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Abstract 
Natural product-drug interactions (NPDIs) occur due to co-consumption of drugs and natural products 
leading to therapeutic failure and adverse events. Understanding the pharmacologic mechanisms of 
interaction is key to prevent adverse effects and improve drug safety. Major challenges in identification 
of NPDI mechanisms include variability in natural product composition and constituents, limited known 
pharmacokinetic information about constituents, and unavailability of gold standard datasets for NPDI 
mechanisms. I hypothesize that a large-scale, heterogeneous, biomedical knowledge graph (KG) 
combining biomedical ontologies, drug databases, and domain-specific scientific literature will 
represent relationships of natural products with other biomedical entities and will generate biologically 
plausible mechanisms for scientific research. In this work, I will construct a natural products-relevant 
KG and apply discovery methods, including discovery patterns, graph algorithms, and translational 
embedding methods to generate mechanistic hypotheses for 30 selected natural products. Mechanism 
generation in the KG will be guided by pharmacovigilance signals from spontaneous reporting systems. 
The evaluation will focus on (a) prediction of NPDIs and mechanisms using a reference dataset and (b) 
a user study to evaluate the quality of evidence for NPDIs in the KG to identify gaps for further research.  
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1. Introduction 

The World Health Organization (WHO) estimates that up to four billion people use medicinal 
plants as healthcare and that the concomitant use of complementary health approaches and 
pharmaceutical drugs is widespread across the world[1]. Approximately 50% of adults in midlife 
have reported co-consumption of natural products and drugs, with the prevalence being even 
higher in older adults (up to 88%) in the United States (US) [2,3]. Such concomitant use of natural 
products and drugs can result in natural product-drug interactions (NPDIs) leading to 
therapeutic failure or adverse events[4,5]. Over the years, numerous studies have explored 
computational methods for mechanism discovery of pharmaceutical drugs including drug-target 
predictions, drug repurposing, and drug-drug interactions, and a large number of these studies 
have used knowledge graphs for prediction[6]. However, computational research on botanical 
and other natural products used for complementary health is not as widespread. Understanding 
the biochemical mechanisms underlying clinically significant NPDIs can help prevent or minimize 
adverse drug reactions (ADRs) resulting from the NPDIs[4]. 

Major challenges in the discovery of NPDI mechanisms include the variability in natural 
product compositions, challenges in identification of causative constituents, and limited 
pharmacokinetic information about the known constituents[1,4]. Pharmacokinetic NPDIs occur 
if a natural product extract (e.g., some quantity of green tea) phytoconstituent (e.g., catechin) 
inhibits or induces the function of a drug metabolizing enzyme or transporter, which may or may 
not have unforeseen negative consequences. Systematic literature reviews are used by 
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researchers to understand the research gaps, select natural products for further investigation, 
and design studies. The mechanistic hypotheses suggested in the literature inform the design of 
future experiments. Evaluating each natural product-drug pair on the market for a potential NPDI 
is thus time-consuming and expensive. Although progress has been made recently to overcome 
challenges[5,7], the increasing sales of natural products in the market, changing regulatory 
landscape, and growing safety concerns over NPDIs call for novel methods to help scientists make 
accurate and timely NPDI predictions. A biomedical knowledge graph (KG) combines expert-
derived information sources into a graph where the nodes represent biomedical entities and 
edges represent relationships between the entities[6]. When integrated with domain-specific 
scientific literature through semantic relation extraction and named entity recognition methods, 
a KG is a powerful tool that can be used for cost-effective prediction and mechanism identification 
for NPDIs to guide researchers to identify research gaps and prioritize new experiments.  

In this research, I propose to apply knowledge representation and natural language processing 
methods to construct a natural products-relevant KG that combines existing biomedical 
knowledge through ontologies with literature-based discovery. I will construct a semantically 
integrated KG that combines biomedical ontologies with full texts of domain-specific scientific 
literature. Plausible mechanistic hypotheses for potential NPDIs and associated ADRs will be 
generated using computational discovery methods such as discovery patterns and presented to 
researchers. The generation of biologically plausible mechanisms will be guided by 
pharmacovigilance signals from natural product spontaneous reports in the US Food and Drug 
Administration Adverse Event Reporting System (FAERS) and published case reports related to 
NPDIs. As there does not exist a gold standard dataset for NPDI mechanisms, I will also create a 
reference dataset for selected natural products to evaluate the KG. The quality of evidence 
available in the KG for NPDIs will then be evaluated with a pilot user study that presents NPDI 
mechanisms to researchers. 

2. Related Work 

Existing computational methods that predict NPDIs have focused on classification of NPDIs from 
literature or existing databases[8,9], designing literature retrieval systems[10], and relation 
extraction for herb-drug interactions[11]. Classification of NPDIs has been done using scientific 
abstracts, existing NPDI databases, and transfer learning approaches. The major challenges in 
computational discovery of NPDIs involve a lack of gold standard data on NPDIs and difficulty in 
obtaining representations of natural products and their constituents[8]. To overcome these 
challenges, studies have extracted knowledge from scientific abstracts from PubMed[8,12,13], 
used existing databases for reference data[8,14], and trained models using drug-drug interaction 
data[9]. Advanced methods such as graph representation learning have also been applied to 
classify food-drug interactions, although the results on external datasets have proved modest[8]. 
Follow-up evaluations of these methods are also lacking, and besides a study by Schutte et. al.[12], 
none of the studies have tried to elucidate the mechanisms underlying the interactions. Existing 
dietary supplement information retrieval tools targeted at consumers have successfully created 
graph-based visualizations with interactive features to provide information regarding dietary 
supplement uses, interactions, and ingredients[15,16]. 

As existing research in computational discovery of NPDIs using artificial intelligence methods 
has focused broadly on classification or retrieval of the interactions only, there exists a gap in 
research methods that can generate explainable mechanistic hypotheses for potential NPDIs and 
associated ADRs for scientists. Discovery patterns are interpretable sequences of nodes and 
relations in KG and have been successfully applied in literature-derived KGs to identify 
mechanistic information[17]. Recent graph representation learning methods that generate 
embeddings from the KG have also shown promise in discovering new edges in KGs and 
identifying mechanisms based on the similarity of nodes and edges in the embedding space[18]. 
Understanding the mechanistic explanations and available evidence for the mechanisms is 
particularly crucial for NPDI researchers to design and prioritize new studies. Using a 



comprehensive representation of natural products-relevant knowledge with other biomedical 
entities through the incorporation of data from various sources and leveraging discovery patterns 
and embedding methods within the KG, we can identify the underlying mechanisms that for 
NPDIs as well as present them to researchers with corresponding metadata and supporting 
evidence. 

To this end, this study will produce the first ontology-grounded KG focused on NPDIs that 
integrates heterogeneous data sources, including biomedical ontologies, open databases, and full 
texts of domain-specific scientific literature. The integration of sources ensures that the 
generated mechanisms are grounded in published results and existing biological knowledge. This 
study will be the first to integrate full texts of NPDI literature with the ontology-grounded KG 
using two high performance relation extraction systems. Unlike most literature-derived KGs that 
use scientific abstracts to extract information, using the full texts of literature to create the 
literature graphs derives mechanistic information that is not always present in the abstracts. This 
is also the first study to use pharmacovigilance signals from spontaneous reporting systems to 
guide the mechanism discovery for NPDIs and thus is also able to focus on the outcomes of the 
potential NPDIs. Finally, the evaluation strategies will be used to assess the plausibility of the 
mechanisms and reliability of results. Overall, the research presents a significant step forward in 
computational discovery of NPDIs which have the potential to improve drug safety and clinical 
decision making. 

3. Research Hypotheses 

Hypothesis 1: The integration of a large-scale, ontology-grounded KG with domain-specific 
scientific literature will provide an interconnected representation of natural products with other 
biomedical entities for recapturing knowledge about the natural products.  
Strategy: To test this hypothesis, I will first construct a KG for natural products combining 
biomedical ontologies, databases, and domain-specific literature for 30 selected natural products. 
The selected natural products will be a mix of well- and less-known products. A natural language 
processing pipeline with semantic relation extraction and named entity recognition will be used 
to construct literature-based graphs for the natural products for integration in the KG. Metadata 
from all data sources and supporting data from the literature will be included in the KG to support 
the mechanism discovery and provide evidence for each link in the KG. To evaluate the KG, I will 
use discovery patterns and shortest path searches to recapture pharmacokinetic knowledge in 
the KG for two model natural products, green tea and kratom and their interacting enzymes and 
transporters and compare the information with human-curated data from the Center of 
Excellence for Natural Product Drug Interaction Research (NaPDI Center) database[5].  

 
Hypothesis 2: Combining discovery patterns, graph algorithms, and embeddings in the KG will 
help to generate biologically plausible mechanistic hypotheses for potential NPDIs and 
pharmacovigilance signals of natural product-ADRs. The proposed KG will provide improved 
support to researchers in identifying research gaps for the natural product-related interactions 
when compared to existing approaches. 
Strategy: I will create a reference dataset of known NPDIs and associated ADRs for the 30 natural 
products from existing resources, including the NaPDI database, Stockley’s Herbal Medicines 
Interactions[19], and the Food Interactions with Drugs Evidence Ontology[20]. Then, I will apply 
discovery methods in the KG to predict NPDIs and associated ADRs, provide plausible 
mechanistic hypotheses, and compare the results with the reference dataset. The discovery 
methods will include discovery patterns, shortest path searches, and translational graph 
embedding methods to (a) predict the interaction between and (b) generate biologically plausible 
mechanistic hypotheses for an input natural product-drug or natural product-ADR pair. 
Mechanisms from the embeddings will be generated based on the cosine similarity between node 
vectors in the KG between the input node pairs. The focus will be on identifying mechanistic 
explanations for potential NPDIs and associated ADRs with reported signals in the FAERS 



database. For evaluation, I will first calculate the accuracy, precision, and recall of predictions 
from the KG when compared to the reference dataset for NPDIs with known mechanisms. Then, I 
will create a user interface that displays the mechanisms to researchers with supporting data and 
evaluate the quality of evidence in the KG and usefulness in identifying research gaps for the 
selected natural products through a within-subjects user study. Further details of evaluation are 
in Section 5.  

4. Preliminary Results 

 
Figure 1: Overview of preliminary work to construct the KG and apply discovery patterns for 
NPDIs with interacting enzymes and transporters. 

 
In preliminary work, I developed a heterogeneous KG for 30 natural products that combined an 
ontology-grounded KG with a literature-based KG (Figure 1). The natural products were selected 
based on published case reports analysis of NPDIs and pharmacovigilance signals from natural 
products adverse event reports from the FAERS database. The ontology-grounded KG was 
constructed using the PheKnowLator workflow that semantically integrates 13 Open Biological 
and Biomedical Ontologies (OBO) Foundry ontologies and linked data sources for biomedical 
entities such as chemicals, proteins, diseases, genes, phenotypes, and more[21,22]. Natural 
products were included as ontology extensions in the ChEBI lite ontology and integrated in the 
KG[23].  

The literature-based KG was constructed from relation extraction of full texts of scientific 
publications for the natural products after applying search strategies in PubMed. Predications 
were extracted from two relation extraction systems, SemRep[24] and the Reading and 
Assembling Contextual and Holistic Mechanisms from Text (REACH) biological reader with the 
Integrated Network and Dynamic Reasoning Assembler (INDRA) framework[25,26]. The scope 
of the literature for the literature-based KG included all PubMed-indexed articles related to 
natural products (including keywords of scientific names, synonyms, and their constituents) and 
pharmacokinetic interactions. The ontology-grounded and literature-based KGs were 
semantically integrated after linking all subjects, predicates, and objects from the literature-



based KG to OBO concepts using both manual and automated entity linking methods. The 
combined KG is termed NP-KG[27]. 

The combined NP-KG contained 1,090,172 nodes and 7,920,893 edges. It is publicly available 
in both serialized and gpickle formats[28]. The ontology-grounded KG contained 1,089,613 nodes 
and 7,836,662 edges. The literature-based graph constructed from the combined and 
deduplicated predications of natural products contained 8,782 nodes and 84,569 edges. The 
literature-based graph added 559 unique nodes and 84,231 unique edges from 3,508 full texts 
processed by SemRep and 4,318 full texts processed by REACH. NP-KG contains all relevant 
metadata from databases and publications, including year, source, source sentence, study type, 
source section of publication, source sentence, and reference as edge attributes in the KG. 
Semantic representations were created for 30 natural products and 571 unique constituents. Out 
of the 571 unique constituents, 153 (26.8%) did not already exist in ChEBI ontology and were 
added as new classes. After integrating the natural products and constituents, 255 classes and 
3695 axioms were added to ChEBI Lite ontology, bringing the total to 182,629 classes and 
1,398,337 logical axioms.  

The evaluation strategy included knowledge recapturing through shortest path searches and 
application of discovery patterns for two model natural products, green tea and kratom to find 
interacting enzymes, transporters, and NPDI mechanisms in the KG when compared to human 
curated data from the NaPDI Center database[5]. The evaluation aimed to recapture known 
information about interacting enzymes and transporters for green tea- and kratom-related 
pharmacokinetic NPDIs in NP-KG and establish congruence or contradiction when compared to 
ground truth information. Table 1 summarizes the results of direct edges and shortest path 
searches for congruent and contradictory information in the KG. For the green tea-related nodes, 
I performed 59 searches for direct edges or shortest paths in NP-KG involving 19 enzymes and 8 
transporters (39.98% congruent, 15.25% contradictory, 3.39% both). For the kratom-related 
nodes, I performed 14 searches for direct edges or shortest paths involving 10 enzymes and 1 
transporter (50% congruent, 21.43% contradictory, 7.14% both). Results with both congruent 
and contradictory edges between the nodes were manually reviewed to verify congruence and/or 
contradiction and for error analysis. Further, discovery patterns shown in Figure 1 were applied 
for five natural product-drug pairs, including green tea-nadolol, green tea-raloxifene, kratom-
midazolam, kratom-quetiapine, and kratom-venlafaxine, with known interactions to find 
hypotheses for potential pharmacokinetic NPDIs. The preliminary results showed that the KG can 
capture information about the interacting enzymes and transporters and generate mechanistic 
hypotheses for the interacting natural product-drug pairs. The KG further successfully identified 
interacting enzymes and transporters for the natural product-drug pairs as shown in Figure 2.  

 
Table 1 
Summary of congruences and contradictions for direct edges and shortest paths in the KG compared 
to ground truth information for green tea and kratom. 

Head 1 Green Tea (%) Kratom (%) 

Congruence 23 (38.98) 7 (50.0) 
Contradiction 9 (15.25) 3 (21.43) 
Edges/paths exist but no congruence or contradiction 25 (42.37) 3 (21.43) 
Both congruence and contradiction 2 (3.39) 1 (7.14) 
Total searches 59 14 

 



 
Figure 2: Discovery pattern results for kratom-midazolam, kratom-quetiapine, and kratom-
venlafaxine with interacting enzymes (Cytochrome P450 (CYP) 3A4 and 2D6) and a transporter 
(P-glycoprotein). Rounded rectangles represent nodes and rectangles represent edges in the KG. 
If an edge is derived from the literature, the year of publication is noted with the edge label. 

5. Evaluation 

The preliminary work evaluated the potential of the KG to recapture known information about 
the interacting enzymes and transporters for two model natural products, green tea and kratom 
when compared to human curated data. In future work, I will scale the methods to evaluate the 
performance of the discovery methods, including discovery patterns, graph algorithms, and 
translational embedding methods for known interactions in a reference dataset constructed from 
NPDI mechanistic data. Performance metrics, including accuracy, precision, and recall will be 
calculated and the plausibility of the mechanisms will be evaluated through a review by 
pharmacists. The metrics will be calculated for two versions of the KG, a time-sliced version with 
data from 2021 and prior, and a version with data from 2023 to evaluate the ability of the KG to 
discover new knowledge.  

Then, I will create a prototype tool that presents the mechanisms to researchers along with 
metadata and supporting data (including publication details such as year and study type, 
measurement information, source of data) for each link in the mechanism for potential NPDIs 
reported in the FAERS database. The quality of evidence available in the KG will be evaluated 
through a within-subjects user study that compares the use of existing methods (literature 
review) and KG-generated mechanisms for identifying research gaps for NPDIs, with the 
hypothesis that the proposed KG and discovery methods will better support researchers in 
identifying research gaps for NPDIs and lead to quicker resolution of questions when compared 
to existing approaches. This will be tested based on a questionnaire designed by NPDI experts 
with NPDI-related questions and semi-structured interviews with the participants of the user 
study. 



6. Conclusion 

The proposed work presents methods for construction of a large-scale biomedical KG combining 
biomedical ontologies, drug databases and full texts of domain-specific scientific literature to 
generate mechanistic hypotheses for NPDIs. Preliminary work has shown the potential of the KG 
to capture known mechanistic information about two model natural products and interacting 
enzymes and transporters. More advanced discovery methods, including translational 
embedding methods can now be used to predict NPDIs and generate mechanistic hypotheses 
from the KG using maximization of cosine similarity and path degree product of the embedding 
vectors. Then a combination of the discovery methods can be applied to the KG to produce 
plausible mechanisms. The next steps will be to apply advanced discovery methods in the KG for 
a wider set of natural products and associated ADRs and evaluate the plausibility of the 
mechanisms and usefulness for researchers. 
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