
Advanced Security Mechanisms in the Spring Framework:
JWT, OAuth, LDAP and Keycloak
Nikola Dimitrijević1,*, Nemanja Zdravković1, Milena Bogdanović1 and Aleksandar Mesterovic2

1Faculty of Information Technology, Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade, Serbia
2Department of Security Studies and Criminology, Faculty of Art, Macquarie University, Sydney, Australia

Abstract
The security of software applications is a critical concern in modern software development, especially with the prevalence of
distributed systems and microservices. The Spring Framework stands out as a premier Java ecosystem development platform
that offers an extensive range of options for implementing robust security mechanisms. This paper will shift its focus to
explore advanced approaches to securing enterprise environments using the Spring Framework; specifically discussing topics
such as JSON Web Token (JWT), OAuth 2.0, Lightweight Directory Access Protocol (LDAP) and Keycloak-based solutions.

The use of JWT is pivotal for the secure communication of information between disparate parties, particularly in the
context of stateless authentication inherent to micro-service architectures. OAuth 2.0 serves as a standard for authorization that
permits users access to shared resources while safeguarding sensitive user credentials from being exposed unnecessarily. LDAP
finds practical applicability by facilitating centralized management and governance over identities and privileged accesses,
chiefly advantageous when dealing with complex organizational structures at scale. As an open-source platform solution
specifically tailored towards identity recognition and managed authorizations, Keycloak offers integration opportunities
within Spring applications ecosystem where it introduces support services catering to commonly accepted protocols such as
OpenID Connect or SAML; providing sound solutions essential in ensuring well-regulated confidential interactions akin
during situations demanding trusted validations occasioned by both internal needs or external supply chain partners alike.

In this, paper, we investigate the manner in which advanced technologies can be suitably employed within the Spring
Framework for creating secure and scalable applications. The analysis delves into each of these mechanisms, outlining
their advantages and challenges along with integration considerations when complex business scenarios arise. Ultimately,
this exploration is intended to enhance comprehension surrounding progressive security measures applicable to the Spring
environment thereby equipping developers with improved capacity for constructing more resilient application solutions.

Keywords
Spring framework, Security awareness, JWT, OAuth, LDAP, Keycloak

1. Introduction
The Spring Framework has become a fundamental com-
ponent in the development of contemporary Java-based
applications. This is particularly attributed to its exten-
sive infrastructure support for application building [1].
A core feature within this framework is Spring Security;
an influential and personalized authentication and access
control system that plays a critical role in safeguarding
applications against prevalent security threats.

The Spring Framework, which was first introduced
in 2003, brought about a significant transformation to
Java development by introducing an Inversion of Control
(IoC) container that is lightweight and simplified the man-
agement of application components. This groundbreak-

BISEC’23: 14th International Conference on Business Information
Security, November 24, 2023, Niš, Serbia
*Corresponding author.
$ nikola.dimitrijevic@metropolitan.ac.rs (N. Dimitrijević);
nemanja.zdravkovic@metropolitan.ac.rs (N. Zdravković);
milenaBogdanovic@metropolitan.ac.rs (M. Bogdanović);
aleksandar.mesterovic@students.mq.edu.au (A. Mesterovic)
� 0000-0002-6595-9277 (N. Dimitrijević); 0000-0002-0707-5174
(N. Zdravković); 0000-0003-0316-4484 (M. Bogdanović)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ing concept has evolved over time with the inclusion of
various modules designed to cater to different aspects
of enterprise application development. Notably among
these arrangements is the Spring Security module that
plays an important role in securing applications through
its provision of comprehensive security services tailored
for Java EE-based enterprise software applications [2].

According to [3, 4] 44.1% of respondents use the free
AdoptOpenJDK distribution in production. However, Or-
acle still has a significant presence, with 28% for their
OpenJDK build and 23% for the commercial Oracle JDK.

The JSON Web Token (JWT) represents a widely
adopted and established medium of securely exchanging
information as JSON objects among entities. These to-
kens stand out for their compactness, compatibility with
URLs, digital signature support resulting in enhanced
security features, therefore constituting an ideal option
in stateless authentication contexts within contemporary
web applications [5]. When merged into Spring Security
System Architecture , JWTs provide reliable and uninter-
rupted mechanisms compatible with the overall design
of secure non-session-based functionalities instructured
developments derived from spring programming method-
ology.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:nikola.dimitrijevic@metropolitan.ac.rs
mailto:nemanja.zdravkovic@metropolitan.ac.rs
mailto:milena Bogdanovic@metropolitan.ac.rs
mailto:aleksandar.mesterovic@students.mq.edu.au
https://orcid.org/0000-0002-6595-9277
https://orcid.org/0000-0002-0707-5174
https://orcid.org/0000-0003-0316-4484
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

0 5 10 15 20 25 30 35 40 45 50

AdoptOpenJDK builds of OpenJDK

Oracle OpenJDK

Oracle JDK

Azul Zulu builds of OpenJDK

Amazon Corretto builds of OpenJDK

The Linux Distro's bundled OpenJDK package

Red Hat builds of openJDK

Oracle GraalVM Community Edition

IBM Java SDK

Azul Zing

Alibaba Dragonwell builds of OpenJDK

Bellsoft Liberica builds of OpenJDK

Eclipse Adoptium builds of OpenJDK

Oracle GraalVM Enterprise Edition

SAP SapMachine builds of OpenJDK

Other

None

Figure 1: JDKs in production.

The OAuth 2.0 framework serves as a means of au-
thorization that allows applications to acquire restricted
access to user accounts on an HTTP service. This process
involves the delegation of user authentication tasks to
the hosting service, as described by Hardt in 2012. In rela-
tion to Spring Security, OAuth 2.0 presents a formidable
technique for safeguarding RESTful services and APIs
through outsourcing user authentication functions to-
wards an external authorization server.

The Lightweight Directory Access Protocol (LDAP) is
a commonly utilized protocol for accessing and maintain-
ing distributed directory information services over an
Internet Protocol (IP) network. Within Spring Security,
LDAP assumes a pivotal role in managing user identi-
ties and access control - particularly within extensive
enterprise environments as flagged by Rouse’s research
findings in 2005.

Keycloak is an open-source solution for Identity and
Access Management that caters to contemporary appli-
cations and services. It harbors a vast array of features
including Single-Sign On (SSO), identity brokering, as
well as social login capabilities. Keycloak effectively inte-
grates with Spring Security platforms allowing develop-
ers seamless access to diverse authentication mechanisms
alongside authorization protocols which enhance the se-
curity parameters over their application environment
[6].

The incorporation of sophisticated security mecha-
nisms, namely JWT, OAuth, LDAP and Keycloak into
the Spring Framework via Spring Security epitomizes a
noteworthy progression towards creating secure Java ap-
plications. This amalgamation not only streamlines the
implementation process for intricate security requisites
but also guarantees that these applications are resilient
against an extensive gamut of adversarial incursions.

2. JWT and Its Implementation in
Spring Framework

The use of JWT has garnered considerable significance
in contemporary web security practices as it provides a
concise and autonomous approach for transferring in-
formation between participants via a JSON object that
facilitates high-level confidentiality. JWTs are designed
to enable signing mechanisms, which can be achieved by
employing either secret key cryptography utilizing the
HMAC algorithm or public-private encryption with RSA
or ECDSA algorithms, thereby assuring data integrity
during transmission [7]. With such authentication pro-
tocols in place that do not rely on session state storage,
JWT serves aptly suited scenarios like RESTful APIs.

A JWT generally comprises of three components: a
header, a payload and a signature. The header typically
encompasses two parts that comprise the kind of token
- which is JWT - and the algorithm for signing being
utilized. The payload entails claims regarding an entity
(usually the user) alongside supplementary data. Finally,
to guarantee that no changes have been made after is-
suance, we use signatures in order to ensure authenticity
over time lapse periods.

Spring Security offers comprehensive backing to JWT.
The incorporation of JWT within Spring Security facil-
itates developers with an opportunity to address user
authentication and authorization in a non-persistent ap-
proach, thereby proving significantly advantageous for
RESTful applications. With the help of the Spring Secu-
rity framework, validation procedures for JWTs are made
accessible; ensuring that they possess proper formation
whilst verifying their signature as well as claims’ validity
[8].

When incorporating JWT into a Spring appli-
cation, developers commonly rely on established
libraries such as spring-security-oauth2 or
spring-security-jwt. These libraries contain the

Figure 2: JSON Web Token Structure - Encoded.

Figure 3: JSON Web Token Structure - Decoded.

essential resources required to efficiently generate,
analyze and authenticate JWTs. The implementation
process entails configuring a JwtTokenStore and
JwtAccessTokenConverter while providing an
optional TokenEnhancer for supplementing additional
information within the JWT. Furthermore, it is impera-
tive that developers configure an authentication manager

in addition to outlining security restrictions placed upon
endpoints utilized by said application instance.

The JWT protocol is especially advantageous in situa-
tions where it is essential to establish the authenticity of a
user and their requisite authorizations for accessing des-
ignated resources. It serves as an added advantage within
microservices architecture, wherein secure inter-service
communication becomes imperative. To optimally uti-
lize JWT with Spring framework, established guidelines
comprise deployment of HTTPS to safeguard token in-
terception threats, setting realistic expiration timeframes
for tokens and judicious management pertaining infor-
mation contained in payload sections so that sensitive
data may not get exposed inadvertently.

The incorporation of JSON into Spring Security pro-
vides a dependable and efficient approach to managing
authentication and authorization in an immutable fash-
ion. Its versatility combined with its user-friendliness
render it an optimal alternative for safeguarding applica-
tions based on the Spring framework, specifically those
structured around micro-services as well as RESTful ser-
vices.

3. OAuth 2.0
OAuth 2.0 is an authorization framework that grants
third-party applications limited access to an HTTP ser-
vice, whether through representation of a resource owner
or autonomous acquisition of access privileges. Its dis-
tinction from authentication renders it indispensable in
situations wherein user data must be requested from
other services without compromising their respective
credentials [9]. OAuth 2.0 introduces several roles:

• Resource Owner: The user who authorizes an
application to access their account.

• Resource Server: Hosts the protected user data.
• Client: The application requesting access to the

user’s account.
• Authorization Server: Validates the identity of

the resource owner and issues access tokens.

OAuth 2.0 specifies four primary grant types, catering
to different application types:

• Authorization Code Grant: Ideal for clients that
can securely store client secrets.

• Implicit Grant: Designed for clients that are un-
able to securely store client secrets.

• Resource Owner Password Credentials Grant:
Suitable for highly trusted clients.

• Client Credentials Grant: Used for applications
accessing their own resources.

Spring Security’s OAuth 2.0 support simplifies the im-
plementation of these grant types:

 1. User Authorization Request

Application

(Client)

Auth Server

(Service API)

User

(Resource Owner)

User agent

(Web browser)

2. User Authorizes Application

3. Authorization Code Grant

4. Access Token Request

5. Access Tokent Grant

Figure 4: OAuth five-way handshake.

• Configuration: Utilize
EnableAuthorizationServer and
EnableResourceServer annotations to
set up the authorization and resource servers.

• Client Details Service: Configure client details,
including client_id, client_secret, and
scopes.

• Token Management: Implement token store and
token services to manage token generation, expi-
ration, and refresh.

• Security Configuration: Define security con-
straints for different endpoints, specifying which
are protected and which are publicly accessible.

Spring Security OAuth 2.0 also supports advanced fea-
tures like:

• Custom Token Enhancers: To add additional in-
formation to the OAuth tokens.

• Approval Handlers: To manage user approvals
for token grants.

• Redirection and User Information Endpoints: To
handle user redirection after authentication and
to provide user information to clients.

Key best practices include:

• Securing Client Secrets: Store client secrets se-
curely and never expose them in client-side code.

• Validating Redirect URIs: Ensure that all redirect
URIs are pre-registered and validated to prevent
unauthorized redirection.

• Token Security: Use HTTPS for all communica-
tions involving tokens and credentials. Imple-
ment token revocation and rotation strategies.

The utilization of OAuth 2.0 within Spring Security
presents a sturdy architecture for establishing secure

authorization protocols in applications. Through the
strategic employment of Spring’s configuration and cus-
tomization capabilities, developers possess the ability to
tailor OAuth 2.0 implementation to address diverse appli-
cation requirements while ensuring optimal functionality
and security measures are upheld.

4. LDAP
The Lightweight Directory Access Protocol (LDAP) is
a prominently utilized protocol designed for accessing
and sustaining the functionality of dispersed directory
information services on an Internet Protocol (IP) net-
work. LDAP serves various purposes, including but not
limited to email lookup, authentication processes as well
as organization of company data. It has emerged par-
ticularly advantageous in facilitating user information
management alongside enabling seamless authentication
and authorization capabilities within vast enterprise en-
vironments [10].

In the sphere of Spring Security, LDAP functions as a
fundamental source for both user data and authentication.
With its extensive support for LDAP, Spring Security
effectively facilitates seamless integration with already-
existing LDAP servers. Consequently, this synergy con-
fers upon applications the ability to validate users whilst
retrieving pertinent user role information that has been
preserved in an independent directory within an LDAP
database.

Implementing LDAP authentication in a Spring appli-
cation typically involves several steps:

• Dependency Management: Include Spring LDAP
and Spring Security LDAP dependencies in your
project.

• LDAP Context Source Configuration: Configure
an LdapContextSource to specify the URL and
base suffix of the LDAP server.

• LDAP Authentication Provider: Set up an
LdapAuthenticationProvider to handle au-
thentication requests. This involves specifying a
user search base, user search filter, and optionally
a group search base and group search filter.

• User Details Mapping: Map LDAP attributes to
user details in Spring Security. This can be done
using DefaultLdapAuthoritiesPopulator
for role retrieval and PersonContextMapper
for user information mapping.

• Security Configuration: Define security con-
straints in the Spring Security configuration, spec-
ifying which endpoints are protected and which
are publicly accessible.

Advanced LDAP configurations in Spring can include:

• Custom User Details Service: Implementing a
custom user details service for more complex user
information retrieval.

• Password Policies: Configuring password policies
and handling password exceptions.

• LDAP Templates: Using LdapTemplate for more
complex LDAP operations beyond authentication.

When implementing LDAP in Spring, it’s important to
follow best practices:

• Secure Communication: Use LDAPS (LDAP over
SSL) for secure communication with the LDAP
server.

• Password Handling: Ensure that passwords are
not logged or stored in an insecure manner.

• Injection Protection: Guard against LDAP injec-
tion attacks by validating and sanitizing input.

The incorporation of LDAP into Spring Security
presents a highly effective approach to managing user
authentication and authorization across enterprise appli-
cations. Through the advantageous utilization of Spring’s
inherent support for LDAP, software developers can
establish seamless connectivity with LDAP directories
while concurrently fortifying security and scalability
within their respective application frameworks.

5. Keycloak
Keycloak is a state-of-the-art solution for Identity and
Access Management, developed by Red Hat as an open-
source software. Its primary objective lies in streamlin-
ing the integration of standard protocols such as OpenID
Connect and SAML 2.0 into authentication processes
while facilitating authorization procedures. In addition
to centralized management console capabilities concern-
ing user identities, Keycloak enables features that ensure
SSO, two-factor authentication, and social login function-
alities are supported efficiently. These advanced security
provisions make it particularly suited for safeguarding
modern applications’ integrity within diverse service
environments where tailored identity management solu-
tions are highly valued [11].

In the context of Spring Security, Keycloak presents
itself as a viable choice for an authentication and autho-
rization server. As such, it affords Spring applications the
option to delegate their user authentication and autho-
rization protocols directly to Keycloak—a dynamic that
subsequently streamlines security management efforts.
This integration furthermore empowers said applications
with access to advanced features exclusive to Keycloak;
examples include SSO, token-based authentication mea-
sures, in addition to user federation capabilities.

Implementing Keycloak in a Spring application typi-
cally involves several steps:

• Dependency Management: Include the Keycloak
Spring Boot adapter dependency in your project.

• Keycloak Server Setup: Set up and configure a
Keycloak server, defining realms, clients, roles,
and users.

• Spring Boot Application Configuration: Config-
ure the Spring Boot application to use Keycloak
for authentication and authorization. This in-
volves setting up Keycloak properties in the ap-
plication.properties or application.yml file.

• Security Configuration: Configure Spring Secu-
rity to use Keycloak’s adapter for authentication.
This includes defining security constraints and
specifying protected resources in the application.

• User and Role Management: Utilize Keycloak’s
administration console to manage users and roles,
which can be mapped to Spring Security authori-
ties.

Keycloak’s integration with Spring allows for ad-
vanced customizations, such as:

• Custom User Attributes: Adding and managing
custom user attributes in Keycloak.

• Identity Brokering: Configuring Keycloak to act
as an identity broker between different identity
providers.

• Theme Customization: Customizing the look and
feel of login pages and emails.

When integrating Keycloak with Spring, it’s important
to follow best practices:

• Secure Communication: Ensure that all communi-
cations between the Spring application and Key-
cloak server are secured using HTTPS.

• Client Secrets: Securely manage and store client
secrets used for communication with Keycloak.

• Token Validation: Implement proper token vali-
dation in the Spring application to prevent unau-
thorized access.

Keycloak’s integration into Spring Security offers a
powerful and flexible solution for managing authenti-
cation and authorization in applications. By leveraging
Keycloak, developers can enhance the security of their
Spring applications, taking advantage of features like
SSO, token-based authentication, and user federation.

6. Literature overview
JWTs have now become a critical component for ensur-
ing web security in contemporary times. In the context of
this, a scholarly research titled "Enhancing JWT Authen-
tication and Authorization in Web Applications Based on
User Behavior History" published in 2022 underlines the

vital significance of incorporating user behavior history
while utilizing JWT to optimize overall application secu-
rity. It is noteworthy that Spring Security endorses such
an approach via providing robust support for implement-
ing stateless authentication and authorization features
using JWT [12].

Furthermore, it is highlighted in a study in 2017 that
the significance of JWTs extends across various sectors.
The research exhibits the versatility of JWT usage in
multiple contexts such as smart home environments,
thereby accentuating its efficacy specifically with regard
to Spring-based applications [13].

The utilization of OAuth 2.0 in Spring is indispensable
for ensuring sound authorization measures [14]. The
paper scrutinizes the intricacies and methods pertinent
to microservices architecture encompassing OAuth 2.0
as a core part thereof. This approach coincides with the
aid provided by Spring Security’s advanced support for
OAuth 2.0 protocols aimed at streamlining diverse grant
types within applications built on this platform.

The well-established function of LDAP in the man-
agement of user authentication and authorization can
be further enhanced through its integration with Spring
Security by taking into account the principles expounded
upon in [15]. The paper’s elucidation on context-aware
authorization within IoT and blockchain domains is
highly informative for LDAP implementation within com-
plex enterprise environments operating under Spring.

The integration of Keycloak with Spring Security pro-
vides a potent means to manage the authentication and
authorization process. A recent study [16] serves as an
illustrative example of how combining Keycloak and
Spring Security can effectively secure APIs within a
microservice-based structure. This study highlights the
efficacy of utilizing Keycloak alongside Spring Security
for ensuring resolute application security mechanisms.

Finally, the research paper entitled "Exploring the Uti-
lization of JWT in MQTT" published on arXiv in 2019
delves into the versatile application of JWT within MQTT,
a lightweight communication protocol. This study em-
phasizes that JWT can be extended to various protocols
and applications, including those developed with Spring
Framework [5].

7. Conclusion
The Spring Framework encompasses the integration of
JWT, OAuth 2.0, LDAP and Keycloak for a multi-layered
approach to security, with each component possessing
its own advantages and drawbacks. In particular, JWT
boasts stateless functionality as well as scalability suitabil-
ity which renders it fitting for contemporary web applica-
tions; however meticulous monitoring of token security
is critical in order to prevent any potential vulnerability

or theft risk. OAuth 2.0 serves as an extensive yet adapt-
able authorization framework suitable across diverse ap-
plication types such IoT implementations; nevertheless
complexity may present challenges during implementa-
tion while strict adherence to best practice guidelines
must be maintained continuously throughout operation.

LDAP excels at managing user identities within vast
operational environments through centralized authenti-
cation mechanisms but setting up can pose significant
logistical hurdles especially when confronted by rapidly
changing data sets needing constant adjustments com-
pared to alternate solutions available. Finally integrating
Keycloak into microservice architectures enables sim-
pler handling of comprehensive identity access manage-
ment features significantly simplifying administration
needs albeit simultaneously placing additional demands
on server configuration requirements possibly introduc-
ing performance reduction issues without careful op-
timization attention being given determining effective
trade-offs relative required specific infrastructure capa-
bility constraints.

The cumulative package delivered via incorporation
all these methods launched efficiently using Spring af-
fords robust overall system protection ensuring mitiga-
tion maximization against detrimental vulnerabilities
arisen from optimal deployment following exhaustive
comprehension fundamental principles defining reliable
secure ecosystem operations governance broadly applica-
ble many industry type verticals benefiting handsomely
therefrom upon successful implementation completion
achieving strategic business objectives intending busi-
nesses reaping profitable outcomes thereof gaining com-
petitive advantage over peers not leveraging innovative
approaches towards future-proofing their information
technology systems accordingly

Acknowledgment
This paper was supported in part by the Blockchain Tech-
nology Laboratory at Belgrade Metropolitan University,
Belgrade, Serbia and in part by the Ministry of Educa-
tion, Science and Technological Development, Republic
of Serbia ref. no. 451-03-47/2023-01/200029.

References
[1] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu,

R. Harrop, T. Risberg, A. Arendsen, D. Davison,
D. Kopylenko, M. Pollack, et al., The spring
framework-reference documentation, interface 21
(2004) 27.

[2] C. Walls, Spring in action, 4th edition, Manning
Publications, 2013.

[3] Snyk, JVM Ecosystem Report 2021, https://snyk.io/
reports/jvm-ecosystem-report-2021/, 2022.

[4] Ł. Wyciślik, Ł. Latusik, A. M. Kamińska, A com-
parative assessment of jvm frameworks to develop
microservices, Applied Sciences 13 (2023) 1343.

[5] K. Shingala, JSON web token (JWT) based client
authentication in message queuing telemetry trans-
port (MQTT), arXiv preprint arXiv:1903.02895
(2019).

[6] S. Thorgersen, P. I. Silva, Keycloak-identity and
access management for modern applications: har-
ness the power of Keycloak, OpenID Connect, and
OAuth 2.0 protocols to secure applications, Packt
Publishing Ltd, 2021.

[7] M. Jones, J. Bradley, N. Sakimura, RFC 7519: JSON
Web Token (JWT), 2015.

[8] M. Knutson, R. Winch, P. Mularien, Spring Security:
Secure your web applications, RESTful services, and
microservice architectures, Packt Publishing Ltd,
2017.

[9] D. Hardt, RFC 6749: The OAuth 2.0 authorization
framework, 2012.

[10] M. Rouse, Ldap (lightweight directory access pro-
tocol), Enterprise Mobile Computing news and
information (2019).

[11] R. Hat, Keycloak–open source identity and access
management, 2021.

[12] A. Bucko, K. Vishi, B. Krasniqi, B. Rexha, Enhancing
jwt authentication and authorization in web appli-
cations based on user behavior history, Computers
12 (2023).

[13] N. Hong, M. Kim, M.-S. Jun, J. Kang, A study on a
jwt-based user authentication and api assessment
scheme using imei in a smart home environment,
Sustainability 9 (2017).

[14] M. G. de Almeida, E. D. Canedo, Authentication
and authorization in microservices architecture: A
systematic literature review, Applied Sciences 12
(2022).

[15] T. Sylla, L. Mendiboure, M. A. Chalouf, F. Krief,
Blockchain-based context-aware authorization
management as a service in iot, Sensors 21 (2021)
7656.

[16] A. Chatterjee, A. Prinz, Applying spring security
framework with keycloak-based oauth2 to protect
microservice architecture apis: A case study, Sen-
sors 22 (2022) 1703.

https://snyk.io/reports/jvm-ecosystem-report-2021/
https://snyk.io/reports/jvm-ecosystem-report-2021/

	1 Introduction
	2 JWT and Its Implementation in Spring Framework
	3 OAuth 2.0
	4 LDAP
	5 Keycloak
	6 Literature overview
	7 Conclusion

