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ABSTRACT
In P2P overlay networks, the continual arrival and depar-
ture of nodes leads to the necessity of running periodically
a specific reconfiguration algorithm able to renew the over-
lay. This paper presents a new reconfiguration mechanism
for overlay networks. The algorithm exploits a character-
istic observed in many overlay networks: the presence of a
core composed by reliable nodes (nodes that never leave the
overlay). Even if members of the core are a-priori unknown,
the algorithm is able to eventually select one of them that
will carry out the periodic renewing of the overlay. Once the
reconfiguration is performed by a core node, the overlay will
never lose its reliability, letting any query, issued from this
time on, be ever satisfied.

1. INTRODUCTION
Recently, Peer-to-Peer (P2P) systems attract attention. In
P2P systems, each user shares and exchanges information as
equals by playing the role of both the server and the client.
Because nodes that are participating to the system are con-
nected to each others to construct an overlay network, the
p2p paradigm is superior on scalability compared to client-
sever model. However, P2P networks have technical issues
that should be solved. Generally, P2P networks are catego-
rized into two types, structured [6, 7, 8] and unstructured
[1, 2, 3, 9]). Due to the absence of a server node that cen-
trally stores and manages all of the information, a query
has to be routed inside the network to search the a-priori un-
known set of nodes that maintain the matching information.
Therefore, a lot of effort has been paid in order to realize ef-
ficient and reliable information search/retrieval mechanisms
by properly constructing the overlay network with the aim
of improving successiveness of the search, shorten of search
delay, or reducing a total resource consumption. The is-
sue of reliability is particularly challenging in P2P systems
due to the continuous arrival and departure of nodes. This
phenomenon, also called churn, may seriously compromise
overlay functionalities. For instance, overlay may degrade
until disconnection as time passes by, avoiding queries to

correctly search for the matching results.

To face this problem many approaches have been proposed.
In structured overlay networks, a dedicated routine is in
charge of revealing node departures [8]. Upon the detection
of a node departure, this routine starts an overlay reconfig-
uration devoted to renew the overlay network, in order to
come back to the operative state. In unstructured overlay
networks, usually there is no dedicated routine to detect de-
partures [9]. The departure detection happens only when
a node wants to exchange information with an already de-
parted one. Usually, the detection does not lead to renew
the entire overlay, but who detected the departure only re-
moves its pending connection. Note that the approach used
in unstructured overlays can be pursued because a departure
affects only locally the overlay, in contrast with structured
overlays where a departure may affect the whole overlay. Let
us note that if a departure affects the whole overlay, a possi-
ble burst of departures may significantly lengthens the time
for the reconfiguration to take effect. The longer the time
is for reconfiguration, the higher is the number of queries
that can cross a still damaged network with the possibility
to return an empty (or partial) result. This could lead to a
very poor reliability.

The approach proposed in this paper circumvents the draw-
backs of a continual global reconfiguration starting from the
observation that not all nodes in the network have the same
lifetime. It is widely recognized that overlay networks con-
tains, among a huge number of nodes with very short life-
times, a core, i.e. a small number of very reliable nodes
with unlimited lifetime [5]. However, the identities of the
core members are not a priori known.

In this paper we propose a core-based approach to overlay
reconfiguration. The basic idea is to eventually elect a core
node as a special node able to carry out the reconfiguration.
This node, also called supervisor, actually carries the recon-
figuration in a proactive way: the node renews the overlay
periodically, before it degrades to disconnection. This can be
done deterministically, by knowing an upper bound on the
departure-rate of nodes. More in details, the supervisor peri-
odically gathers information about current alive nodes inside
the network, computes for each node a new state (e.g. new
connections to other nodes) and communicates it to these
alive nodes, which update their state before the network is
damaged; in such a way a query crossing the network at any
time will be ever satisfied. Note that, at the beginning, the



algorithm is not able to give to a core node the supervisor
role, as core nodes are unknown to the algorithm. However,
the proposed algorithm is able to converge to the election
of a core node as supervisor after a finite time. Before this
time, queries can be lost, but after this time, queries will
be satisfied forever, contrarily to what happens in the struc-
tured approach.

The paper is organized as follows: Section 2 defines the sys-
tem model and Section 3 presents the reconfiguration algo-
rithm along with its correctness proof.

2. SYSTEM MODEL
We consider an infinite set of processes Π={p1, p2 . . . , pn . . . }.
Each process has a unique identifier for all its life time in the
system. Processes are arranged in a logical network, called
Overlay Network (ON), built on top of the physical one.
The ON can be seen as a graph where each node represents
a process pi ∈ Π and each edge represents a logical commu-
nication channel between two elements pi, pj ∈ Π such that
pi and pj can communicate. Every process is able to commu-
nicate with its direct neighbors in the ON by means of mes-
sages exchange on point-to-point reliable channels. There
exists a known bound δ on the message transmission delay
on the considered channels, hence the system can be con-
sidered as synchronous. We define as correct a process that
never fails. A faulty process fails by crashing and if it recov-
ers from the crash then it is considered as new in the system
(with a new identifier). System is dynamic, i.e., nodes may
join and leave system at any time. More formally, we assume
that:

• when a node leaves the system, it does not perform any
specific task and then a voluntary leave is considered
as a failure. In the following we consider equally faults
and voluntary leaves and we refer them as faults;

• when a node fails, it is removed from the graph to-
gether with all its incident edges;

• a node joins the system through a join event. The over-
lay is actually composed by all and only those nodes
that have joined the system and have not left yet.

• there exists a known upper bound fr on the node fail-
ure rate (i.e. the number of nodes that fail/leave the
system in each time unit);

• there exists a-priori unknown finite set of processes,
called core ∈ Π, that never crash or leave the system
[4, 5].

3. THE RECONFIGURATION ALGORITHM
3.1 Algorithm Overview
The proposed algorithm aims at keeping overlay connectiv-
ity most of the time. Formally the problem is defined as
follows:

Property 1. Eventual Connectivity. Eventually and
permanently, all processes in the ON will be included in a
connected graph GP .

In our algorithm, a node, called supervisor, is elected and it
will be in charge of running the reconfiguration procedure.

In a dynamic system, continuous failures of nodes make con-
nectivity of the ON decreasing. In our approach, the ON
graph is a k-connected graph so that it will be resilient to
at least (k − 1) failures from its definition.

Fixing a desiderata degree of connectivity k and given the
failure rate fr, it is possible to know how long the ON graph
will be connected.

Property 2. Let k be the degree of connectivity and let t
be the time where the ON graph is defined. Let be fr the fail-
ure rate of the system, then the ON graph will be connected
for a time period ∆T = (k − 1)/fr from t.

We call this period graph lifetime LG.

The idea of the protocol is to use the degree of connectivity
and the failure rate to know when the overlay is becoming
disconnected and renew it. This is the task of the supervisor
that recomputes a new k-connected graph Gnew and com-
municates it to all the other nodes in the system before the
graph lifetime LG of the current graph G expires. The idea
of the reconfiguration protocol is the following: during the
lifetime of G, the supervisor starts the reconfiguration pro-
cedure to compute Gnew. The reconfiguration is composed
of three phases: (i) nodes health verification, (ii) graph com-
putation, (iii) graph dissemination. The first phase consists
of a verification of the alive nodes in the system. During
this phase, the supervisor sends a “ping” message to all the
nodes included in the current graph G and to newly joined
nodes, thus waits for their replies. Then the second phase
starts and Gnew is computed including all nodes which have
replied. In the third phase, the supervisor starts the dis-
semination of the Gnew to all the alive nodes included in
the new graph.

If the supervisor does not crash, connectivity is preserved as
the dissemination of the new graph Gnew deterministically
terminates before LG expires.

If the supervisor crashes, a new election will start and a new
supervisor is selected. During the period when the supervi-
sor is changing, connectivity cannot be assured. However,
due to the core assumption, we have that in a finite num-
ber of elections, and then in a finite time, a core node will
become a supervisor and then connectivity will hold forever.

The join to the overlay is also managed by a specific pro-
cedure that allows a new node to become part of the ON
by means of an access point node selected among the ones
already connected in the ON through a graph computed by
some supervisor.

3.2 Algorithm pseudo-code
3.2.1 Data Structures
At the process start-up, all the data structures have to be
initialized. In Figure 1 the pseudo-code of the initialization
phase is shown.



Init
1 supervisor = nil
2 active = false
3 myLevel = 0
4 joined = ∅
5 myKnowledge[] = emptyArray
6 parentsLevel = 0
7 parents = ∅
8 candidates = ∅

Figure 1: Data Structure Initialization

Data structures, maintained by a node pi, collect several
information, as described as follows:

The variable active is initially false and does not change
until pi does not install1 the first graph and remains true
until pi crashes or leaves the system.

The variable myLevel represents a logical “distance” be-
tween pi and the supervisor and is set during the join pro-
cedure depending from the access point used by pi to join
the ON.

The variable myKnowledge contains the information about
processes currently joined to the ON. This information is
actually gathered by the supervisor and it is the only one al-
lowed to communicate using connections to processes stored
in the knowledge variable. This communication happens
when the supervisor has to communicate the new graph to
current participants. This variable also maintains the in-
formation about the distance that processes have from the
current supervisor. To this end the variable myKnowledge
has an array structure defined as follows: at the i-th entry
of the array it is stored the set of nodes having level i.

The variable supervisor contains the identifier of the node
that is currently considered as supervisor for the ON by the
process pi.

The variable joining contains a set of nodes joined from the
installation of the last graph and not yet active, including
those that joined using pi as access point.

The information used to elect a supervisor is stored in the
variables parents and candidates; parents is the set con-
taining all the nodes alive at the level just before pi’s level
and represents the nodes to be monitored in order to detect
a possible crash of the supervisor while candidates is the set
containing the nodes at pi level that are possible candidates
for the election of the new supervisor. Due to the failures,
an entry of the myKnowledge array may become empty and
then there exist some nodes inside the system that have to
update the level of their parents in the myKnowledge struc-
ture. To this aim we store in the variable parentsLevel the
current level not empty where the node can find its parents
in the myKnowledge structure.

3.2.2 Join Procedure

1A graph is installed when a node receives it and starts to
communicate using its links.

We assume to have a bootstrap service that makes possible,
for incoming nodes, to find an access point to the ON. In
Figure 2 is presented the Join protocol.

Join(pi)
1 if (pi == nil)
2 then
3 knowledge[0] = myId
4 supervisor = myId
5 active = true
6 set timerGraph = ((k − 1)/fr)− 4δ
7 else send (“Join′′, myId) to pi

(a)

when (receive (“Join′′, i) from pi) do
1 if (supervisor 6= myId)
2 then joined = joined ∪ {pi}
3 knowledge[myLevel + 1] = knowledge[myLevel + 1] ∪ {pi}
4 send (“Ack′′, myLevel, supervisor, knowledge[]) to pi

(b)

when (receive (“Ack′′, level, s, knowledge[]) from pi) do
1 myLevel = level + 1; parentsLevel = level
2 myKnowledge[] = knowledge[]
3 supervisor = s

(c)

Figure 2: Join Protocol

The joining node pj contacts the bootstrap service that re-
turns an active node pi already member of ON if there exists,
otherwise it returns nil.

If no process is returned by the bootstrap service, pj starts
to build the knowledge inserting itself at the level 0 and
becoming active. At this point pj is the first node part of
ON. Since pj is the only node part of the ON it becomes
automatically the supervisor and then it starts to monitor
the ON. In particular it sets a timer, namely timerGraph,
equal to the graph lifetime LG (minus the time needed to
verify the health of the ON participants and to communicate
the new graph before the current one lose the connectivity)
and then starts the Reconfiguration procedure.

If a process pi is returned, pj contacts pi sending a mes-
sage of join request with attached its identifier. When pi

receives the request of pj , it updates its knowledge (stor-
ing pj identifier at its level plus one) and sends back to pj

an acknowledgment message containing pi’s level, the cur-
rent supervisor and its knowledge. Moreover, if pi is not the
current supervisor, it puts the identifier of pj in the list of
joined nodes in order to let the supervisor aware of pj for
the next graph. When pj receives the ack of pi, it updates
its structure with the information received.

3.2.3 Reconfiguration Procedure
The Reconfiguration procedure is managed by the supervisor
node and it is triggered periodically.

In Figure 3 it is shown the reconfiguration protocol.

This protocol is based on the usage of two timers, timerGraph
and timerMonitor, exploiting the synchrony of the system.
timerGraph measures the graph lifetime while timerMonitor



1 when (timerGraph expired) do
2 for each (p ∈ memberOf(myKnowledge)) do
3 send (“ping′′) to pfor each i do
4 myKnowledge[i] = ∅
5 Set timerMonitor = 2δ

(a)

1 when (receive (“ping′′) from pi) do
2 send (“pong′′, joined, myLevel) to pi

(b)

1 when (receive (“pong′′, joined, level) from pi) do
2 myKnowledge[level + 1] = myKnowledge[level + 1] ∪ joined
3 myKnowledge[level] = myKnowledge[level] ∪ pi

(c)

1 when (timerMonitor expired) do
2 if (|member(myKnowledge[])| > f(k))
3 then G← compute graph(to monitor ∪myId, k)
4 for each p ∈ member(myKnowledge[]) do
5 send (“newGraph′′, G, myKnowledge[]) to p
6 Set timerGraph = ((k − 1)/fr)− 4δ

(d)

1 when (receive (“newGraph′′, G, knowledge[]) from pi) do
2 if (¬active)
3 then active = true
4 parentsLevel = maxi{i < myLevel∧
5 myKnowledge[i] 6= ∅}
6 parents = parents ∪ knowledge[parentsLevel]
7 candidates = candidates ∪ knowledge[myLevel]
8 trigger monitorSupervisor()
9 myKnowledge[] = knowledge[]; supervisor = pi; joined = ∅

10 install(G)

(e)

Figure 3: Graph Reconstruction Procedure

measures the time needed to collect all the information needed
for the detection. When the timerGraph expires, the super-
visor sends a ping message to all the nodes in myKnowledge,
resets its knowledge, sets the timerMonitor and then waits
the replies for the maximum time needed to send and receive
a message (2δ).

When a node pi receives the ping, it replies with a “pong”
message and attaches its level and the set joined of nodes
that it knew have joined in the last graph lifetime.

When the supervisor receives the pong message, it updates
its knowledge and when the timerMonitor expires it com-
putes the new graph containing all the nodes that have
replied to the ping and the nodes that have completed their
join before the reconfiguration starts. The new graph is com-
puted by means of the compute graph() function that has as
parameters the set of nodes to be connected and the degree
of connectivity k and returns the new graph. This function
can build whichever type of k-connected graph because the
graph topology is irrelevant for our algorithm since it uses
this function as black box. Once the new graph is computed,
the supervisor sends it to all the nodes it knows and then
sets again the timerGraph.

When a node pi receives the graph, it updates its data struc-
tures; if pi was not active, it changes its state and from now
on it becomes effectively part of the ON and it starts the
(transitive) monitoring of the supervisor.

3.2.4 Supervisor Election Procedures
The supervisor can crash and then it is necessary to elect
a new one. The monitoring procedure uses the particular
structure of the knowledge and avoids all the nodes to ping
the supervisor delegating this task only to the nodes at the
supervisor level or at the subsequent level. Since every node
can crash this local monitoring is repeated for all the lev-
els of the myKnowledge structure and each node monitors
transitively the supervisor by means of a local monitoring.

In Figure 4 it is shown the monitoring procedure.

The monitor procedure is activated as soon as a node be-
comes active and it is executed periodically. Let us consider
a process pi, it sends a heartbeat message to all the nodes
contained in the parents and candidates lists and waits for
their replies setting a timer, namely timerElection.

When a node receives the heartbeat message, it sends back
a heartbeat reply and, if it did not know the sender of the
message, it adds the sender to the list of candidates.

Receiving the heartbeat reply, every process updates its data
structure according to the level of the sender node.

When the timerElection expires, the election procedure starts
as shown in Figure 5.

The election procedure selects a new supervisor when the
crash of the current one is detected. The crash of the super-
visor is detected by the nodes whose level is the supervisor
one and from nodes at the first level not empty following the
supervisor level; when these nodes do not receive any reply



monitorSupervisor()
1 while (active every 2δ) do
2 for each (p ∈ parents ∪ candidates) do
3 send (“HB Req, myLevel′′) to p
4 parents = ∅
5 candidates = ∅
6 set timerElection = 2δ

(a)

1 when (receive (“HB Req, level′′) from pi) do
2 send (“HB Rep′′, myLevel) to pi

3 if (pi /∈ knowledge[level])
4 then joined = joined ∪ pi

5 knowledge[level] = knowldge[level] ∪ pi

6 if (level == myLevel)
7 then candidates = candidates ∪ pi

(b)

1 when (receive (“HB Rep′′, level) from pi) do
2 if (level < myLevel)
3 then parents = parents ∪ pi

4 else candidates = candidates ∪ pi

(c)

Figure 4: Monitoring Supervisor Procedure

when (timerElection expired)
1 if (|parents == 0|)
2 then supervisor = min(candidates)
3 if (supervisor = myId)
4 then set timerGraph = ε
5 else knowledge[myLevel] = candidates
6 knowledge[parentsLevel] = parents
7 parentsLevel = maxi{i < myLevel∧
8 knowledge[i] 6= ∅}

(a)

Figure 5: Election Procedure

by the “parents” nodes, they know that they are potentially
candidates to become supervisor and then decide with a de-
terministic rule the supervisor. The new supervisor is now
ready to build the new graph and starts the reconfiguration
procedure.

3.3 Correctness and Guarantees of the Algo-
rithm

In this section we show that our algorithm satisfies eventual
connectivity.

Theorem 1. The reconfiguration procedure satisfies Even-
tual Connectivity.

Proof. (Sketch) We first show that the reconfiguration
procedure maintains connectivity when the supervisor does
not crash and then we show that it works even with fault
supervisor.

At the beginning there is only one node pi that becomes
supervisor and activates the reconfiguration thread. pi is
the only node active in the ON and the graph G0 of the
ON is composed only by pi; moreover, both the knowledge
and the election information are composed only by pi. Since
the supervisor is the only active node, the bootstrap service
returns always its identifier to the incoming nodes. When
the reconfiguration procedure starts due to the expiration of
the timerGraph, the supervisor starts to ping all the nodes
who it knows about and waits for 2δ for the replies. We may
have two cases (i) no node has joined the ON in LG0 ; (ii)
some nodes have joined the ON in LG0 . In the first case in 2δ
pi will receive only its own reply, due to the synchrony of the
system, and will compute the graph containing again only
itself. In the second case, the nodes who have joined the ON
and are still alive will receive the ping message in δ time due
to the synchrony and the perfect link, and then will reply
to the supervisor that will receive the pong message after at
most δ time. After 2δ from the ping messages, the supervisor
will know exactly how many and who are the nodes alive to
be connected in the new graph G1. If there is enough nodes
to build the k-connected graph then a graph including all
the nodes is computed otherwise G1 will include only pi.

Let us consider a graph Gi with more than one node; when
the timerGraph expires the supervisor repeats the proce-
dure described above. Since a k-connected graph is able to
tolerate k− 1 failures, the graph lifetime is LG = (k− 1)/fr

and the timerGraph expires after ((k− 1)/fr)− 4δ we have
that the connectivity is maintained when the reconfiguration
starts and it is guaranteed for 4δ more time. To verify which
nodes are still alive between the known ones, the supervisor
uses 2δ times and to spread the new graph the supervisor
uses one more δ time then when the new graph is installed,
the old one is still connected. Moreover the new graph is
k-connected again and then connectivity is preserved.

Consider now the case where the supervisor can fail. Let i be
the level of the supervisor. Due to the monitorSupervisor()
procedure, every 2δ time nodes at level i and i + 1 send a
heartbeat message to the supervisor. Let us suppose that at
some t the supervisor crashes. If there are no other nodes



at level i, when the timerElection expires, nodes at level
i + 1 have the set parents empty and then will execute the
line 2 of Figure 5. Since the rule used to select the super-
visor is deterministic, all the nodes will recognize the same
new supervisor and the new supervisor knows that it is the
new one. Similarly, a new supervisor can be selected deter-
ministically even if other nodes are still at level i; the only
difference is that now the supervisor will be chosen between
the nodes still alive at level i. The new supervisor starts
now the reconfiguration procedure and then the new graph
could be installed.

Due to the core assumption, we have that inside the sys-
tem there exist stable nodes and eventually one of them will
be selected to become supervisor and then it never crashes.
When a stable node is selected, we return to the case de-
scribed above where the supervisor does not crash and then
from that point connectivity is guaranteed forever.

4. CONCLUSIONS
This paper presented a new core-based reconfiguration al-
gorithm able to build an overlay network highly reliable.
In terms of deterministic guarantees, the overlay is able to
let queries crossing the network be ever satisfied from some
point of time on. This limits the possible continual lost of re-
liability current reconfiguration approaches suffer from. In
fact, our approach can lose queries only for a finite time.
This finite-time unreliability comes from the fact that mem-
bers of the core are a-priori unknown to any process join-
ing the network. Nevertheless, all processes will be even-
tually able to select a core member that will carry out all
the reconfigurations. By assuming known an upper-bound
on the node failure-rate, successive reconfigurations done by
the same supervisor will take effect before the overlay de-
grades its functionalities.
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