
Introducing Collaborative Link Traversal Query

Processing in the Context of Structured

Decentralized Environments

IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract
Decentralized web environments aim to give users data autonomy and control.
Data sovereignty focus on two aspects: privacy and provider choice. However,
the concept remains incomplete if it fails to incorporate the actual utilization of
the data. Specifically, in the context of application functionality, data sovereignty
can be relinquished to the owner of the computational units or applications. The
exploration and retrieval of information are core functionalities of web-based
social applications because it is from those mechanisms that shared experiences
to foster interactions are created. A promising example of web discovery tech‐
niques is Link Traversal Query Processing (LTQP),  a SPARQL query paradigm
that aims at exploring the web to answer queries by following the links between
documents. In my doctoral research, I introduce Collaborative Link Data Query
Processing,  a paradigm where multiple query engines collaborate to improve
query result completeness and execution performance in LTQP. I divide the re‐
search on the cooperation of query engines into two parts:  1)  Improving the
completeness of results, by exploring more of the search space, and 2) reducing
the potentially long query execution time by caching results. To validate this pro‐
posal,  I  will  develop a  prototype and evaluate  it  using  existing  benchmarks.
Based on my analysis of the state of the art, previous studies have made contri‐
butions to collaborative SPARQL query execution and RDF peer-to-peer caching.
However, there is currently a research gap regarding the investigation of such
systems in the context of LTQP within a structured decentralized environment.

1.  Introduction

Decentralized web initiatives give users more control over their data. It can be formal‐
ized in a concept called data sovereignty. The authors of [1] defined this concept as “the
power  an  individual  has  over  their  data”[1].  It  can  also  be  interpreted  as  “the  self-
determination of individuals and organizations concerning to the use of their data”[1], in
practice it is the power of the user to choose “where [their] data is stored and who is
granted access to it”[1].

In this PhD program, I attempt to move the definition of power and control, in the con‐
text of decentralized web environments, from a more consumer choice [2, 3, 4], the right
to choose who will use my data, to a definition that includes the right of the users as a
collective to make use of their data without relying on a third-party distributor with sub‐
stantial computational power. In the context of data usage, sovereignty, and control are
largely vested in the owner of the computational unit [5].  This  ownership empowers
them to make decisions that may diverge from the desires or interests of the users [4].
Additionally, it facilitates the utilization of users as products to be sold or as an unpaid

Bryan-Elliott Tam

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-1
http://localhost:3000/#ref-2
http://localhost:3000/#ref-2
http://localhost:3000/#ref-3
http://localhost:3000/#ref-3
http://localhost:3000/#ref-4
http://localhost:3000/#ref-4
http://localhost:3000/#ref-5
http://localhost:3000/#ref-5
http://localhost:3000/#ref-4
http://localhost:3000/#ref-4
https://ipfs.io/ipfs/QmRXDbCN4HSUYJkHmqTNpJfiVDbpLVqzVoGSZZUVoDpci2/
https://ipfs.io/ipfs/QmRXDbCN4HSUYJkHmqTNpJfiVDbpLVqzVoGSZZUVoDpci2/


source of revenue [5], even when the data is anonymized [2, 4] and contribute to the cen‐
tralization of wealth, increased surveillance and the non-representative distribution of
contents online (for example in languages and type of content) [3, 4, 5]. To improve this
sovereignty, I focus on data querying of social applications, applications that are driven
by the interaction between users. In social applications, requesting and discovering new
information, while taking into consideration complex concepts like serendipity [6],  are
the core functionalities creating the shared context that enable sociability. Concretely, I
propose Collaborative Link Traversal Query Processing (CLTQP), a Link Traversal Query
Processing  (LTQP)  paradigm where  every  user  can  share  their  computational  power
when querying using SPARQL. This collaboration aims to increase query result complete‐
ness  and to  reduce execution time for  all  users.  With this  collective  participation,  it
would be possible at little cost to provide a more democratic economic base from which
users could have more power to choose features for social applications that cater to their
desire and interest and start social applications with a lesser monetary barrier. This pa‐
per is divided as follows, first, related work is presented, after the research proposal is
made, then the methodology is explained and there is a short conclusion.

2.  Related Work

2.1. Link Traversal Query Processing

LTQP is a technique that consists of recursively looking up URLs from dereferenced
URIs acquired by the query engine to explore the surrounding information around the
original response  [7] using the follow-your-nose principle of Linked Data. In contrast,
traditional  SPARQL  queries  only  query  one  document,  and  in  Federated  Query
Processing the data sources need to be known beforehand. The query first starts with a
small set of URIs called seed URIs [7] that form the initial data sources for the execution.
The engine then uses a predefined lookup policy to discover new URIs inside the docu‐
ments obtained from the seed URIs. Link traversal has a great exploratory potential by
discovering unknown data sources during the querying execution with no input from
the client [7]. The exploitation of this potential can extend the knowledge available for
the engine to query or give more context to the data. In its traditional form, it consists of
following, more or less naively, the links inside the response payload and dereferencing
them to get new data sources.  However,  Link Traversal comes with some difficulties,
such  as  the  open-endedness  of  the  web  and  the  complexity  of  query  planning  [8].
Reachability criteria can be defined to restrict the links that are followed based on condi‐
tions. Classical examples are cAll,  which follows every link, and cMatch,  which follows
links that match the query pattern [9].

2.2. Collaborative SPARQL Querying

Collaborative SPARQL Querying consists of using multiple agents to facilitate querying
by diminishing the computation load of the execution or the discovery of data sources
[10]. Snob [11] proposes a mechanism for collaborative query based on the continuous
execution of queries over rotating browser data sources. The browsers form an unstruc‐
tured peer-to-peer (P2P) network where each peer has a random and a profile-based

http://localhost:3000/#ref-5
http://localhost:3000/#ref-5
http://localhost:3000/#ref-2
http://localhost:3000/#ref-2
http://localhost:3000/#ref-4
http://localhost:3000/#ref-4
http://localhost:3000/#ref-3
http://localhost:3000/#ref-3
http://localhost:3000/#ref-4
http://localhost:3000/#ref-4
http://localhost:3000/#ref-5
http://localhost:3000/#ref-5
http://localhost:3000/#ref-6
http://localhost:3000/#ref-6
http://localhost:3000/#litterature_review
http://localhost:3000/#litterature_review
http://localhost:3000/#proposal
http://localhost:3000/#proposal
http://localhost:3000/#evaluation
http://localhost:3000/#evaluation
http://localhost:3000/#conclusion
http://localhost:3000/#conclusion
http://localhost:3000/#ref-7
http://localhost:3000/#ref-7
http://localhost:3000/#ref-7
http://localhost:3000/#ref-7
http://localhost:3000/#ref-7
http://localhost:3000/#ref-7
http://localhost:3000/#ref-8
http://localhost:3000/#ref-8
http://localhost:3000/#ref-9
http://localhost:3000/#ref-9
http://localhost:3000/#ref-10
http://localhost:3000/#ref-10
https://hal-nantes-universite.archives-ouvertes.fr/hal-01805154
https://hal-nantes-universite.archives-ouvertes.fr/hal-01805154
http://localhost:3000/#ref-11
http://localhost:3000/#ref-11


(browsers with similar profiles execute similar queries) partial view of the network. The
browsers can share their intermediary results and at specific intervals, the peers are ran‐
domly shuffled by requesting new peers from known browsers. With this technique, it
becomes possible to enhance the completeness of query results over time without the
need to query every individual data source. ColChain [12] has a different approach. The
query engines still have a partial view of the network but it is based on communities in‐
stead of being random or profile-based. A community, in the ColChain context, is a set of
“nodes that participate in and observe [each other] and the fragments published [be‐
tween them]” [12]. So the division of the network is made intentionally by the users. For
the  query  process,  the  engine  examines  its  own data  sources  and then expands  the
search to include the data sources of known communities. To discover new communities,
the engine inquires peers to identify unknown communities. The collaborative aspect
lies in the partition of a “global” knowledge graph into intentional semantic units. Other
academic  contributions  have  also  aimed  to  leverage  the  social  links  between  data
sources to diminish the query execution time by not flooding the network when query‐
ing, such as in the article [13]. Another approach is to use the structure of the object
modeled, such as academic papers as in the contribution of the authors of [14].

2.3. P2P Caching In The Context Of The Web

I define P2P caching as a particular case of collaborative querying where the query en‐
gine  shares  their  already  computed  and  valid  results.  Squirrel   [15]  proposed  a  P2P
caching mechanism, where the URLs are mapped to keys inside a distributed hash table
(DHT). If the user does not have the desired content in its local cache, it first queries the
P2P network before requesting the URL. Squirrel does not propose a mechanism to take
into  consideration  the  distance  between  the  client  and  the  node’s  acting.  Flower-
CDN [16] proposes to modify the keys of the DHT to consider the locality. The content of
the websites is distributed to peers of a locality, inside this locality a super-peer knows
where to locate every content of all the websites of the locality. When a client makes a
query to the DHT, the DHT directs to the super peer closest to the locality of the client and
the super peer finds the content requested by the client. Behave [17] proposed another
paradigm instead of using a structured network with a potentially slow DHT, it relies on
an unstructured network where each peer has a partial view of the whole web. Each
peer’s view of the network is partially random and partially based on the websites vis‐
ited to create a “behavioral locality” [17]. It uses a gossip protocol, at certain times the
peers exchange randomly the nodes they know to change their view on the network.
CyCLaDEs [18] adapted the concept of Behave for the use case of SPARQL query of RDF
documents.

3.  Problem Statement

3.1. Proposal

This  paper  aims  to  create  a  SPARQL  query  paradigm  called  Collaborative  Link
Traversal Query Processing. It consists of using multiple SPARQL query engines with the
aim of improving the completeness of queries by exploring more of the search space and

https://doi.bak.org/10.1145/3442381.3450037
https://doi.bak.org/10.1145/3442381.3450037
http://localhost:3000/#ref-12
http://localhost:3000/#ref-12
http://localhost:3000/#ref-12
http://localhost:3000/#ref-12
http://localhost:3000/#ref-13
http://localhost:3000/#ref-13
http://localhost:3000/#ref-14
http://localhost:3000/#ref-14
http://localhost:3000/#ref-15
http://localhost:3000/#ref-15
http://localhost:3000/#ref-16
http://localhost:3000/#ref-16
http://localhost:3000/#ref-17
http://localhost:3000/#ref-17
http://localhost:3000/#ref-17
http://localhost:3000/#ref-17
http://localhost:3000/#ref-18
http://localhost:3000/#ref-18


reducing the query execution time through the means of exchange of results. Both prob‐
lems have been engaged in the academic literature, but not in the case of LTQP and con‐
sidering the distributed SPARQL querying domain [19]. In this PhD project, I will apply
this query paradigm in the context of Solid, which implies that there is a strong consider‐
ation for privacy during querying [20] and a structured environment that can be lever‐
aged to speed up the query [21].

The first problem I aim to solve is to increase the query completeness. In this context, I
define the domain and the search space as a subset of a graph containing all the triple of
the web of linked data that can be explore by the query engine. To increase the query
completeness, CLTQP attempts to explore more of the search space by having multiple
query  engines  engaging  in  non-overlapping  partitions  of  the  huge  or  pseudo-infinite
search domain and executing the query. Hence, in the same amount of time, having more
triples processed compared to an approach with just a single query engine. An important
property emerging from the traversal of links is a structural proximity bias of the query
results, which means that from the link traversal method, some data sources tend to be
discovered more easily regardless of their potential influence on the query completeness
and the interpretation of the query results. The bias has two interconnected sources: a
sensitivity to the initial conditions induced by the seed URLs and the structure of the
web, which is not a fully connected graph. Hence, a data source that takes more steps to
be accessed, in regards to the seed URLs, can be more difficult to discover. Corollary,
there is a bias based on the popularity of the data source, as it is easier to find a data
source that is referenced more times and in a wide range of data source types (by data
source types, I mean data sources that focus on specific topics) than data sources having
the  reverse  properties.  Hence  by  exploring  more  of  the  search  space,  there  is  more
chance to discover those data sources. The second problem is to reduce the execution
time,  and I  explore the method of  P2P caching to  alleviate  this  issue.  Hartig  in [22]
demonstrates that caching in LTQP can help improve the completeness of results, how‐

ever, in some conditions the query execution time can be increased. In the literature,
there are contributions on the topic of P2P caching, but none engage with the problem of
LTQP and its particularities, such as long execution time, exploration of multiple sources,
and difficulty in attaining completeness which may change the conclusion of the caching
and network strategy. Additionally, in environments like Solid, privacy is an additional
consideration for caching [23]. For both problems, it has to be considered that a mecha‐
nism to incentivize reciprocity is necessary to ensure fairness and the good functioning
of the P2P system. It can be implemented in multiple ways, for example, as an obligation
to participate in a minimum percentage of queries or a number of links to provide. This
enforcement could be managed by a community-specific structure with policies in that
regard. Given that a user does not respect the policy, they cannot access the results of
that community, so it is a form of social contract.

3.2. Research Questions And Hypotheses

Building on the proposal and the related work of Section 2, I formalize my research
questions and hypotheses below:
• Question 1: Can we achieve better query result completeness and lower global query

execution time in the context of LTQP by making multiple SPARQL query engines col‐

http://localhost:3000/#ref-19
http://localhost:3000/#ref-19
http://localhost:3000/#ref-20
http://localhost:3000/#ref-20
http://localhost:3000/#ref-21
http://localhost:3000/#ref-21
http://localhost:3000/#ref-22
http://localhost:3000/#ref-22
http://localhost:3000/#literature_review_P2P_caching
http://localhost:3000/#literature_review_P2P_caching
http://localhost:3000/#ref-23
http://localhost:3000/#ref-23
http://localhost:3000/#litterature_review
http://localhost:3000/#litterature_review


laborate?

• Question 2: Does the CPU usages and the number of HTTP request for each engine di‐
minish with the increase of engine collaborating?

• Question 3: How can we prevent multiple query engines from repeating identical cal‐
culations over the same data sources?

• Question 4: How can we reduce query execution time using P2P caching in the context
of CLTQP?

• Hypothesis 1: Given a large enough search space, in which it is possible to split it be‐
tween the engines, there is an inverse correlation between the number of engines col‐
laborating and the execution time, and a direct correlation with the number of data
sources explored.

• Hypothesis 2: It is possible to partition the search space in the context of CLTQP, in a
way that the query processing time of overlapping data sources is less than the time to
process distinct data sources.

• Hypothesis 3: It is possible to index a P2P cache and create a procedure for its usage in
the context of CLTQP so that its lookup time is faster than the execution of the query.

Question 1 and 2, on the one hand, is the main question of my work, which aims at de‐
termining if CLTQP is a useful query paradigm. Questions 3 and 4, on the other hand, are
asked to determine the efficiency of the specific method that will be employed to solve
the two main problems. Those questions can be extended to consider the number of
query engines and the types of scenarios (query, data sources, privacy policy, and so on)
encountered. The hypotheses are the intuitive expected results and set a ground base for
the development of my approaches.

4.  Methodology

As discussed in the proposal, my work can be divided into two sub-problems; the divi‐
sion of the search space and caching. This implies two sets of potential solutions detailed
below.

4.1. Search Domain Division Among Peers

My first aim is to increase the query completeness; For that purpose I will try to divide
the search space among peers in a P2P network. It has to be considered first that the
topology of the domain is not known, so we cannot divide the search space a priori.
Below I present three strategies to divide the domain and process the query.
1. Collect the seed URLs and divide them between the query engines: The advantage

of this strategy is the communication between the engines is minimal, at the start or at
a moment when we have a large number of URLs we let the engines execute the query
on their own and at the stopping condition, the engines share their results. The limita‐
tion of this strategy is that we don’t consider if the data sources discoverable inside the
seed URLs overlaps. Another important limitation is the loss of accuracy if part of the
solution is present inside the documents processed by different engines. In that case, to
find those results and retain the accuracy, the solution map would need to be joined.

http://localhost:3000/#proposal
http://localhost:3000/#proposal


By detecting those cases and using adaptative query planning [21, 24], it would be pos‐
sible to change strategy to avoid the loss of accuracy.

2. Set the reachability criteria of each engine so that they cannot or are less likely to

have overlapping search field: The advantage of this strategy is, also, the low commu‐
nication between the engines. However, unlike the previous one, there is a mechanism
to avoid redundant calculations. The query engines have a lookup policy that restricts
links visited by others. For example, the engines might be responsible for a specific se‐
mantic section of the domain, e.g.,  cities in geospatial query. The limitations of this
strategy are that the criteria might have to be changed depending on the executed
query and the type of dataset from which we expect to find results ,and the loss of ac‐
curacy explained in the first strategy.

3. Use a global link queue and solution map shared between all the query engines:
The advantage of this strategy is that it’s a simple way to avoid redundant calculations
as all engines have the same link queue. Also with the shared solution map the engines
would avoid the problem of loss accuracy mention in the first strategy. Another possi‐
bility would be to let one peer do the join operation while the other peers handle the
traversal and the execution of the query as inspired by the “slave-master” paradigm of
the article [19]. The problem with this strategy is the necessary communication and
the potential locking mechanism to avoid inconsistencies.

I  am  planning  to  build  a  prototype  using  the  SPARQL  meta  query  engine
Comunica [25], because it already has LTQP algorithms implemented and it is a highly
extensible software which will facilitate the implementation of those algorithms. I will
evaluate it against the Solid social media benchmark; SolidBench [21] and compare the
results with other LTQP approaches.  I  will  evaluate those methods while varying the
number of engines collaborating by increasing the number until the performance stag‐
nates or diminishes. I propose to measure the following metrics:
• Result accuracy: The F-score; a fraction indicating the correctness and completeness

of results

• Query execution time: The total time it takes to complete a query

• The ratio of the execution time and the communication time between the engines

• Ability to access isolated documents:  Measured by analyzing the number of links
leading to query-relevant data sources and evaluating their actual contribution

• Overlapping of the search space: The number of times a triple and data source has
been queried

• Query result arrival times: The time it takes for each triple from the beginning of the
query to be obtained [26]

4.2. Collaborative Caching

My second aim is to reduce the query execution time by using already computed re‐
sults from a shared cache. The information cached could be the data source URLs con‐

tributing to a query and the intermediary joint results with the associated solution map,
given some triple patterns to avoid their  calculations.  The cache could also be inter‐
preted as a checkpoint for a longer execution or as a map of the data sources to explore. I

http://localhost:3000/#ref-21
http://localhost:3000/#ref-21
http://localhost:3000/#ref-24
http://localhost:3000/#ref-24
http://localhost:3000/#ref-19
http://localhost:3000/#ref-19
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/
http://localhost:3000/#ref-25
http://localhost:3000/#ref-25
https://github.com/SolidBench/SolidBench.js
https://github.com/SolidBench/SolidBench.js
http://localhost:3000/#ref-21
http://localhost:3000/#ref-21
http://localhost:3000/#ref-26
http://localhost:3000/#ref-26


[1]

[2]

[3]

[4]

[5]

propose to investigate those two strategies:
1. Unstructured network where peers are clustered based on their behavior: The ad‐

vantage of this strategy is that the lookup time to find information in the cache is con‐
stant and the peers have a high probability of possessing the knowledge desired. The
clustering can be based on the engines that have engaged in a query collaboration with
the subject engine. The disadvantage of that method is that it relies on a type of self-
organization of the network of engines, and it does not consider that engines that have
not collaborated might still have results in common.

2. Distributed Hash Table to find the cached element: The advantage of this approach
is that we can get every cached element of the engines implementing the protocol. The
disadvantage  is  that  the  lookup  time  is  logarithmic  with  the  number  of  elements
cached, also the private information of the users will be dispersed in the DHT, with no
regard to the will of the user [10], but there are strategies with the combination of a
gossip protocol to keep privacy [23]. Also, an alternative would be to not share private
information.

Building on the evaluation method of the first set of solutions, those metrics are added:
• Cache access time: The time it takes to retrieve information from the cache

• Cache miss and cache hit rates: The ratio of time the query engine get the informa‐
tion requested from the cache

• Execution time reduction: The ratio between the execution time of a query with and
without the cache

5.  Conclusion

In this article, I presented a proposal for my PhD research and the state of the art asso‐
ciated with it. My project aims at reducing the query execution time and increasing the
query completeness when exploring the web of linked data. The solution proposed en‐
ables query engines to collaborate in the exploration of data sources and to share of re‐
sults through a P2P cache. The potential of this proposal is to democratize the creation
and usage of large-scale Web applications.

Supervisor: Pieter Colpaert, Ruben Taelman
Funding: Supported by SolidLab Vlaanderen (Flemish Government VV023/10) and the

Research Foundation Flanders (FWO) under grant number S006323N

References

Verstraete,  M.,  Verbrugge,  S.,  Colle,  D.:  Solid:  Enabler of  decentralized,  digital
platforms ecosystems. In: ITS (2022).
Terranova,  T.:  Free  Labor:  Producing  Culture  for  the  Digital  Economy.  Social
Text. (2000).
Curran,  J.:  The  internet  of  dreams  Reinterpreting  the  internet.  In:
Misunderstanding the Internet (2016).
Sevignani,  S.:  The  commodification  of  privacy  on  the  Internet.  Science  and
Public Policy. (2013).
Mechant, P., De Wolf, R., Van Compernolle, M., Joris, G., Evens, T., De Marez, L.:

http://localhost:3000/#ref-10
http://localhost:3000/#ref-10
http://localhost:3000/#ref-23
http://localhost:3000/#ref-23
https://pietercolpaert.be/
https://pietercolpaert.be/
https://www.rubensworks.net/
https://www.rubensworks.net/


[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Saving the web by decentralizing data networks? A socio-technical reflection on the
promise  of  decentralization  and  personal  data  stores.  In:  2021  14th  CMI
International Conference (2021).

Smets, A., Michiels, L., Bogers, T., Björneborn, L.: Serendipity in Recommender
Systems Beyond the Algorithm: a Feature Repository and Experimental Design.
In: IntRS@RecSys (2022).
Hartig,  O.,  Özsu,  M.T.:  Walking  Without  a  Map:  Ranking-Based  Traversal  for
Querying Linked Data. In: ISWC
Hartig, O.: Linked Data Query Processing Based on Link Traversal. In: Linked
Data Management
Hartig, O., Freytag, J.-C.: Foundations of Traversal Based Query Execution over
Linked Data. In: Conference on Hypertext and Social Media
Grall,  A.,  Skaf-Molli,  H.,  Molli,  P.,  Perrin,  M.:  Collaborative  SPARQL  Query
Processing for Decentralized Semantic Data. In: Database and Expert Systems
Applications. , Cham (2020).
Grall, A., Skaf-Molli, H., Molli, P.: SPARQL Query Execution in Networks of Web
Browsers. In: ISWC (2018).
Aebeloe,  C.,  Montoya,  G.,  Hose,  K.:  ColChain:  Collaborative  Linked  Data
Networks. In: Proceedings of the Web Conference 2021 (2021).
Shen,  H.,  Lin,  Y.,  Chandler,  H.:  An  Interest-Based  Per-Community  P2P
Hierarchical Structure for Short Video Sharing in the YouTube Social Network.
IEEE. (2014).
Jin,  H.,  Yu,  Y.:  SemreX:  a  Semantic  Peer-to-Peer  Scientific  References  Sharing
System. In: AICT-ICIW’06 (2006).
Iyer, S., Rowstron, A.I.T., Druschel, P.: Squirrel: a decentralized peer-to-peer web
cache. In: ACM SIGACT-SIGOPS (2002).
Dick, M.E., Pacitti, E., Kemme, B.: Flower-CDN: a hybrid P2P overlay for efficient
query processing in CDN. In: International Conference on Extending Database
Technology (2009).
Frey,  D.,  Goessens,  M.,  Kermarrec,  A.-M.:  Behave:  Behavioral  Cache  for  Web
Content. In: IFIP (2014).
Folz,  P.,  Skaf-Molli,  H.,  Molli,  P.:  CyCLaDEs:  A  Decentralized  Cache  for  Triple
Pattern Fragments. In: The Semantic Web (2016).
Feng, J.,  Meng, C.,  Song, J.,  Zhang, X., Feng, Z.,  Zou, L.: SPARQL Query Parallel
Processing: A Survey. In: IEEE International Congress on Big Data (2017).
Taelman,  R.,  Steyskal,  S.,  Kirrane,  S.:  Towards  Querying  in  Decentralized
Environments with Privacy-Preserving Aggregation. ArXiv. (2020).
Taelman, R., Verborgh, R.: Evaluation of Link Traversal Query Execution over
Decentralized Environments with Structural Assumptions
Hartig,  O.:  How  Caching  Improves  Efficiency  and  Result  Completeness  for
Querying Linked Data. In: LDOW (2011).
Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N., Kapadia, A.: Cachet: A Decentralized
Architecture  for  Privacy  Preserving  Social  Networking  with  Caching.  In:
Emerging Networking Experiments and Technologies (2012).
Acosta,  M.,  Vidal,  M.-E.,  Lampo,  T.,  Castillo,  J.,  Ruckhaus,  E.:  ANAPSID:  An
Adaptive  Query  Processing  Engine  for  SPARQL  Endpoints.  In:  ISWC  2011.
Springer Berlin Heidelberg (2011).
Taelman,  R.,  Van Herwegen,  J.,  Vander  Sande,  M.,  Verborgh,  R.:  Comunica:  a
Modular SPARQL Query Engine for the Web.  In:  International  Semantic  Web
Conference (2018).
Acosta,  M.,  Vidal,  M.-E.,  Sure-Vetter,  Y.:  Diefficiency  Metrics:  Measuring  the
Continuous Efficiency of Query Processing Approaches. In: ISWC 2017 (2017).


