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Abstract
The surge of interest in Large Language Models (LLM) has reached unprecedented levels of magnitude in
the last year. Following the success of ChatGPT, a powerful conversational system powered by an LLM,
both specialized and non-specialized users have started to leverage the efficacy of these systems. If this
trend is to be maintained, it is reasonable to predict an ever more ubiquitous role for LLMs in our daily
life. Nonetheless, the widespread adoption of LLMs in various applicative fields remains an ongoing
challenge. In order to achieve competitive levels of performance in specialized tasks, LLMs can require
complex fine-tuning procedures and high-quality data. Furthermore, LLMs are scarcely interpretable and
often viewed as "black boxes". This proposal aims to lessen the gray areas around the subject of LLMs and
shed some light on which kind of information they store internally. Specifically, the goal is to assess the
ability of LLMs to model external semantic knowledge about concepts encoded from unstructured text, by
means of their latent representations. The proposal aims to explore existing patterns in the latent space
that convey explicit information about taxonomical information and relational connections between
concepts, and that can therefore reflect the knowledge encoded by a Knowledge Graph. The resulting
knowledge could be exploited to enable complex downstream tasks leveraging factual knowledge and
aimed to deduce new structured information, possibly in zero-shot or few-shot settings.
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1. Introduction

Extraction of structured data from unstructured data is a complex task that combines various
levels of natural language understanding. Although Language Models (LMs) are proven to
model effectively complex syntax dependencies and semantic relationships in sentences, some
tasks require more deep language understanding capabilities that focus on pragmatics and
external knowledge. To this purpose, numerous approaches driven by Large Language Models
(LLMs) have been proposed, most of which involve conditioning on fine-tuning tasks, typically
in distant-supervised settings. However, the complexity of fine-tuning may be a concern in
some applications. In addition, fine-tuning for a specific task requires the availability of large
volumes of high-quality annotated data, which is not always possible. Even when feasible,
fine-tuning results in hyperspecialized pipelines that cannot translate to new tasks or domains.
Lastly, those approaches are typically "black-box" as they are based on the formulation of an
end-to-end task. In most cases, the embedding space is never investigated.
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In addition, it is worth noting a growing common concern about the lack of control over
what these models learn, since it may lead to unpredictable results and toxic or biased content.
Interpretability for LLMs is still largely an unsolved problem that asks for immediate attention.

Previous works [1] have underlined how large, pretrained Language Models are able to acquire
vast amounts of knowledge that transcend mere grammar and general patterns. Nonetheless,
the exploration of the underlying learning mechanisms of these models, which pertains to
the understanding of what information they actually acquire, is a relatively new research
direction yet to be fully addressed. This work aims to interpret the inner knowledge of LLMs as
modeled by their intermediate representations. The moving hypothesis is that, by observing
large volumes of heterogeneous textual data, LLMs are able to capture vast amounts of factual
knowledge (i.e. verifiable information about the world, such as people, locations, events, etc.).
Understanding where this knowledge is stored, how to access it and interpret it has the potential
to drive progress in this research field and enable the application of LLMs in various semantic
web applications. In particular, this proposal aims to explore the similarities between LLM
latent spaces and Knowledge Graphs (KGs). By analyzing the latent spaces of LLM, we can
identify patterns that align them with the structure of KGs. In addition, this knowledge could
be exploited to extract new knowledge from the LLMs.

In a prior study (Anelli et al. [2]), we investigated the presence of significant regions within
the latent space of BERT [3]. The identification of distinct boundaries within the latent spaces
of LLMs, aligning with the taxonomical organization of Knowledge Graphs (KGs), offers the
potential for leveraging these boundaries to establish connections between text and real-world
concepts. This has the potential to enable ontology-driven semantic parsing and tagging appli-
cations on unstructured text, even in scenarios with limited data or without prior conditioning
on text. In addition, KGs could be exploited to find relational patterns in LLMs latent spaces,
enabling tasks such as Knowledge Graph Completion (KGC) and Link Prediction (LP) from
unstructured text.

The remainder of the paper is structured as follows: Section 2 illustrates the theoretical
notions at the basis of this proposal, as well as a literature review. Section 3 provides a more
in-depth discussion of the preliminary hypothesis and research questions. Section 4 illustrates
the expected methodologies and evaluation strategies required for the research path. Section 5
concludes the paper with final remarks.

2. Background

2.1. Large Language Models

The problem of Language Modeling consists in assigning a probability to a sequence of words.
Capturing the inner nature of natural language remains a heavily data-dependent problem.
For this reason, the paradigm of transfer learning was investigated. Recent approaches for
pretraining rely on a self-supervised pretext task, namely Masked Language Modeling (MLM),
with the goal of completing artificially masked parts of a sentence. Through this general task
where the model learns how to fill the gaps, it learns general linguistic constructs, syntax
substructures, patterns as well as semantic characteristics, both at sentence and at discourse
level. This general knowledge, condensed into a latent space, can be then exploited to perform



more specific downstream tasks by means of fine-tuning.
The introduction of the Transformer [4] architecture marked a milestone in the history of

language modeling. Transformers surpass the shortcomings of LSTM architectures being able
to process longer sequences of words simultaneously and capturing long-range dependencies.
One of the first evidences of this emerging paradigm was BERT [3], an encoder-only Pretrained
Language Model (PLM) trained on a MLM task.

The recently coined expression "Large Language Model" broadly refers to a class of PLMs that
are trained on large volumes of textual data, possibly including several billions of sentences, and
comprise a significant amount of internal parameters. GPT [5], introduced by OpenAI, employs
a Transformer decoder architecture which is pretrained on an unsupervised unidirectional
language modeling task. Subsequently, GPT-2 [6] demonstrated that a LLM pretrained on a
sufficiently large dataset with enough diversity is enough to perform various zero-shot tasks with
no need for supervision. GPT-3 [1] proved that scaling up the pretraining task and the number
of parameters (175 billions) allows for surprising few-shot performances, reaching competitive
levels even against fine-tuned baselines. Later on, OpenAI reached its latest milestone with
GPT-4 [7], a multimodal model capable of accepting text as well as images as input.

2.2. Knowledge Graphs

Knowledge Graphs (KGs) are a form of structured data representation for relational information
about real-world objects (i.e. entities). A KG can also be enhanced with additional metadata and
properties, both structured and unstructured, about the entities. A schema, defined by means of
an ontology, enforces a specific taxonomy for the entities and relationships in a KG. Formally, a
KG can be defined as a triple 𝐺 = {𝐸,𝑅, 𝐹}, where 𝐸 is a set of entities, 𝑅 is a set of relations
and 𝐹 is a set of facts. A fact 𝑓 ∈ 𝐹 is a triple (ℎ, 𝑟, 𝑡) where ℎ, 𝑡 ∈ 𝐸 and 𝑟 ∈ 𝑅.

KGs allow an agent for easy access and retrieval of explicit information, as well as the
application of reasoning and logical inference techniques for implicit information extraction.
In addition, KGs paved the way for the development of techniques aimed at the automatic
inference of new knowledge. Knowledge Representation Learning (KRL) identifies an emerging
field of study whose goal is to map the discrete concepts in a KG to dense, low-dimensional
vectors (i.e. embeddings) in a semantic space. Embedded representations address the challenges
of computational and memory complexity by having a lower dimensionality. Furthermore, by
mapping discrete concepts to a continuous vector space, it is possible to alleviate the effects of
data sparsity often present in common KGs. These embedded representations can be exploited
in various machine learning end tasks, such as Knowledge Graph Completion (KGC), whose goal
is to fill incomplete triples inferring the missing components. Furthermore, embeddings capture
semantic similarities between concepts, providing practical value in Node Classification, which
involves mapping entities in a KG to their corresponding categories. Information Retrieval (IR)
subtasks can also benefit from the robustness of embeddings with respect to data sparsity and
the lower computational constraints with respect to traditional approaches.

Previous works [8] proposed the integration of textual information into knowledge represen-
tation learning (KRL), aiming to create unified representational spaces that encompass both
text and KGs. The intermixture of text and discrete knowledge can be beneficial for Semantic
Annotation [9], which aims to identify key concepts in text and link them to concepts in KGs.



2.3. Related Work

Other works attempted to associate a human interpretable meaning to the behavior of LMs
at a more deep inner level (i.e. hidden activations or attention weights). Works such as the
one of Bolukbasi et al. [10] attempt to measure the impact of various inputs on the neural
activations of the BERT [3] model, showing that this model exhibits recognizable activation
patterns for similar concepts and proving the existence of meaningful global directions in
the BERT space. However, the authors also found that the activation interpretation varied to
some extent with respect to the dataset of choice. Manning et al. [11] analyzed the structural
properties of the BERT latent space, proving through structural probing that a parse tree can
be reconstructed from the hidden representations of the architecture. This work demonstrates
that latent representations coming from a self-supervised approach such as Masked Language
Modeling indirectly acquire implicit information about syntactic intra-sentence relations.

Petroni et al. [12] assessed the ability of several popular pretrained language models to
act as queryable "off-the-shelf" factual knowledge bases. The underlying assumption is that
the standard unidirectional or bidirectional language modeling problem formulation is strictly
related to the task of cloze-style question answering. However, the latent representations
are not explored in this work, as the task is based on leaving the end-to-end architecture
unchanged while solving the task at prompt-level. Prompt-based approaches might fail at
retrieving relevant knowledge from an LM based on the prompt choice. As noted by Jiang et
al. [13], existing experimental evidence about the ability of LMs to capture factual knowledge
might only represent a lower bound of what these architectures actually know, since we do not
possess accurate and proven ways to probe this knowledge.

Several works have attempted to extract factual knowledge from LMs embedding spaces.
Yao et al. [14] attempt to employ LMs in the context of knowledge graph completion: they
represent KG triples as textual sentences and extract a representation space through BERT;
this representation space is then conditioned on a plausibility function through fine-tuning.
In a similar fashion, [15] proposed an approach for KGC based on the fine-tuning of GPT-2.
These approaches prove to be effective in surpassing traditional knowledge graph embedding
ones, for their ability to model rich semantic information instead of simple structure. However,
they rely only on fine-tuning end-to-end architectures, while the existing semantic information
about factual knowledge in the pre-trained space is not investigated. Contrarily, this proposal
aims to investigate whether various pretrained LLM latent spaces can directly incorporate this
knowledge as well as preserving the desired language understanding capabilities that come
with a task-agnostic pretraining procedure.

An attempt to interpret what the BERT [3] Language Model learns through its pretraining
task was made in our previous work (Anelli et al. [2]). This work was moved by the assumption
that pre-trained BERT latent space encapsulates semantics about real-world objects that can be
leveraged to construct facts via a link prediction procedure. The assumption was then proven
by evaluating against the FB15K-237 [16] benchmark dataset. Following this intuition, an entity
classification task was then performed to assess the separability of the same space with regard
to the taxonomy enforced by the Freebase ontology.



3. Research Proposal

The goal of this research proposal is to answer the following questions:

• Q1: do LLM latent spaces exhibit patterns of semantic grounding in structured open-
domain knowledge bases?

– Q1.1: is factual and ontological knowledge encoded in an LLM latent space? Is it
possible to extract it? Does the extracted knowledge match with the KG ground
truth? How many entities and what properties can be extracted? How do different
state-of-the-art LLMs compare in this regard?

– Q1.2: at which stage or by which parameters of the LLM architecture is this semantic
information mainly encoded? Are certain hidden parameters more suited to specific
facts/domains?

– Q1.3: can we associate an explicit interpretation to geometrical characteristics of
LLM latent representations (e.g. regions, directions, distances, linear transforma-
tions, separability) that links them to ontological and relational information?

– Q1.4: could this knowledge about the latent representations be exploited to perform
a wide variety of IE-related downstream tasks, such as Knowledge Graph Completion
and Semantic Tagging, especially in few-shot settings? If so, could they yield state-
of-the-art results?

– Q1.5 (related question): what role does context play in the semantics encoded by
the LLM latent representation?

– Q1.6 (related question): does this semantic awareness transfer well to closed
domains as well without the need for fine-tuning? Are pretrained LLMs biased
towards a specific niche domain or a set of properties?

• Q2: can we induce a semantic representation space from text that models the ontological
properties and relational information of a structured knowledge base, while preserving
the desirable linguistic understanding capabilities of LLMs?

– Q2.1: could this be done by exploiting existing state-of-the-art architectures through
fine tuning?

– Q2.2: would a new architecture or training procedure be more suited for the pur-
pose?

– Q2.3: could a more appropriate loss function or training procedure be formulated
for this purpose?

The underlying goal of this proposal is to enable LLMs as general knowledge-aware feature
extractors to obtain either "universal" or domain-specific knowledge representation of concepts
from text. These representations should be highly interpretable and task-agnostic, such that
they could accommodate for a variety of Information Extraction tasks "off-the-shelf ", acting
only at the discriminative level of the architecture and with little to no need for annotated data.

Lastly, the research work will put significant emphasis on ensuring the reproducibility
of the results, with the aim of facilitating access for the community and enabling potential
improvements.



4. Methodologies and Evaluation

The first part of the proposed research will be devoted to the extraction of patterns of semantic
grounding of LLMs latent representations in knowledge bases. A latent space offers an abstract
representation of discrete concepts by means of real-valued numerical vectors. Post-hoc tech-
niques for the analysis and the interpretation of latent space coming from deep-learning models
remain under active research. Some recent approaches [17] rely on a linear mapping operation
from a latent space into a pre-defined semantic space with explicit interpretability.

An important semantic grounding aspect of latent representation pertains to how their
distributional characteristics can reflect a human-understandable taxonomy. Part of this research
will try to assess the existence of explicit, separable semantic regions in LLMs latent spaces.
Linear Probing was originally introduced by Alain et al. [18] as a tool to investigate the role of
different hidden layers of deep neural networks. A linear "probe" is a linear classifier trained on
top of an intermediate layer to predict a label. The measured accuracy of said classifier allows to
assess the semantics of each layer and the degree of separability for the resulting representation.
Probing-based unsupervised techniques, such as clustering, acting at intermediate layers of
LLM architectures, might be adopted to extract patterns of separability existing in a LM latent
space enforced by taxonomical categorization and ontology.

In a second phase, emerging patterns of relational semantics in latent spaces will be explored.
As proven by Bolukbasi et al. [10], global directions in LM embedding spaces can encode
different meanings and concepts. Voynov et al. [19] propose an unsupervised approach to
discover interpretable meaning for specific directions in a generative model latent space; this
approach was applied in the context of image generation to prove the existence of a relationship
between vector linear transformation and human-interpretable image transformations. Similar
approaches could be adopted to explain the semantics of local and global directions in a LLM
latent space.

Lastly, the research will focus on transferring the knowledge about the semantics of latent
representations to downstream Information Extraction (IE) tasks. Specifically, Knowledge Graph
Completion (KGC) represents a clear benchmark use case for our findings, since recent studies
have started to investigate LLM-augmented KGC techniques to tackle issues deriving from KG
sparsity, as well as providing a way to handle out-of-vocabulary (OOV) concepts.

Existing evaluation strategies for most KGC techniques leverage ranking-based procedures.
Results can be hard to interpret since these metrics are often based on a quantity over quality
principle, as they establish whether or not a model is able to predict large amounts of facts
correctly, while they do not take into account how "hard" those predictions can be. Some
facts are particularly trivial to classify by logical inference (e.g. inverse relations). In addition,
benchmark datasets for this task are often constructed without particular constraints, resulting
in datasets that are often biased towards a niche domain or contain a large portion of trivial
facts. In order to provide extensive coverage for various properties and entities in KGs, the
extraction of a new benchmark dataset might be required.



5. Conclusions and Future Work

The research proposal presented in this paper starts from the hypothesis that LLMs are inherently
latent knowledge bases with interpretable semantics. By virtue of this assumption, the research
aims to determine (i) whether LLM latent representation encode semantics about world factual
knowledge, (ii) where this information is encoded and (iii) whether this information can be
exploited in real applicative scenarios. The resulting outcome could have the potential to offer
a deeper understanding of the underlying mechanisms of these models. Moreover, identifying
semantics in the LLMs’ latent space could broaden the applicative scope of LLMs, paving the
way to a deeper integration of LLMs with semantic technologies.
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