
SWSCE - An Automatic Semantic Web Service
Composition Engine

S. Bonomi, V. Colaianni, F. Patrizi, D. Pozzi, R. Russo, M. Mecella
SAPIENZA – Università di Roma, Dipartimento di Informatica e Sistemistica

Via Ariosto 25, 00185 Roma, ITALY
{bonomi,colaianni,patrizi,pozzi,russo,mecella}@dis.uniroma1.it

ABSTRACT
In several scenarios, Semantic Web technologies are gaining
momentum as the most promising ones to address the issue
of integrating services among different entities, possibly be-
longing to different location. In particular, Semantic Web
Service composition can be used when no individual avail-
able service can satisfy a specific client request, but (parts
of) available services can be composed and orchestrated in
order to do it. In this paper we describe SWSCE, a Seman-
tic Web Service Composition Engine, able to automatically
performs the composition of Semantic Web Services.

1. INTRODUCTION
The promise of Web services is to enable the composition

of new distributed applications/solutions: when no available
service can satisfy a client request, (parts of) available ser-
vices can be composed and orchestrated in order to do it.
Service composition involves two different issues: the syn-
thesis, in order to synthesize, either manually or automat-
ically, a specification of how coordinating the component
services to fulfill client requests, and the orchestration, i.e.,
how executing the previous obtained specification by suit-
ably supervising and monitoring both the control flow and
the data flow among the involved services.

Typically, a client continuously interacts with the Web
service by asking for something (i.e., the execution of some
action returning information to the client), waiting for the
reply from the Web service and then asking again until the
client reaches its satisfaction. After each step, the client can
choose the next operation to invoke among the ones that
the service allows at that point of the interaction. All these
operations and the constraints on their invocation represent
the behavior of the service and are described in the exported
service as semantic description. In particular, the behavioral
schema describes all the possible sequences of actions that
characterize the service execution, and a conversation is a
sequence of invocations of operations in a particular order
satisfying the constraints imposed by the schema.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In order to represent the behavioral schema it is possible
to use a transition system (TS). It is identified by (i) the set
of actions that the Web service is able to perform, (ii) the set
of states that the interaction with the service passes through,
(iii) the initial state and final states of the interaction and
(iv) the transition relation, which describes state changes as
result of action executions. Note that a final state is a state
where the client can either ask for another action (moving to
another state) or safely stop the interaction with the service.
We assume the initial state is always final, so to allow the
client to not even start the interaction.

Figure 1: Conversational Model: example of inter-
action

Figure 1 depicts an example of the conversation model we
adopt [2]. A typical interaction is as follows. The Pay Taxes
Service is composed by two states S0, that is an initial and
final state, and S1 that is a final state. The actions that the
client can ask for are three: (i) provideAnagraphicDetail

with which the client provides to the service its data and
moves from state S0 to state S1, (ii) provideBankAccount

with which the client provides to the service its bank account
information and moves from state S0 to state S1 and (iii)
payTaxes with which the client pays the amount of the tax
and he goes back to S0 from S1.

In some cases a client would like to interact with a non
existing Web Service. Nonetheless, a suitable combination
of available services (component services) may satisfy the
client’s needs. We refer to the service obtained as combina-
tion of other ones as target Web service, and the process of
building the target Web service as composition. The inter-
esting challenge is how to make all of this in an automatic
way.

Semantic Web technologies, such as OWL/OWL-S 1 and
WSMF 2 allow the description of the semantics of enti-
ties, including Web services, in a machine-processable for-
mat based on XML, and therefore give the right solution

1http://www.w3.org/Submission/OWL-S/
2D. Fensel, C. Bussler: The Web Service Modeling Frame-
work – WSMF. http://www.swsi.org/resources/wsmf-
paper.pdf

for expressing the behavioral schema of a Web service, by
enabling its use in possible compositions. In particular, in
WSMF, the behavior of a service is natively represented as a
TS and therefore Semantic Web services (SWSs) expressed
according to WSMF are well suited to be composed accord-
ing to the techniques presented in [2, 5].

The contribution of this paper is to present a tool, namely
SWSCE – Semantic Web Service Composition Engine, able
to perform automatic composition of SWSs. In particular
the description of the implementation of the tool is the main
focus of the paper. The paper is organized as follows: in
Section 2 the semantic composition engine is described; in
particular Section 2.1 describes its architecture, Section 2.2
underlines issues related to automatic composition and Sec-
tion 2.3 shows the tool functionalities through a practical
case. Section 3 presents a discussion on the state of the art,
and finally Section 4 concludes the paper. At the end Ap-
pendix A provides some background information on WSMF,
whereas Appendix B shows some code snippets about the
running example presented throughout the paper.

2. SEMANTIC WEB SERVICE COMPOSI-
TION ENGINE (SWSCE)

The Semantic Web Service Composition Engine (SWSCE)
is a tool to perform automatic composition of SWSs and it
can be used during the design phase of new services. In our
model, in order to compose existing (available) services, we
need to perform the following steps:

- selecting some services from the available ones;

- defining a target service which represents the new ser-
vice satisfying the user needs;

- executing the composition algorithm and, if successful,
create a new SWS.

In its current implementation, the tool works using ser-
vices described with WSML – Web Service Modeling Lan-
guage [11]. Some background information on WSML and
other elements in WSMF can be found in Appendix A. In
this section we will show the architecture of our tool and we
will explain its working through a case study.

2.1 SWSCE: Architecture
In Figure 2 the SWSCE architecture is shown. SWSCE

consists of three main blocks: (i) the User Interface, (ii) the
Core Engine and (iii) the Repository Manager.

The User Interface makes available the composition en-
gine to the end user by mean of a user friendly interface.
In the current implementation, SWSCE is developed as a
WSMO Studio 3 plug-in using the JFace/SWT library. Ac-
tually it appears as a button inside the WSMO Studio and it
guides the developer in the composition process as a wizard.

The Core Engine realizes all the logic needed to perform
the computation. This component can be further divided
into sub-blocks, namely the Composition Algorithm, the
Knowledge Base Manager and the Parser.

The Composition Algorithm. This component is the one re-
sponsible to perform the composition. The reasoner that

3http://www.wsmostudio.org/

ParserParser

Knowledge
Base Manager

Knowledge
Base Manager

Composition AlgorithmComposition Algorithm

Repository ManagerRepository Manager

Core Engine

SWSCE

Repository

U
se

r
In

te
rf

ac
e

Figure 2: SWSCE Architecture

actually perform the calculation of the composition is TLV.
TLV (Temporal Logic Verifier) [21] is a computer aided ver-
ification/synthesis system for temporal logic specifications
[19, 20]. For a formal description of the simulation-based
composition algorithm, we refer to [4, 22], where theoretical
bases to address the composition problem, along with some
extensions, are built.

The first step is to calculate an object called Commu-
nity TS. The Community TS is the TS that represents the
behavior of the whole community (i.e., set of available ser-
vices which are candidate for the composition). It can be
seen as a global view of the community. Each state of the
Community TS is a tuple in which are encoded the states
of each available service of the community. Of course the
initial state of this TS is represented by all the initial states
of the available services. The community TS can execute a
transition iff there exists one service of the community that
can do that, and so it moves to the next state according to
the transition performed by such a service.

This object is exponential in the size of the TSs of the
available services, in fact we have to combine all states of
the available services. TLV indeed efficiently realizes such
cartesian product of the available services.

Then TLV checks the existence of a simulation relation
between the Community TS and the target. The simulation
relation is a relation on the states of two TSs. By definition
two states a,b of two TSs are in simulation relation when (i)
if a is final, then b is final; (ii) if a can make a transition
to a′, then also b can make such a transition to b′, with the
same action; (iii) a′ and b′ are still in a simulation relation.
Particular relevant is the concept of maximum simulation:
the initial state of the target TS is simulated by the initial
state of the Community TS. A composition of the services
in the community realizes the target service iff the target is
simulated by the TS of the community.

Last step of TLV is the extraction of an Orchestrator Gen-
erator (OG) from the maximal simulation. Let’s have the
target service simulated by the Community TS, the orches-
trator generator is a TS where: (i) the states are tuples
including Community TS’s as well as target service’s state,
of course the initial state of the OG is the situation where
both target and available services are in their initial state;
(ii) for each transition of the OG we have the service selec-

tion function that gives the information on which services
can execute that transition. Therefore the OG is a TS that,
at each point, given an action that the client may request,
according to the target service behavior, gives back the set
of index of services of the community that can execute the
required action.

As an alternative to TLV, a Description Logic Reasoner
can be used [1]. In order to generate an orchestration, we
need to have a representation of the composition output.
The PDL approach [2] consists in writing a big Propositional
Dynamic Logic (PDL) formula that represents the required
target behavior. In this formula, we encode the behavior of
the services, both available ones and target, and the con-
straints that have to be satisfied in order to guarantee that
the service we are going to synthesize will be correct. More-
over the satisfiability of this formula is checked, and in the
positive case a TS is built.

Thanks to the correspondence [23] between PDL and De-
scription Logic (DL) we can use a DL Reasoner to obtain
the model of the PDL formula, i.e., the composition TS. At
the state of the art there are some very efficient tools such
as Racer Pro 4, Fact++ 5, and Pellet 6. Unfortunately, the
former two are not useful for our aims, as they can check
formulas for satisfiability but return no formula’s model, if
any, which is the basic structure to extract an actual solu-
tion. Pellet provides such a model but it is incomplete: it
misses some basic information for extracting a composition.
This is due to many optimization techniques that the tool
implements. In our experimentation of Pellet, we tried to
disable this option in order to make a trade off by having
less performance but more information. The result was a
big downgrade of performances while information were still
missing .

For a proof of concept, we implemented our own DL Rea-
soner, namely ESC (E-Service Composer) [1]. ESC provides
a good model, usable for the composition, indeed it gives the
composition of the target as a Mealy TS. Issues with ESC
are that: (i) it is still a prototype, it lacks all optimization
techniques the other tools have, and it isn’t very stable; (ii)
it deals only with deterministic services, that are, services
with a deterministic behavior, modeled with a deterministic
TS. Indeed ESC checks the satisfiability of DPDL (Deter-
ministic PDL) that is a subset of PDL.

TLV instead supports the composition of non determinis-
tic available services, and provides good performance with
stability. In Table 1 we show the results of some tests per-
formed on various reasoners. The second column ”# states”
shows the sum of all the states of the target and the available
services’ TSs. This is a critical parameter for the composi-
tion algorithm; in fact when the number of states grows, we
get problems. As shown in Test 2, the model returned by
the Pellet lacks some of important features. Increasing the
number of states, as shown in Test 3, Pellet crashes satu-
rating all the Java memory heap without finding a solution.
ESC instead works good with test 2, but crashes with test
3 saturating the Java memory heap.

The Knowledge Base Manager. This is the component re-
sponsible for preparing TLV input and extracts a composi-
tion from the Orchestrator Generator. The input is a set of

4http://www.racer-systems.com/
5http://owl.man.ac.uk/factplusplus/
6http://pellet.owldl.org/

Test # states Pellet TLV ESC
1 9 ok ok ok
2 15 incomplete ok ok
3 20 out of memory ok out of memory

Table 1: Confronting the tools

TSs representing service behaviors, written in an XML ad
hoc, namely WSTSL (Web Service Transition System Lan-
guage).

TLV needs that the formulation of the problem is encoded
into the SMV language. We encode the TSs of the services
(target and available one) into SMV modules mutually inter-
connected through some shared variables. All modules rep-
resent TSs. Synchronization among modules,i.e., the TSs
they represent, is realized by using some shared variables
that allow to exchange relevant information. In order that
everything evolves in a correct way we add some constrains
in temporal logic; in particular we define a failure assertion
in each available module if (i) it is requested to one avail-
able service to perform a transition that does not exist in
that TS, and (ii) whenever the target service reaches a fi-
nal state, available ones are not in their final states. In the
main module we define an invariant property good, which
corresponds exactly to the negation of failure. TLV, then,
tries to synthesize a strategy (or orchestrator, or controller)
for the problem that forces the execution to evolve in a way
such that

1. no available system generates a failure;

2. the target service being in a final state implies each
available service being in a final state too.

Once the OG is obtained, we easily extract from it one
composition, choosing one service index from the set pro-
posed by the OG. The composition is saved into a WSTSL
document, that represents the TS of the composition, ready
to be parsed for the orchestrator, and to be stored in the
orchestration engine (WSMX in our case).

Having an XML language to represent TSs is very useful.
If there will be the need of changing the reasoner for our tool
in the future all we have to do is just to rewrite the parser
for preparing the knowledge base for the new reasoner. Also
we decided to use WSTSL to represent the TS of the com-
position because if there will be the need of changing the
execution environment for the orchestration, the tool will
be ready by just changing one parser: from WSTSL to the
input of the new execution environment. This provides a
great extendibility to our tool, making it simple to change
an orchestrator, and suitable for possible reasoners available
in the future.

The Parser Component. It performs the translation between
the WSML representation of the services and the WSTLS
representation of the services, and back from the WSTLS
TS of the composition to the WSML representation of the
orchestration.

The Repository Manager (RM) is the block responsible for
retrieving and storing the services. Actually the repository
used is the one embedded in WSMX and then the RM has
to deal with it in order to (i) retrieve available services and
using part of them, or whole, as input for the composition

and (ii) store the orchestration of the composite service if it
is found.

2.2 Related Issues
Services composition is not a stand alone process but im-

plies also to search services, to solve semantic incompatibil-
ities, to store results, etc. In this section we discuss two of
the main issues related to Semantic Web service composi-
tion: discovery and mediation.

When we want to compose SWSs, we have to select a
group of them that will identify the community of the can-
didates services. To build the community it is necessary to
discover all the possible relevant services for the composi-
tion, may be simple for a domain expert or for a service ex-
pert, but it could be not so easy when we want to automate
this process. In the general case, an automatic discovery en-
gine eases the task of reasoning about the service signature
(semantics of the I/O parameters, etc.) in order to select
the most suitable community. The tool presented in this
paper does not use any discovery engine but leaves to the
service engineer the task of selecting the services that will
act as the input for the composition. Currently we suppose
that SWSCE is used by expert users.

Composition of services considers only the conversations
of the services and does not take into account the input
data format. When services are defined in different ontolo-
gies, then there could be the need of a mediation process.
The mediation process allows different services to represent
the same concepts in spite of possible differences in the on-
tology representation. Data mediation concerns the trans-
formation of the syntactic format of the messages exchanged
by services while the ontology mediation concerns the trans-
formation of terminology used inside the message exchange.
Our tool does not solve directly the mediation problem but
it inserts inside the synthesized orchestration placeholders
where to insert possible mediators. In Section 2.3 we show
a concrete example.

2.3 SWSCE: a Practical Case
In this section we presents a case study in order to un-

derstand how SWSCE works. A service engineer decides to
realize a SWS in which it is possible to pay government taxes
online by providing either bank account number or personal
data. First of all, he will define which is the behavior of the
new SWS, by designing the TS (cfr. Figure 3).

S0 S1

ProvideAnagraphicDetail

ProvideBankAccount

PayTaxes
S1

Figure 3: Target Service TS

The engineer writes the choreography of the desired ser-
vice. In WSMO (cfr. Appendix A) all the messages related
to an operation of a SWS are considered as concepts. Those
concepts are used inside the choreography description in or-
der to declare the state signature by means of the request
and response messages. In the state signature all the mes-
sages exchanged during the service invocation are described.

More precisely, in the in statement the concepts which repre-
sent the request message for the service are declared. While
in the out statement the concepts which represent the re-
sponse message returned by the service are declared. This
signature is the same for all states. The elements that can
change and that are used to express different states of a
choreography are the instances (and their attribute values)
of concepts. Thus, a specific state is described by a set of ex-
plicitly defined instances and values of their attributes [24].

From a WSMO perspective, the behavior is described in-
side the choreography. The conceptual model for WSMO
choreography is based on Abstract State Machines (ASMs).
A choreography in WSMO inherits the principles of ASMs
by defining (i) a set of states, where each state is described
by an algebra and (ii) guarded transitions to express the
state change by means of updates. In this first version of
SWSCE in order to handle all the requests coming from a
client and to perform the update operations, the transition
condition using the forall statement have to be declared:
forall Variable with Condition do Rules(Variable) end-
Forall. The meaning of such a rule is to execute simul-
taneously the enclosed Rules for each variable in Variables
satisfying the Condition of the rule where typically a vari-
able will have some free occurrences in the rules which are
bound by the quantifier [24].

For a better explication of the sequence of actions per-
formed by the service during an invocation, consider the
choreography of the payTaxByBankAccount service shown
in Appendix B.

Now the service engineer can start using SWSCE by click-
ing the SWSCE button of the user interface (Figure 4).

Figure 4: Starting SWSCE

SWSCE starts by retrieving the SWSs through the RM
from the repository and then shows their identifiers in the
Community table (Figure 6). It can also possible to show
the WSML of the SWSs by clicking on the button Show ser-

vice. The Community table contains the list of the com-
ponent SWSs participating in the composition, i.e., in our
example the payTaxesProvideBankAccountWS and payTax-
esProvideAnagraphicalDetailsWS whose behavior is repre-
sented in Figure 5.

The SWS previously designed is now selected (Figure 7)
as the target service that the user wants to obtain as result
of the composition.

When the Start button is clicked (Figure 9), SWSCE
starts to elaborate the choreographies of the component
SWSs by parsing them. If such a composition can be ob-
tained a new SWS is created. The new composed service
obtained has the choreography of the target service and it
is followed by a skeleton of a possible orchestration. The
Figure 8 shows the structure of the obtained orchestration.

In every transition rule an intermediate state has been

Figure 5: Operations of component services

Figure 6: Select candidate Services

Figure 7: Select Target Service

S0

S2

S1

provideBankAccount

p ro v i d
e A na g

ra p h D
e ta i l s

payTaxes

payTaxes

Figure 8: Orchestration with intermediate states

defined by default from the algorithm. In this state possible
mediators have to be declared, which allow the transition
from a source state to the target state. In the obtained
WSML file, the intermediate state contains a “placeholder”
in which it is possible to declare the mediation:

abstractStateMachine transitionRules
forall {?cs} with (?cs[oasm#value hasValue oasm#S0]
memberOf oasm#controlState) do

//implement "perform" to invoke service PayTaxesByBankAccount
delete (?cs[oasm#value hasValue oasm#S0])
add (?cs[oasm#value hasValue S0_mediation_S2])

endForall

forall {?cs} with (?cs[oasm#value hasValue oasm#S0_mediation_S2]
memberOf oasm#controlState) do

// implement (if needed) "mediation" for
// provideBankAccountRequest/provideBankAccountResponse

delete (?cs[oasm#value hasValue oasm#S2_mediation_S0])
add (?cs[oasm#value hasValue S2])
endForall

The WSML file of the composed service has the choreog-
raphy of the target service and the orchestration obtained by
the composition. Furthermore it is possible to store the com-
posed SWS obtained by means of the composition through
the RM inside the repository clicking on the button Store

Service (Figure 10).

Figure 9: Starting the Composition

3. DISCUSSION
The use of Semantic Web service technologies is gaining a

special role in building complex applications, e.g. as in the
context of eGovernment services. In order to make it possi-
ble, many efforts in the scientific community are going in the
direction of automatic services composition in order to build
more complex services using the simpler building blocks as
component services. As we have shown in our work, in order
to add semantic description to the services (in particular for
their behaviors), we need to leverage an ontology descrip-
tion. In the eGovernment domain, this approach is growing
in importance and [25] provides an ontology (GEA ontol-
ogy) that models the Public Administration domain using
WSMO.

In order to discuss automatic services composition, and
to compare different approaches, [3] introduces a conceptual
framework for “semantic service integration”, consisting of:

Figure 10: Storing the Orchestration of the Com-
posite Service

• the community ontology, which represents the com-
mon understanding on an agreed upon reference se-
mantics between the services concerning the meaning
of the offered operations, the semantics of the data flow
through the service operations, etc;

• the set of available services, which are the actual Web
services available to the community;

• the mapping for the available services to the com-
munity ontology, which expresses how services expose
their behavior in terms of the community ontology;

• and the client service request, to be expressed using
the community ontology.

Generally, the community ontology involves several as-
pects: on one side, it describes the semantics of the infor-
mation managed by services, through appropriate semantic
standards and languages (e.g., WSMO); and on the other
side, it also consider some specification of the service be-
haviors, on possible constraints and dependencies between
different service operations, not limited solely to pre- and
post-conditions, but also considering the process of the ser-
vice.

In building such a “semantic service integration” system,
two general approaches can be followed.

• In the Service-tailored approach, the community on-
tology is built mainly taking into account the avail-
able services, by suitably reconciling them. Indeed
the available services are directly mapped as elements
of the community ontology, and the service request is
composed by directly applying the mappings for ac-
cessing concrete computations.

• Conversely in the Client-tailored one, the community
ontology is built mainly taking into account the client,
independently from the services available.They are de-
scribed (i.e., mapped) by using the community ontol-
ogy, and the service request is composed by reversing
these mappings for accessing concrete computations.

Much of the research on automatic service composition
has adopted, up to now, a service-tailored approach, exam-
ples are the works based on Classical Planning in AI (e.g.,

Papazoglouet
al. *
Papazoglouet
al. *

McIlraithet a
l.

Staticsin t
he system

Dynamics in component services
Knoblocket al
.
Knoblocket al
.

* do not tackleautomatic composition

+

+- --
Composition as
 (classical)
Planning +

Bouguettaya et al. *
Shethet al. *Shethet al. *

Traversoet a
l. Berardiet al.

Hull et al. Berardiet al.

 + Hull

Dynamics in client service reque
st

Figure 11: Comparison of the various approaches to
automatic service composition

[26],[6]), the works of Papazoglou’s et al. [27], Bouguettaya
at al. [16], Sheth et al. [9, 8], the work of McIlraith at al. [15]
and the work by Hull et al. [7, 14].

A very little research has been done following a client-
tailored approach, but some remarkable exceptions should
be mentioned: the work of Knoblock at al. [17] the work of
Traverso et al. [18], the work of Hull et al [12] and finally [2,
5].

Figure 11 summarizes the considered works (more details
in [3]). The three axis represent the levels of detail accord-
ing to which the community ontology and the mappings and
the client request can be modeled. Namely, (i) statics in the
system represents how fine grained is the modeling of the
static semantics (i.e., ontologies of data and/or services, in-
puts and outputs, alphabet of actions, etc.); (ii) dynamics in
component services represents how fine grained is the mod-
eling of the processes and behavioral features of the services
(only atomic actions, transition systems, etc.); and (iii) dy-
namics in client service request represents how fine grained
is the modeling of the process required by the client, varying
from a single step (as in the case of services consisting essen-
tially in a single data query over a data integration system)
to a (set of) sequential steps, to a (set of) conditional steps,
to including loops, and up to running under the full control
of the client. Black/white lollipops represent service-based
(white) vs. client-based (black) approaches.

The approach proposed in this paper is the first result,
with respect to the client-tailored approach, which uses
WSMO to describe Semantic Web services and that pro-
poses a tool for automatic service composition, by providing
it as a WSMO/WSMX plug-in.

4. CONCLUSION AND FUTURE WORK
In this paper we have presented SWSCE, a tool for au-

tomatic composition of Semantic Web services and we have
shown how our tool works like a wizard. Our tool actually
works by retrieving SWSs through the RM in the repository
embedded inside WSMX. Currently we are also developing
a new version working with a different distributed discovery
engine. Actually, our tool provides support for the medi-
ation by returning an orchestration where it is possible to
add manually the mediation, but in the next version we are
trying to add directly in the wizard the possibility to start

the mediation tool and to define directly the mapping at the
end of the composition process.

Acknowledgements. The work presented in this paper
is partly supported by the IST FP6 project SemanticGOV.
The authors would like to thank the project partners for
their useful comments and discussions on SWSCE.

5. REFERENCES
[1] D. Berardi, D. Calvanese, G. De Giacomo,

M. Lenzerini, and M. Mecella. ESC: A Tool for
Automatic Composition of Services Based on Logics of
Programs. In Proc. VLDB-TES 2004, pages 80–94.

[2] D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, and M. Mecella. Automatic Service
Composition Based on Behavioral Descriptions.
International Journal on Cooperative Information
Systems, 14:333–376, 2005.

[3] D. Berardi, D. Calvanese, G. De Giacomo, and
M. Mecella. Automatic Web Service Composition:
Service-tailored vs. Client-tailored Approaches. In
Proc. AISC 2006 (jointly with ECAI 2006).

[4] D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi.
Automatic Service Composition via Simulation.
International Journal of Foundations of Computer
Science (IJFCS), 19:429–451, 2008.

[5] D. Berardi, G. D. Giacomo, M. Mecella, and
D. Calvanese. Composing Web Services with
Nondeterministic Behavior. In Proc. ICWS 2006.

[6] J. Blythe and J. Ambite, editors. Proc. ICAPS 2004
Workshop on Planning and Scheduling for Web and
Grid Services, 2004.

[7] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
Specification: a New Approach to Design and Analysis
of e-Service Composition. In Proc. WWW 2003.

[8] J. Cardoso and A. Sheth. Introduction to Semantic
Web Services and Web Process Composition. In Proc.
1st International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004).

[9] F. Curbera, A. Sheth, and K. Verma. Services
Oriented Architectures and Semantic Web Processes.
In Proc. ICWS 2004.

[10] J. de Bruijn, D. Fensel, U. Keller, and R. Lara. Using
the Web Service Modelling Ontology to Enable
Semantic eBusiness. Communications of the ACM,
2005.

[11] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel.
The Web Service Modeling Language WSML: An
Overview. In Proc. ESWC 2006.

[12] C. Gerede, R. Hull, O. H. Ibarra, and J. Su.
Automated Composition of E-Services: Lookaheads.
In Proc. ICSOC 2004.

[13] A. Haller, E. Cimpian, A. Mocan, E. Oren, and
C. Bussler. WSMX - A Semantic Service-Oriented
Architecture. In Proc. ICWS 2005.

[14] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-services: a Look Behind the Curtain. In Proc.
PODS 2003.

[15] S. McIlraith and T. Son. Adapting Golog for
Composition of Semantic Web Services. In Proc. KR
2002.

[16] B. Medjahed, A. Bouguettaya, and A. Elmagarmid.
Composing Web Services on the Semantic Web. Very
Large Data Base Journal, 12(4):333–351, 2003.

[17] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda,
C. Knoblock, and S. Minton. Retrieving and
Semantically Integrating Heterogeneous Data from the
Web. IEEE Intelligent Systems, 19(3):72–79, 2004.

[18] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso.
Automated Composition of Web Services by Planning
at the Knowledge Level. In Proc. IJCAI 2005.

[19] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
Reactive Designs. In Proc. VMCAI 2006.

[20] A. Pnueli and R. Rosner. On the Synthesis of a
Reactive Module. In Proc. POPL 1989.

[21] A. Pnueli and E. Shahar. The TLV System and its
Applications, 1996.

[22] S. Sardiña, G. De Giacomo, and F. Patrizi. Behavior
Composition in the Presence of Failure. In Proc. KR
2008.

[23] K. Schild. A Correspondence Theory for
Terminological Logics: Preliminary Report. In Proc.
IJCAI 1991.

[24] J. Scicluna, A. Polleres, D. Roman, and D. Fensel.
Ontology-based Choreography and Orchestration of
WSMO Services. Technical report, Digital Enterprise
Research Institute (DERI), 2006.

[25] X. Wang, T. Vitvar, V. Peristeras, A. Mocan, S. K.
Goudos, and K. A. Tarabanis. WSMO-PA: Formal
Specification of Public Administration Service Model
on Semantic Web Service Ontology. In Proc.
HICSS-40, 2007.

[26] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition
using SHOP2. In Proc. ISWC 2003.

[27] J. Yang and M. Papazoglou. Service Components for
Managing the Life-cycle of Service Compositions.
Information Systems, 29(2):97–125, 2004.

Appendix A - Introduction to WSMO
In our approach, the implementation of the Semantic Web
Service composition is realized by means of the Web Service
Modelling Framework (WSMF) that provides an ontology
(WSMO) [10] for the definition of the domain of the ser-
vices provided and of the elements characterizing each SWS,
that is (i) ontologies, (ii) goals, (iii) services and (iv) me-
diators; a language (WSML) [11] for the formal description
of the syntax and the semantics of all the elements defined
in WSMO; and an execution environment (WSMX) [13] for
the deploy, execution, composition and orchestration of the
Semantic Web services.

Even if in the present paper we will focus mainly on the
description of the behavior of the SWSs, it is important to
briefly introduce the definition of the basic elements of a
SWS in the WSMO ontology.

A SWS description in WSMO is defined in terms of:

• the concept representing the basic elements of the
agreed terminology concerning the domain the SWS
belongs to. A concept represents classes of objects of a
real or abstract world that have a specific shared prop-
erty (e.g., being a tax to be paid) and well defined
attributes. An example of the semantic of the pay-

TaxesByAnagraphicDetails service is described in the
WSML code shown below.

importsOntology
_"http://www.semantic-gov.org/Italy#ItalianCitizen"

concept AnagraphicDetails
name impliesType (1 1) _string
dateOfBirth impliesType (1 1) { _string, _dateTime}
SSN impliesType (1 1) _string
surname impliesType (1 1) _string

concept Tax
payToOrganization ofType _string
amount ofType _string
payBy ofType _string

• the interface describing the behavior of the SWS;
in particular the interface consists of two kinds of
information: the choereography describing how a client
(be it a human or a software) can interact with the
service in order to use its functionalities, and the
orchestration describing the interactions among the
given service and other SWSs in order to achieve the
target functionalities.

In Figure 12 the different WSMO Choreography and
Orchestration perspectives are illustrated.

Figure 12: WSMO choreography and orchestration
perspectives.

The choreography describes the behavior of the service,
that is, how client communicates with the service in order to
consume the provided functionalities. WSMO choreography
is based on the Abstract State Machines (ASM) formalisms
(providing the basis for the description of both the choreog-
raphy and orchestration); an ASM consists of two compo-
nents: the state and the guarded transitions. The states are
represented by an ontology whose content is dynamic while
guarded transitions based on the model if Cond then Up-
date specify transitions between states (that is changes of
states).

The orchestration consists in the description of how the
overall functionality of the SWS is achieved through the
cooperation of different service providers. In WSMO, or-
chestration is based on the same ASM formalism but the
guarded transitions are extended to support the use of me-
diators, that is software components providing data links
among different services.

Appendix B
In the following there is the choreography of the payTaxBy-
BankAccount service:

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
namespace { _"http://dis.uniroma1.it/WSMO/WS/provideBankWS#",

pba _"http://dis.uniroma1.it/WSMO/payTaxesByBankAccount#",

ctrfsm _"http://dis.uniroma1.it/WSMO/ControlFsm#",
wsmostudio _"http://www.wsmostudio.org#" }

//..
interface byBankInterface
choreography _#
stateSignature byBankStSign

in
concept pba#provideBankAccountRE

concept pba#payTaxREQ
out

concept pba#provideBankAccountRES
concept pba#payTaxRES

transitionRules _#
forall {?controlstate, ?provideBankAcc} with (

?controlstate[ctrfsm#currentState hasValue 0]
memberOf ctrfsm#controlledState and
?provideBankAcc memberOf pba#provideBankAccountREQ

) do
add(?controlstate[hasValue 1])
add(_# memberOf pba#provideBankAccountRES)

endForall

forall {?controlstate, ?payTax} with (
?controlstate[ctrfsm#currentState hasValue 1]
memberOf ctrfsm#controlledState and
?payTax memberOf pba#payTaxREQ

) do
add(?controlstate[hasValue 0])
add(_# memberOf pba#payTaxRES)

endForall

