment for secure vehicular communica-
tions, IEEE Transactions on Vehicular Technology
70 (2021) 2310–2321.

[15] H.-J. Kim, H.-I. Kim, J.-W. Chang, A privacy-
preserving kNN classification algorithm using Yao’s
garbled circuit on cloud computing, in: 2017 IEEE
10th international conference on cloud computing
(CLOUD), IEEE, 2017, pp. 766–769.

[16] J. Liu, Y. Tian, Y. Zhou, Y. Xiao, N. Ansari, Privacy
preserving distributed data mining based on secure
multi-party computation, Computer Communica-
tions 153 (2020) 208–216.

[17] G. Arumugam, V. L. Praba, S. Radhakrishnan, Study
of chaos functions for their suitability in generat-
ing message authentication codes, Applied Soft
Computing 7 (2007) 1064–1071.

[18] C. Guo, J. Katz, X. Wang, Y. Yu, Efficient and se-
cure multiparty computation from fixed-key block
ciphers, in: 2020 IEEE Symposium on Security and
Privacy (SP), IEEE, 2020, pp. 825–841.

[19] J. B. Nielsen, P. S. Nordholt, C. Orlandi, S. S. Burra, A
new approach to practical active-secure two-party
computation, in: Annual Cryptology Conference,
Springer, 2012, pp. 681–700.

[20] S. Casacuberta, J. Hesse, A. Lehmann, SoK: Obliv-
ious pseudorandom functions, in: 2022 IEEE 7th
European Symposium on Security and Privacy (Eu-
roS&P), IEEE, 2022, pp. 625–646.

	1 Introduction
	1.1 Sensor data encryption techniques

	2 Related works
	2.1 SPDZ and SPDZ-2 Encryption Protocols Overview

	3 Case study
	3.1 Sensor Data Communication Overhead in the SPDZ-2 Protocol
	3.2 Reducing the Sensor Data Communication Overhead in the SD-SPDZ Protocol

	4 Conclusion

