Humboldt: Exploring Linked Data

Georgi Kobilarov
Hewlett-Packard Labs
. Bristol, UK
georgi.kobilarov@gmx.de

ABSTRACT

We present Humboldt, a novel user interface for browsing
RDF data. Current user interfaces for browsing RDF data
are reviewed. We argue that browsing tasks require both
a facet browser’s ability to select and process groups of re-
sources at a time and a 'resource at a time’ browser’s ability
to navigate anywhere in a dataset. We describe Humboldt
which combines these two features in a single coherent in-
terface. Our approach is based on the operation of pivoting,
which enables the user to move the focus of a browsing from
one set of resources to a set of related resources. With re-
peated use of the pivot operation the user can browse any-
where in the data. We describe a preliminary evaluation of
our approach and discuss its implications for further devel-
opment.

Categories and Subject Descriptors

H5.2 [Information Interfaces and Presentation]: User
Interfaces; H5.4 [Information Interfaces and Presenta-
tion]: Hypertext/Hypermedia

General Terms
Design, Human Factors

Keywords
user interface, semantic web, faceted browsing, rdf, linked
data

1. INTRODUCTION

As more and more large Linked Data sources such as DBpe-
dia [5] have become available over the last year, the need for
improved user interaction approaches for dealing with these
highly interlinked RDF [21] datasets has become more ob-
vious. The quantity of data has reached a level where users
are overwhelmed and feel lost in a similar way as in earlier
days of the web. That phenomenon was described as ’Lost
in Hyperspace’ [14].

lan Dickinson
Hewlett-Packard Labs
. . Bristol, UK
ian.dickinson@hp.com

Current research in the semantic web user interface area, es-
pecially in semantic web powered search engines, has tended
to focus on information retrieval tasks. We characterize
these tasks as those in which a user has a very specific ques-
tion or query in mind which he tries to answer or solve. Com-
panies like Powerset [4] focus on providing mechanisms to
answer tasks such as e.g. 'what is the population of Berlin?’,
'which books are written by author X7’, etc. using semantic
technologies.

In this paper, we focus on ezploratory tasks and character-
ize them as follows: in exploratory tasks, a user has a more
vague idea of the question he wants to answer. His interests
depend upon the changing characteristics of the information
context [7] [8].

We give two business related examples for this kind of tasks:

e A product manager plans a product update. He wants
to get an overview of the new features of competi-
tors’ products. User reports of his product have been
tracked by his companies support department. His de-
velopment team came up with new ideas for innova-
tive product features. The production department has
published technical data on new methods of cost re-
duction factoring. The product manager needs to de-
cide which changes will be made with the next product
release.

e A financial analyst notices an irregularity in a dataset.
He seeks for an explanation. The company works in a
broad market and it might be a competitor’s news as
well as a companies news. The company is active in
foreign markets and depends on certain suppliers. Po-
litical news as well as changes in the suppliers market
might also have influenced the financial data.

Both examples highlight the difficulty of having a computer
system ’solve’ these problems by providing a single answer.
These tasks require gathering together structured and un-
structured data sources. In this paper, we focus on ex-
ploratory tasks using only structured data.

In the current document-centric web, a key mechanism of
web browsers to support information exploration is the brows-
ing history. Users can follow different links to other docu-

ments and, depending on the document’s relevance, decide
to further explore or go back and follow a different path.
The possibility of returning to a previous decision and fol-
lowing a different path makes decisions less risky.

Browsing histories and bookmarking functionality help users
to store discovered information in the system instead of hav-
ing to memorize it for later reuse.

The Semantic Web with its access to more structured infor-
mation makes data aggregation techniques more important
in exploratory tasks. Structured data can more easily be
aggregated, supporting better overview of large amounts of
data.

In information retrieval tasks on web documents, a goal is
to find a specific document or - in terms of graph-theory -
finding a particular node in the graph of linked documents.
While the path to that node or the edges connecting it are
important for localizing the node, the node’s meaning is
mostly independent of which path was used to retrieve it.

That is different in Semantic Web tasks. The path used to
locate a node or the relationship between nodes is more im-
portant. The meaning of just retrieving the node of a person
named ’lan’ is different than retrieving it as a link from a
person named 'Georgi’ by following a foaf :knows link. The
later represents ’lan as a friend of Georgi’. With this exam-
ple we want to highlight how and why exploratory tasks are
different and why the user’s exploration process and path is
more meaningful that in the web of documents.

A user will want a semantic web interface to follow a sim-
ilar flexible approach as browsing backwards and forwards
in exploratory tasks. An interface supporting that approach
would support user behaviour and exploration strategies, in
which the user has a perceived low risk of making early de-
cisions because he can go back and modify them later.

We outline a simple example for casual end-users: a user
might want to explore a dataset of films in order to find an
interesting one for a movie night. He does not know upfront
which films are available and has no specific preference of
the genre. Over the past, he has seen many movies and do
have some preferences for particular directors and actors,
but is willing to explore new ones.

The essence of this task is viewing the actual available data,
which will influence his exploration strategy and might change
his interests as described above.

2. OVERVIEW OF EXISTING
APPROACHES

In this section, we review three different kinds of seman-
tic web user interfaces according to their ability to support
users in information exploration tasks. We identify the key
principles of each approach, and will then further discuss
how the advantages can be combined into one user interface
design. We are interested in generic user interfaces rather

than interfaces tailored to a specific domain. While there
are certain visual representations for particular data types,
e.g. calendars and timelines for time-related data and maps
for geographical data, there are no such representations for
most other types of complex resources, e.g. people, films,
companies etc. Hence we treat those specific representations
as additional features to a more generic user interaction ap-
proach and do not include them in our analysis.

With growing availability of Linked Data [9] on the Web,
we argue that there is a need for generic approaches which
do not restrict users to specific tasks or to specific data that
could be used, as both might not be known a priori.

2.1 Browsing

There are various different semantic web browsers for Linked
Data available, which use a similar interface design to Tim
Berners-Lee’s Tabulator [10]. A browser interface is typi-
cally designed to display one RDF' resource at a time, and
enables the user to browse from resource to resource. Tab-
ulator’s original design uses a tree to show the relationship
between resources. Other Linked Data browsers including
Disco [11] or the Zitgist DataViewer [15] use a design of
one resource per page. The tree-view as well as the one-
resource-per-page design enables the user to browse detailed
descriptions of single RDF resources, while the tree-view ad-
ditionally preserves the browsing path.

This design reflects a common user interaction on the web
of documents. There, the smallest piece of information is a
web page, and a web browser enables users to navigate from
one page to another. This browsing approach has been ap-
plied to semantic web linked data, where the smallest piece
of information is a RDF resource. We argue that this kind
of interaction does not facilitate the key benefits of Seman-
tic Web data. Much of the currently available Linked Data
is either scraped from web pages, such as DBpedia, or also
available as human readable webpage as well like Geonames
[1] or Musicbrainz [3]. We do not see much benefit to users
from viewing RDF data rendered by a Linked Data browser
when a HTML representation of the same information is
available, which is specifically tailored to fit the need of
human readers. Linked data browser will need to provide
higher benefit by giving more control to the user than web
pages could do.

However, this might change as more and more RDF data
becomes available from databases, where no corresponding
web pages are available. Semantic Web technologies could
serve as methods to create web documents, but the key in
browsing and analysing this data lies in our opinion in aggre-
gation of data, like the currently available Web2.0 mashups.

Single resource at a time RDF browsers enable users to ex-
plore large RDF datasets, but their design does not support
the user in aggregation tasks. The browser design might
enable aggregation tasks when a kind of basket is available
to temporally store discovered resources, such as Piggybank
[18]. Piggybank focuses on collecting resources, while we

try to find ways of exploring these collections. Also, in their
current design, single resource at a time browsers give no
suggestions of which links to follow because of their lack of
support in creating an overview for the user.

For example, given a user’s FOAF [13] profile, browsers do
not give hints for the user which links to friends might be
interesting, when users naturally want to deal with collec-
tions of resources. A user strategy (see section 1) for ex-
ploring such a list of friends with a Linked Data browser is
to browse to each friend, memorize details that might be of
interest and repeat that procedure for other friends. This
strategy is very time consuming and impractical for larger
lists of friends. Here, faceted browsing or faceted filtering of
the friendlist might serve as a helpful overview method.

2.2 Faceted Filtering

The method of faceted filtering [26] or clustering helps the
user to get an overview of a given set of resources. The basic
concept of facets is to partition the information space using
orthogonal conceptual dimensions of the data. A widely
used customer application with a faceted filtering approach
is iTunes, Apple’s music library and media player [20].
iTunes’ music library can be filtered according to different
dimensions of the music files’ metadata. Users can filter the
library on certain artists, albums or genres by selecting val-
ues from facets.

Exhibit [19] is a popular interface which provides a faceted
filtering view on graph based data. Exhibit’s user interface
presents different facets for a given set of resources. The key
user interaction is faceted filtering, i.e. a list of resources can
be filtered by selecting values within facets. E.g. films might
be filtered by selecting "Steven Spielberg’ in a ’Director’ facet
of a list of films. This action will filter down the list of films
to those, whose director is Steven Spielberg. Exhibit uses a
declarative language to create a faceted view on a list of re-
sources. Other faceted browser like Longwell [2] or MSpace
[23] calculate facets automatically.

Faceted Filtering supports exploration tasks as it enables
the user to quickly get an overview of what data is present.
Compared to the previously described design of one resource
at a time, faceted browsers use a multi resource at a time
design. Even larger sets of resources can easily be clustered
or filtered by certain dimensions in order to quickly see what
data is available. For example, a large list of people might
be clustered by their birthplace or by the organization they
work for. The user can then filter the set of people down to
a smaller set according to these facets.

Current implementations work with a fixed list of resources
on which faceted filtering is performed. With growing data-
sets, the number of potential facet values also grows. A set
of thousands of films might have a facet with hundreds of
different actors. Hierarchical facets are one solution to fur-
ther cluster facet values.

2.3 Query Builder

Graph based query builders try to give the user the most ex-
pressivity in querying an RDF graph. An common approach
is to provide a triple based user interface which helps to build
triple pattern to express queries. One example of such an
interface is the DBpedia Query Builder [6]. It supports the
user in building up triple pattern by using auto-completion
for triple predicates. For example if the users starts with
the triple pattern ?film rdf:type film , auto-completion
for next triple pattern will only show predicates which are
used with actual instances in the repository of type film,
ordered by their usage number. This supports the user in
exploration tasks as he sees which relationships exist be-
tween instances. But a user has to have an explicit question
in mind which he wants to formulate into a query. While
the interface helps to analyse the relationships, it does not
show actual data while constructing a query. In addition,
users do not always have explicit queries upfront, but need
to explore the available data first in order to find out what
information might be interesting to them.

Using actually available data for query construction is a con-
cept known in database environments as Query by Example
(QbE) [27]. Users can create queries by entering example
data and conditions, and the system then translates these
examples into a more formal query according to the actual
data schema. The Microsoft Access query builder uses an
interface which refers to the QbE concept in order to enable
casual users to construct database queries.

3. OVERVIEW OF OUR APPROACH

We present an interface design in which we combined the
three previously discussed interaction approaches: Brows-
ing, Faceted Filtering and Query Building. We integrated
the following three characteristics in our exploratory inter-
face: multi-resource at a time, browsing and implicit query
building. We argue that the multi-resource interface design
is most helpful for exploration tasks as it supports overview
techniques and data aggregation as shown in faceted browsers.
Therefore we also integrate a faceted filtering mechanism
similar to Exhibit. Our interface approach does not relate
specificly to RDF. It is applicable to any graph-based data
structure. For our experiments and demonstration we use
a highly interlinked dataset extracted from DBpedia (see
figure 1). This dataset contains data related to the movie
domain and consists of films, directors, actors, cities, and
companies. We modified the dataset in order to provide a
rich linking structure with n:n relations between instances,
as well as circular relationships. Films have many actors,
actors play in different films of different directors. Directors
get awards for films and work for companies which produce
films.

4. INTERFACE DESIGN

We now describe the main elements of our interface (see
figure 2). The interface is presented as a fixed workspace of
three different elements: result list, facet list and history.

4.1 Result List

The core of our interface is the result list. The result list
presents a collection of RDF resources as unstructured list

prefix : <http://dbpedia.org/resource/>
prefix p: <http://dbpedia.org/property/>

:Catch_Me_if_You_Can p:has_director :Steven_Spielberg .

:Catch_Me_if_You_Can p:starring :Tom_Hanks .

:Catch_Me_if_You_Can p:starring :Leonardo_DiCaprio .

:The_Departed p:has_director :Martin_Scorsese .
:The_Departed p:starring :Jack_Nicholson .
:The_Departed p:starring :Leonardo_DiCaprio .

:Martin_Scorsese p:birthPlace :Queens .
:Steven_Spielberg p:birthPlace :Cincinnati .
:Leonardo_DiCaprio p:birthPlace :Los_Angeles

:The_Departed p:distributor :DreamWorks

:DreamWorks p:keyPeople :Steven_Spielberg .

Figure 1: dataset sample

of items without exposing their relations. The result list is
used in two ways: for displaying an external RDF document
and for displaying query results from within the browser.
When an external document is loaded, all resources in this
document get rendered into a plain list independently of
their relationship. A tag cloud on top of the list can be used
to filter the resources by their rdf:type. This can be used
to render the output of other applications, e.g. semantic
search interfaces. These applications can provide the URI
of a RDF document which contains a list of resources to be
displayed and browsed with Humboldt.

4.2 Facets

The main point of interaction in our interface design is a
list of facets, presented on the right hand side of the re-
sult list. Facets are computed from all resources that are
related to resources in the result list and grouped by their
rdf :type. This method differs from other faceted browsers,
where facets are usually constructed from a predicate that
connects two resources. By using rdf :type instead we want
to test the hypothesis that introducing an additional level of
abstraction reduces the number of facets. This new level of
abstraction should help the user to get an overview over the
available data more quickly. During this exploration phase,
the user does not need to see all details of existing relations.

For example, a list of people (results) in a movie related
dataset can be connected to a list films (facets) with many
different predicates like directed, stars in, has produced,
has written, has edited, and was awarded for. If the
dataset also contains cities that are related to the people,
facets like born in, lives in, died in, etc would appear.
By grouping by type, the only facets are film and city. The
user can get an overview of the available data and later drill
down by splitting one facet into several ones based on par-
ticular predicates or sub-classes. He thereby restricts the
relationships between results and values in a certain facet.

) Humboldt - Exploring Linked Data - Mozilla Firefox [;J@@

Ble Edt Wew Hgtory delidous Bookmarks Toos Help

@ O @ B G [rosmmotorctagtronsss -[») [8-

Humboldt - Exploring Linked Data

hitp://humboldit-project org/data/demoffilms.nt Query Path:
MotionPictureFilm >

MotionPictureFilm

related to

Director x
< Nl scelerisque suc [Martin Scorsese

[steven Spielberg

Osteven Soderbergh

il s e ORichard Marquand

pivot to see related
City MotionPictureFilm Company

Actor X

ClAlec Baldwin
[JCate Blanchett

[Leonardo DiCaprio
Dluyack Nicholson
[OIMark Wahlberg

eu nulla scelerisque auc [IMartin Sheen
[OIMatt Damon

D christopher Walken
[ITom Hanks

[Cameron Diaz
eu s seslerisaue suc and 21 more

pivot to see related
MotienPictureFiim City

Musician X

CHoward Shore

CJohn Williams (composer)

pivot to see related
MotionPictureFilm

Jovasarpt:_doostbadk(UckacelList 1R epeater 1sCH00SF acet1SbmPIaY,) B rosterox

Figure 2: Humboldt Browser

A list of films could be related to a facet of people. Users
want to be able to restrict these relations to certain prop-
erties, e.g. to people who directed or produced a film and
exclude people who acted in a film. This operation could be
understood as a drill down into the result-facet relationship.

As in Exhibit, we designed facets for filtering the result list.
The user can select a value in a facet to filter down the result
list to all resources that are related to the selected resource.
This will cause all other faceted to be recomputed based on
the now filtered list of results.

For example, having a list of films loaded into the result list,
the user can select Steven Spielberg from the Director facet.
This will filter the list of films to those, which are related
to Steven Spielberg by any predicate. The user could later
drill down into the Director facet to select only directed by
and awarded for as relations between these films and Steven
Spielberg.

4.3 Pivot Operation

In order to combine a faceted layout with browsing capabil-
ity, we use the Pivot operation, which is similar to Siderean
Seamark [24]. Based on the operations in data drilling [16],
our approach allows multiple representations of data accord-
ing to different dimensions. In our faceted interface design,
a facet or dimension of the dataset is treated as a first class
object. Pivoting on a facet means to handle the values of
this facet as results and rebuild a faceted view around these
results (see figure 3). In this way, we added a browsing func-
tionality by which the whole dataset can be explored. This
interaction has been called refocusing in a nested faceted
browsing prototype by David Huynh [17].

Films Actors

Directors Films

=

Actors

Companie%

Cities

Figure 3: Pivoting example

Furthermore, we apply selected filters to the whole dataset
and all pivoting steps. When a resource list is filtered by cer-
tain facet values and the user then pivots on another facet,
the interface uses the result of the filtering for building the
next view. This enables the user to build up a query while
browsing actual data and instantly seeing the result of each
incremental step of building up his query. Thereby, we sup-
port the implicit construction of queries.

E.g. a user who filters films on certain directors and then
pivots on actors will see all actors in the result list, who are
related to any film in the previous result list.

4.4 History

In order to support the user in building an implicit query
over a number of connected list (of facets), we suggest track-
ing the user’s path through the graph. We use a separate
History control, which displays the path the user has taken
via pivoting facets from the starting point to the current
page. We chose to display the path as a linear sequence
in the history control, which enables to step back to pre-
viously visited pages. While this represents the implicitly
built query, filters that are applied on a graph node affect
other nodes as well.

When a user pivots from films to actors, filters these ac-
tors by their birthplace, and then steps back to films, the
filtered actors themselves affects the list of films presented.
This enables drilling-down into facets. As described previ-
ously, facets are partitions of data according to different di-
mensions (see section 2.2). Actors are one dimension of film
data, but actors themselves have different other dimension,
e.g. their places of birth. Starting with film, users can drill
into their actors and their places of birth, and afterwards
zoom out to films again using the history control.

S. IMPLEMENTATION

We have implemented a prototype of our interface as server-
side web application in C#. The core of the implementa-
tion is a command queue which tracks all user interactions.
This implementation design follows the Command Pattern
[25]. This programming pattern is often used to implement
undo/redo functionality in graphical user interfaces. We
used this data structure to track user interactions in order
to represent the history internally in a flexible and extend-
able way. Each command queue is associated with one data

source, a per user-session in-memory triple store.

A controller provides methods to compute all result list
items and all facets on a given command queue and data
source at any given time. The command queue thereby rep-
resents the implicit construction of a query via different piv-
oting steps without having to store intermediate result sets.
On every event causing a page refresh, the result list is com-
puted by parsing the whole command queue and executing
SPARQL queries on the data source, which is populated via
HTTP GETs on RDF documents.

In the current prototype we do not have a mechanism in
place to dynamically fetch further RDF data by deferencing
URIs. This could be archived by using an approach similar
to the Semantic Web Client Library [12]. Such a mechanism
will be included in a future version of the prototype. The
primary objective of the current phase of work was to eval-
uate the effectiveness of the user interaction model.

In our prototype there are four different commands which
can be enqueued: SelectCommand, FilterCommand, Piv-
otCommand, and StepCommand. The SelectCommand in-
cludes or excludes resources from the resultlist or filters the
resultlist by type. The FilterCommand restricts results by
values in a certain facet. The PivotCommand tracks the
user’s pivot operations and the StepCommand tracks steps
in the history.

Through the following chapters, we will use the following
example set of interactions:

filter a list of film by director Steven Spielberg

pivot on facet ’Actors’

pivot on facet ’Films’

e filter on director Martin Scorsese

A prototype of our user interface and an example dataset is
available at http://humboldt-project.org.

PageRenderEngine

JOr

CommandQueue

FacetController

GraphStore

J0 s

RDF Retriever

JL JL

Figure 4: Humboldt’s architecture

6. USER FEEDBACK

In this section we describe a preliminary evaluation our user
interface approach. We used the previously mentioned film-
related dataset extracted from DBpedia for an evaluation
of our interface prototype. A small group of semantic web
researchers were given the task to explore the dataset by
setting different filters and pivoting between facets. They
could filter films by particular directors or actor, pivot on a
list of actors to filter them by birthplace or by other films
they stared in, etc.

We will discuss the issues our evaluation group had with our
prototype. We elected not to use a formal quantitative eval-
uation process, as our interface design is in an early stage
of development and we were interesting in getting qualita-
tive feedback from users while using the interface instead of
quantitatively measuring results.

6.1 Filtering

While using Humboldt, users easily understood the faceted
filtering operation. They were able to predict and under-
stand the result of selecting resources in facets and appreci-
ated the newly introduced level of abstraction of type-based
facets. However, they missed the feature of narrowing a type
based facet to certain predicated describing the relationship
between e.g. a list of films and a list of directors. This fea-
ture (see section 4.2) was not implemented in the prototype
shown during our user study.

As described in section 4.2, we introduced a higher level
of abstraction using facets that are based on the type of
resources that are directly related to current resources in
the result list.

6.2 Pivot

When using the pivoting operation for the first time, our
users expressed some confusion. The pivoting operation
causes every control on the screen to update. The result list
is populated with new items and new facets appear. Even if
the user was familiar with the concept of pivoting, they still
showed that reaction. We showed a different prototype to
each user, in which we used an animation in order to make
the pivoting operation easier to understand. In this anima-
tion, when clicking on ’pivot’ the items in the resultlist and
all facets except the pivoted one slowly disappear, the piv-
oted facet then ’flies’ into the result list and finally the new
facets appear. The users appreciated this animation and
noted that it makes the pivot operation itself much easier to
understand.

We tried to test users’ understanding of multiple pivoting
operations by asking them to express their expectations. We
tested that by using the following sequence of actions:

1. filter films by director Steven Spielberg

2. pivot on actors

3. pivot on films

Every user was able to articulate a correct description of
what every single operation would cause. They correctly
described operation 3 as such, that it will show a list of all
films in which one or more of the currently shown actors
has starred in. However, some users showed surprise when
actually executing operation 3 and viewing the result. Some
users remembered that operation 1 filtered the list of films
to Steven Spielberg related ones, and were thereby surprised
to see more values in the director facet. Other users had
forgotten about operation 1, but showed the same surprise
when they were reminded by us about that filtering opera-
tion. Even with an understanding of the interface operation
and the structure of the dataset, only a few users were able
to correctly predict the outcome of the described sequence
of operations.

We remind readers that the dataset contains a n:n relation
between films and actors, and therefore the result set of the
sequence of all three operations is a superset of the result
set of operation 1 (above).

6.3 History

Our users quickly understood that each pivoting operation
adds a field to the history control shown in the top right cor-
ner of the screen. We asked them to note that the current
representation of the history as a one-dimension sequence is
just a test and that this layout can not represent all pivot
operation. Although we could have chosen to represent the
history as a graph in order to give it the more expressivity,
we decided to just test how users would react to the possi-
bility of navigating previous pivoting steps.

The users’ understanding upfront was mixed. It was not
clear to them whether using the history would take them to
the same resultset as it was at that time, or whether the
later added filtering operation would be incorporated. It
was unclear if the history preserves the state or navigates
one large query.

6.4 Review of user feedback

In this section we discuss our interface design and the results
of our user feedback. We were satisfied overall with the in-
troduction of our pivoting operation. This approach has
shown a way to enable users to more easily explore an inter-
linked RDF dataset at a more aggregated level compared to
single-resource at-a-time browsing. Using animations helped
to understand the pivoting operation and we will incorpo-
rate these animations into our main prototype.

The history and its navigation functionality complemented
the pivoting operation successfully. However we came to the
conclusion that the way the history is currently presented is
not optimal. Our initial concern was that having a linear
history could be a major disadvantage and changing its lay-
out to a graph based design could serve the users needs much
better. We are now considering that having a separate his-
tory control in the user interface might not work at all.

Our users did not only demand a history functionality which

represents the pivoting path, but also presents previously
performed filtering operations. In combination with our con-
cern about the linear layout of the history, we conclude that
the history’s function needs to be better incorporated into
the overall interface design instead of being a separate and
for the user somehow disconnected user control.

Our current interface design is layout as a fixed workspace
(result list facets), where data is put into (supported by
our animations). For the next experiments we will try a
design of a moving workspace on top of a two-dimensional
dataset layout. While previous discussions such as Schraefel
and Karger [22] have highlighted issues of graph visualisa-
tion tools, we argue that using a faceted graph visualisation
layout instead of an instance based layout could produce
better results.

7. EVALUATION

We now discuss how well our user interaction approach serves
the in section 1 described needs of users performing ex-
ploratory tasks on interlinked RDF data. As outlined in
section 1, exploratory tasks are performed with greater user
satisfaction if the following characteristics are present:

e the interface design is consistent with the user’s be-
haviour and expectations

e the user does not need to memorize details of his explo-
ration, because the application supports him by track-
ing his interactions

e the risk of following different paths is low

Our user study showed that with minor tweaks, the overall
behaviour of our interface is predictable for the user. We ar-
gue that some of the issues described in the previous section,
e.g. the issue with n:n relations of films and people, might
be omitted with some user training. These issues arose out
of the richness of our underlying dataset, which will be com-
mon in many RDF datasets and users might get a better
understanding over time.

By implicitly tracking the users interaction and providing
a mechanism to review previous navigation steps, we also
satisfy the second need. Even if users were able to memo-
rize all their previous steps, they appreciate if they are not
expected to do so. We argue that with larger datasets users
were not even able to memorize their actions, and our his-
tory mechanism is thereby helpful as well as necessary.
Most importantly, we successfully lowered the user’s per-
ceived risk of bad decisions by disconnecting the building of
a query path and fine-tuning the filtering operations. We
want to highlight this argument with an example. Given
the previously used sequence of interaction

o filter a list of films by one particular director (Steven
Spielberg)

e pivot to all actors of these films

e pivot to their films

We additionally assume that the user might have set addi-
tional filters on actors and on their films.

If the user now discovers that his first decision of filtering
only on Steven Spielberg films was incorrect, he could easily
go back and change that filter (maybe by adding another
director) while retaining all other operations.

Hence, he can use a strategy of exploring a dataset and
building up a query graph by navigating the dataset first
and afterwards fine-tune the result set by adding, changing
or removing filters. Enabling this interaction strategy in the
user interface for graph-based data is the key contribution
of this paper.

We conclude that this strategy is especially helpful and use-
ful for exploratory tasks and thereby our interface design
successfully addressed our outlined hypothesis.

8. CONCLUSION

In this paper, we presented a new approach for browsing
Linked Data that combines the benefits of being able to ex-
plore throughout a dataset offered by single resource browsers
such as Tabulator with the ability to manage groups of re-
sources offered by faceted browsers such as Exhibit or Long-
well. We have reviewed current most common user inter-
face designs for RDF data and identified their key principles
and benefits in order to developed a user interaction design
based on these principles which is tailored to data explo-
ration strategies.

9. FUTURE WORK

In the future we would like to try optimizing the workspace
layout in order integrate the history functionality in a more
consistent way. We want to evaluate that layout in a more
quantitatively measured usability study. We will also add
the previously described facet splitting functionality and in-
tegrate the Semantic Web Client Library for dereferencing
URIs at runtime.

10. REFERENCES

[1] Geonames. http://www.geonames.org/.

[2] Longwell. http://simile.mit.edu/wiki/Longwell.

[3] Musicbrainz. http://musicbrainz.org/.

[4] Powerset. http://www.powerset.com.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data.

[6] S. Auer and J. Lehmann. What have innsbruck and
leipzig in common? extracting semantics from wiki
content. In ESWC, pages 503-517, 2007.

[7] M. Q. W. Baldonado and T. Winograd. Sensemaker:
an information-exploration interface supporting the
contextual evolution of a user’s interests. In CHI ’97:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 11-18, New York,
NY, USA, 1997. ACM.

[8] M. J. Bates. The design of browsing and berrypicking
techniques for the online search interface. Online
Review, v13 nd p407, 1989.

[9] T. Berners-Lee. Linked data, 2006.
http://www.w3.org/DesignlIssues/LinkedData.html.

[10] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,

R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic web. In Proceedings of the 3rd International
Semantic Web User Interaction Workshop, 2006.,
2006.

[11] C. Bizer and T. Gauss. Disco - hyperdata browser,
2007.
http://www4.wiwiss.fu-berlin.de /bizer /ng4j/disco/.

[12] C. Bizer, T. Gauss, and R. Cyganiak. Semantic web
client library. http://www4.wiwiss.fu-
berlin.de/bizer /ng4j/semwebclient /.

[13] D. Brickley and L. Miller. Foaf: the Sfriend of a
friendS vocabulary, 2004. http://xmlns.com/foaf/0.1/.

[14] D. M. Edwards and L. Hardman. Lost in hyperspace:
cognitive mapping and navigation in a hypertext
environment. In Hypertext: theory into practice, pages
90-105, Exeter, UK, UK, 1999. Intellect Books.

[15] F. Giasson. Zitgist dataviewer.
http://dataviewer.zitgist.com/.

[16] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. I[EEE
12th International Conference on Data Engineering,
pages 152-159, 1996.

[17] D. Huynh. Nested faceted browsing.
http://people.csail.mit.edu/dfhuynh/projects/nfb/.

[18] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank:
Experience the semantic web inside your web browser.
Web Semant., 5(1):16-27, 2007.

[19] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit:
lightweight structured data publishing. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 737-746, New York, NY,
USA, 2007. ACM.

0] A. Inc. itunes. http://www.apple.com/itunes/.

1] F. Manola and E. Miller. Rdf primer, Februar 2004.

2] m.c. schraefel and D. Karger. The pathetic fallacy of
rdf. In International Workshop on the Semantic Web
and User Interaction (SWUI) 2006,
["lib/utils:month_12911" not defined] 2006.

[23] m.c. schraefel, M. Wilson, A. Russell, and D. A.
Smith. mspace: improving information access to
multimedia domains with multimodal exploratory
search. Commun. ACM, 49(4):47-49, 2006.

[24] Siderean. Seamark navigator, 2007.
http://www.siderean.com.

[25] Wikipedia. Command pattern.
http://en.wikipedia.org/wiki/Command_Pattern.

[26] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted metadata for image search and browsing. In
CHI ’03: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 401-408,
New York, NY, USA, 2003. ACM.

[27] M. M. Zloof. Query-by-example: a data base
language. IBM Systems Journal, 1977.

