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1 Introduction

The first Workshop on Practical Aspects of Automated Reasoning was held on
August 10–11, 2008, in Sydney, Australia, in association with the 4th Interna-
tional Joint Conference on Automated Reasoning (IJCAR-2008). It was held
jointly with the ESHOL Workshop.

PAAR provides a forum for developers of automated reasoning tools to dis-
cuss and compare different implementation techniques, and for users to discuss
and communicate their applications and requirements. The workshop brought
together different groups to concentrate on practical aspects of the implemen-
tation and application of automated reasoning tools. It allowed researchers to
present their work in progress, and to discuss new implementation techniques
and applications.

Topics included were:

– automated reasoning in classical and non-classical logics, implementation of
provers;

– automated reasoning tools for all kinds of practical problems and applica-
tions;

– practical experiences, case studies, feasibility studies;

– evaluation of implementation techniques and automated reasoning tools;

– benchmarking approaches;

– non-standard approaches to automated reasoning, non-standard forms of
automated reasoning, new applications;

– implementation techniques, optimisation techniques, strategies and heuris-
tics;

– system descriptions and demos.

We were particularly interested in contributions that help the community to
understand how to build useful and powerful reasoning systems in practice, and
how to apply existing systems to real problems.



2 Workshop Programme

The workshop programme included 3 invited talks, 10 regular papers, 10 ESHOL
presentations and demonstrations of higher-order logic systems and a panel dis-
cussion on the Evaluation of Systems of Higher-Order Logic. The invited talks
were:

– Software Model Checking: New Challenges and Opportunities for Automated

Reasoning by Alessandro Armando,
– Mechanized Reasoning for Continuous Problem Domains by Rob Arthan.
– Constraint Modelling: A Challenge for First Order Automated Reasoning by

John Slaney.

The contributed papers were selected with the help of the programme com-
mittee from 13 submissions. The accepted papers were:

– Bit Inference by Nachum Dershowitz,
– Collaborative Programming: Applications of logic and automated reasoning

by Timothy Hinrichs,
– Towards fully automated axiom extraction for finite-valued logics by Joao

Marcos and Dalmo Mendonca,
– A Small Framework for Proof Checking by Hans de Nivelle and Piotr Wit-

kowski,
– Integration of the TPTPWorld into SigmaKEE by Steven Trac, Geoff Sut-

cliffe and Adam Pease,
– Combining Theorem Proving with Natural Language Processing by Björn

Pelzer and Ingo Glöckner,
– Presenting TSTP Proofs with Inference Web Tools by Paulo Pinheiro da

Silva, Geoff Sutcliffe, Cynthia Chang, Li Ding, Nick del Rio and Deborah
McGuinness,

– randoCoP: Randomizing the Proof Search Order in the Connection Calculus

by Thomas Raths and Jens Otten,
– The Annual SUMO Reasoning Prizes at CASC by Steven Trac, Geoff Sut-

cliffe and Adam Pease,
– Contextual Rewriting in SPASS by Christoph Weidenbach and Patrick Wis-

chnewski.

The ESHOL sessions were organised by Christoph Benzmüller, Florian Rabe,
Carsten Schürmann, and Geoff Sutcliffe. See [1] in these proceedings for more
details.

3 Publication Details

These proceedings are published as CEUR Workshop Proceedings [2]. The PAAR-
2008 webpage is:

http://www.eprover.org/EVENTS/PAAR-2008/paar-2008.html.
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5 Schedule

Sunday, August 10

09.00–10.00 Invited talk: Alessandro Armando (shared with CEDAR)
Software Model Checking: new challenges and opportunities for

Automated Reasoning

10.00–10.30 Coffee break

10.30–12.30 Session 1

10.30 Joao Marcos and Dalmo Mendonca
Towards fully automated axiom extraction for finite-valued logics

11.10 Paulo Pinheiro da Silva, Geoff Sutcliffe, Cynthia Chang, Li Ding,
Nick del Rio and Deborah McGuinness
Presenting TSTP Proofs with Inference Web Tools

11.50 Steven Trac, Geoff Sutcliffe and Adam Pease
Integration of the TPTPWorld into SigmaKEE

12.30–14.00 Lunch break

14.00–15.00 ESHOL invited talk: Rob Arthan

Mechanized Reasoning for Continuous Problem Domains

15.00–15.30 ESHOL presentations

15.00 Rob Arthan
ProofPower

15.10 Stefan Berghofer
Isabelle

15.20 Lucas Dixon
IsaPlanner

15.30–16.00 Coffee break

16.00–17.00 ESHOL presentations

16.00 Guillaume Melquiond
Coq

16.10 Josef Urban
Mizar

16.20 Joe Hurd
HOL

16.30 Carsten Schürmann
Delphin

16.40 Christoph Benzmüller and Frank Theiss
Omega

16.50 Christoph Benzmüller and Frank Theiss
LEO II

17.00 Mark Kaminski
TPS

17.30– ESHOL demos

running in parallel



Monday, August 11

09.00–10.00 Invited talk: John Slaney

Constraint Modelling: A Challenge for First Order Automated

Reasoning

10.00–10.30 Coffee break

10.30–12.30 Session 2

10.30 Christoph Weidenbach and Patrick Wischnewski
Contextual Rewriting in SPASS

11.10 Nachum Dershowitz
Bit Inference

11.50 Hans de Nivelle and Piotr Witkowski
A Small Framework for Proof Checking

12.30–14.00 Lunch break

14.00–15.30 Session 3

14.00 Timothy Hinrichs
Collaborative Programming: Applications of logic and automated

reasoning

14.40 Björn Pelzer and Ingo Glöckner
Combining Theorem Proving with Natural Language Processing

15.30–16.00 Coffee break

16.00–17.10 Session 4

16.00 Steven Trac, Geoff Sutcliffe and Adam Pease
The Annual SUMO Reasoning Prizes at CASC

16.40 Thomas Raths and Jens Otten
randoCoP: Randomizing the Proof Search Order in the Connec-

tion Calculus

17.20–18.00 ESHOL panel: Rob Arthan, Lucas Dixon, Joe Hurd

Evaluation of Systems for Higher Order Logic
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Software Model Checking: New Challenges and
Opportunities for Automated Reasoning

Alessandro Armando

AI-Lab, DIST, Università di Genova, Italy

Abstract. Software Model Checking is emerging as one of the lead-
ing approaches to automatic program analysis. State-of-the-art software
model checkers exhibit levels of automation and precision often superior
to those provided by traditional software analysis tools. This success is
due to a large extent to the use of Satisfiability Modulo Theory (SMT)
solvers to support reasoning about complex and even infinite data struc-
tures (e.g. bit-vectors, numeric data, arrays) manipulated by the program
being analysed. In this talk I will survey the opportunities and challenges
posed to Automated Reasoning by this new application domain.
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Mechanized Reasoning for
Continuous Problem Domains

(Extended Abstract)

R.D. Arthan

Lemma 1 Ltd.
2nd Floor, 31A Chain Street, Reading RG1 2HX, UK

& Department of Computer Science,
Queen Mary, University of London, London E1 4NS, UK

rda@lemma-one.com

Abstract. Specification and verification in continuous problem domains
are key topics for the practical application of formal methods and mech-
anized reasoning. I discuss one approach to linear continuous control
systems and consider the challenges and opportunities raised for mech-
anized reasoning. These include practical implementation and integra-
tion issues, algorithms in computational real algebraic geometry and
hard open questions such as the Schanuel conjecture. I conclude with
an overview of some recent new results on decidability and undecidabil-
ity for vector spaces and related theories.

1 Introduction

For some years, I have been involved with tools used for formally specifying and
verifying digital subsystems of avionics control systems [2]. The models used
in this work typically have discrete time and continuous data. These discrete
models emerge only at the end of a chain of refinements starting from a purely
continuous top-level model of the overall system. To apply formal verification
techniques earlier in the chain could offer significant benefits in the shape of
increased dependability, early detection of defects, and reduction in validation
costs. Practical techniques for mechanized reasoning about continuous problem
will be a key factor in obtaining these benefits.

To understand the challenges that formal verification of continuous systems
offers for mechanized reasoning, it is helpful to do some methodological thinking.
In the first part of the talk, I give an overview of an approach to linear continuous
systems that builds on the well-known ideas of Hoare logic that have proved so
fruitful in program verification. It turns out that linearity makes this approach
very tractable given adequate support for reasoning about the mathematical
problem domains involved, namely vector spaces, typically with some additional
structure such as an inner product or a norm.

However, some significant problems arise from this. While the first order
theory of the real field is decidable, in practice, engineers will want to work with
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the kind of rich vocabulary supported by typical computer algebra systems;
so even to deal with the field of scalars in our vector spaces, we may need
to go well beyond the usual first order theory of the real numbers. Moreover,
even if we have some solution to this problem or have an application in which a
simple language for the scalars is adequate, we need methods for reasoning about
vector spaces. In the second part of the talk, I will describe some new results
on decidability and undecidability for various theories of inner product spaces
and normed vector spaces (including Hilbert spaces and Banach spaces). It turns
out that the very uniform geometric and algebraic properties of inner product
spaces lead to decidable theories, while, with only trivial exceptions, theories
of normed vector spaces are undecidable. Nonetheless, the universal fragment
admits a decision procedure. I believe there is plenty of scope for interesting and
useful further research in this area.

2 Reasoning about linear systems

Let us consider an approach to reasoning about linear systems proposed in [1].
By reusing some well-known ideas from software specification and verification,
this approach is designed to be modular and scalable. It deals with a type of
model supported by widely used tools such as Simulink. These tools allow a
system to be expressed as a signal flow graph formed by wiring together primitive
components.

As an example, Figure 1 represents a mechanical system in which a force f
acts on a cart of mass m attached to a wall by a spring with spring constant, k.
It is a graphical representation of the following differential equation:

mẍ(t) + kx(t)− f(t) = 0.

f
- 1

m

ẍ
-+h - R ẋ

- R x
-

−k
m

�

6

Fig. 1. A Linear Signal Flow Graph

The arrows in the diagram suggest a distinction between inputs and outputs
that is missing from the differential equation. They let us view figure 1 as speci-
fying the function mapping the force function f to the position function x. With
this intensional viewpoint, the diagram might serve, for example. as a design for
an analogue computer that simulates the mechanical system.
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The lists of real-valued functions of time that appear as the lists of inputs
and outputs to the primitive components in our diagram form vector spaces
over the field R of real numbers. Moreover, the primitive components of the
diagram represent linear transformations on those vector spaces (integration,
scalar multiplication and addition). Such diagrams are called linear signal flow
graphs and are very common in engineering practice. From now on we restrict
our attention to linear signal flow graphs.

In the example of figure 1 the diagram happens to be a function, but, in
general, a differential equation may not have a unique solution for a given initial
condition. So in general a diagram denotes an input/output relation that is not
necessarily total or single-valued. Rather than trying to ban partial or multi-
valued relations, we will deal with them by borrowing some ideas from the world
of relational specification of programs. This turns out to work particularly nicely
given the algebraic structure we have to hand.

We write r : X ↔ Y to denote that r is a relation between the sets X and
Y , i.e., a subset of X × Y , and use x r y as a shorthand for (x, y) ∈ r. If r and
s are relations, (r; s) denotes the relational composition r followed by s, so that
x (r; s) y iff there is a z with x r z and z s y. If r : X ↔ Y , r−1 : Y ↔ X is the
relational inverse of r, defined by taking x r−1 y iff y r x. We write Ar for the
image of a set A under the relation r. So if r : X ↔ Y , then dom(r) = Y r−1 is
the domain of r, ran(r) = Xr is its range and r acts as a relation between any
sets A and B such that dom(r) ⊆ A and ran(r) ⊆ B.

If r : X ↔ Y , A ⊆ X and B ⊆ Y , a Hoare triple, {A} r {B}, is the logical
judgement which holds whenever A ⊆ dom(r) and Ar ⊆ B. A and B are re-
ferred to as the pre-condition and post-condition respectively. Hoare triples may
be characterised in terms of weakest pre-conditions: the weakest pre-condition,
wp(r, B), of B through r is the set of all points in the domain of r whose im-
age under r is contained entirely in B. As is easily verified, the Hoare triple
{A} r {B} holds, iff A ⊆ wp(r, B).

The weakest pre-condition wp(r, B) contrasts with the pre-image Br−1 of B
under r comprising all points whose image under r meets B. In general wp(r, B)
is a proper subset of Br−1. But if r is a function (not necessarily total), one has
that wp(r, B) = Br−1. It turns out that something quite similar holds for the
input/output relations defined by linear signal flow graphs.

In fact, the input/output relation between vector spaces V and W deter-
mined by a a linear signal flow graph is what is called an additive relation [8],
i.e., a non-empty relation r : V ↔ W that forms a subspace of V × W . Ad-
ditive relations generalise linear transformations. Like a linear transformation,
an additive relation has a kernel, ker(r) = {v : V | v r 0}, which one can view
as a uniform measure of the information lost by r. Dually, r has an indetermi-
nacy, ind(r) = {v : V | 0 r v}, which one can view as a uniform measure of
the non-determinism of r: if v r w, then the set of elements related to v by r
is w + ind(r). It turns out that to form the weakest pre-condition wp(r, B), one
simply discards from B any element w for which w + ind(r) is not contained
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in B, and then wp(r, B) is the the pre-image through r of what remains. I.e.,
putting B0 = {b : B | b + ind(r) ⊆ B} one has that wp(r, B) = B0r

−1.
In figure 2 we show a set of constructors for forming new signal flow graphs

from old. We call a signal flow graph a structured block diagram if it is formed
from primitive components using these constructors. In [1], we prove that struc-
tured block diagrams are complete in the sense that subject to reasonable as-
sumptions on the set of primitive components the input/output relation of an
arbitrary signal flow graph can be expressed as the input/output relation of a
structured block diagram (cf., the Turing completeness of while programs).

Feedback Loop

F G

Sequence

F

G

Sum

F

G

Fig. 2. Structured Block Diagram Constructors

Using the characterisation of the weakest pre-condition given above, we can
then derive a Hoare logic for structured block diagrams. For example, we have
the linear combination rule

{A} r {B} {A} s {B1}
{A}βr + γs {βB + γB1}

Assuming we have a tractable characterisation of the primitive blocks, the
Hoare logic reduces the problem of verifying any structured block diagram
against given pre- and post-conditions reduces to a problem in the assertion
language we are using to express the pre- and post-conditions.

For example, assume that we are working with finite-dimensional vector
spaces Rm, m ∈ N and that our primitive blocks are given by matrices with con-
stant rational coefficients. Let us make assertions about vectors (v1, . . . , vm) ∈
Rm using first order formulae in the language of the real field with free variables
drawn from v1, . . . vm. Then our approach automatically reduces any verification
problem to a problem in the language of the real field. Thus, in contrast with
the situation for programming languages, a large and natural class of signal flow
graphs has a decidable verification problem, since, by a classic result of Tarski
[11], the first order theory of the reals is decidable.

However, there are practical concerns: the time complexity of the decision
procedure for the first order theory of the reals is provably doubly exponential
in the number of bound variables in the formula (this theoretical bound being
achieved by Collins’ method of cylindrical algebraic decomposition [5]). The best
known algorithms have the advantage of being at worst doubly exponential in
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the number of quantifier alternations [3], and that would be advantageous in the
present context, but these have not yet been implemented.

As suggested in [1], if one restricts to so-called linear formulae, i.e., ones in
which multiplication is restricted to have at least one operand constant, the more
efficient method of Fourier-Motzkin-Hodes applies [7]. However, the restriction
to linear formulae and rational coefficients would generally be too restrictive for
practical use, since even simple properties such as |v1| <

√
2 would not be ex-

pressible. Now Fourier-Motzkin elimination is effective over any subfield of the
reals in which one can effectively compute. So one might consider linear formu-
lae over arbitrary real algebraic numbers, but calculation with such numbers is
possible but complex to implement [10]. Of course, engineers are also likely to
want calculation with transcendental functions as well. Towards this, we have
Macintyre and Wilkie’s result that Schanuel’s conjecture implies the decidability
of the real exponential field [9]. So progress on a natural engineering problem
may be contingent on a hard unsolved problem in pure mathematics!

3 Decidability for theories of vector spaces

A few years ago, on being asked by John Harrison about decidability for vector
spaces, Robert M. Solovay promptly invented quantifier elimination procedures
for a range of theories. Some special cases of these have so far been implemented
and found very useful in practice [6]. Solovay also demonstrated that the theory
of Banach spaces is undecidable. Since then Solovay, Harrison and I have sim-
plified and extended these results and a full exposition is in preparation. Here I
sketch some of the main results and methods.

We work in a two-sorted first order language with sorts R for scalars and
V for vectors. The intended interpretation of the sort R is the set R of real
numbers. We have function symbols + , × : R×R → R and − : R → R
which in the intended interpretations are the usual field operations on R. We
have function symbols + : V × V → V, − : V → V and × : R × V → V
which in the intended interpretations make the set denoted by V into a real
vector space. We have scalar constants m/n : R for each rational number m/n
and we have the vector constant 0 : V to be interpreted as the zero vector. The
first order theory of real vector spaces is the set of sentences in our language
that are valid in all the intended interpretations.

The theory of normed spaces is obtained by adding to the language a function
symbol || || : V → R whose intended interpretation is a norm on the vector space.
A norm defines a metric on the set of vectors via d(v,w) = ||v − w||. Recall
that a normed space is called a Banach space if it is complete with respect to
this metric (i.e., if every Cauchy sequence converges).

The theory of inner product spaces is obtained by adding a function symbol
〈 , 〉 : V×V → R whose intended interpretation is an inner product. Recall that
an inner product space that is also a Banach space under the norm defined by
||v|| =

√
〈v,v〉 is called a Hilbert space.
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We consider the theories of vector spaces, normed spaces, Banach spaces etc.
with various restrictions on the dimension, e.g., the theory of all finite dimen-
sional inner product spaces. We write IP, resp., IPF, resp., IP∞ for the theories
of real inner product spaces where the dimension is unconstrained, resp., con-
strained to be finite, resp., constrained to be infinite, and HS, HSF and HS∞ for
the theories of Hilbert spaces with the corresponding constraints on the dimen-
sion. Completeness is guaranteed if the dimension is finite, so IPF = HSF.

A sentence in any of these languages that contains no vector-valued subex-
pressions is just a sentence in the first order language of the real field and its
truth is independent of the interpretation of the vector sort. If we can eliminate
all the vector quantifiers from a formula, then occurrences of the vector con-
stant 0 can readily be eliminated to give an equivalent formula in the first order
language of the real field.

If B is a basis for a vector space V , then we can define an inner product on
V by requiring 〈b,b〉 = 1 for b ∈ B and 〈b, c〉 = 0 for b, c ∈ B with b 6= c
and extending to V by bilinearity. Thus the theory of inner product spaces is a
conservative extension of the theory of vector spaces and a decision procedure
for the theory of inner product spaces is also a decision procedure for the theory
of vector spaces.

The key to decidability for inner product spaces is the fact that it takes at
most k degrees of freedom to decide a sentence containing k vector variables. I.e.,
a sentence P containing k vector variables is valid in all inner product spaces
iff it is valid in Rn for 0 ≤ n ≤ k. This is proved by considering a process that
replaces vector quantifiers by blocks of scalar quantifiers. The process transforms
a formula containing k vector variables into one which is equivalent in spaces of
dimension at least k and in which vector variables only appear within arithmetic
constraints on inner products (v,w), with v, w free. Applying the process to a
sentence P with k vector variables results in a sentence in the language of a real
field which is equivalent in dimensions k or higher. From P one can effectively
construct a sentence P |n containing no vector-valued subexpressions which is
valid iff P is valid in Rn. Writing Dn (resp. D≤n) for a sentence asserting that
the dimension of the space is n (resp. at most n), one finds that P is equivalent
to:

(D0 ∧ P |0) ∨ (D1 ∧ P |1) ∨ . . . ∨ (Dk−1 ∧ P |k−1) ∨ (¬D≤(k−1) ∧ P |k)

Applying the quantifier elimination algorithm for the first order theory of the
reals to the subformulae P |n, this leads to the following result:

Theorem 1 The theories IP, IPF, IP∞, HS, HSF and HS∞ are all decidable.

When we consider decidability for normed spaces we find that even the theory
of 2-dimensional spaces is undecidable and actually admits a primitive recursive
reduction of second order arithmetic. The proof uses the following fact that
is well-known to descriptive set theorists and others, but seems not to have
appeared in the literature in quite the form we need.
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Theorem 2 Let K be a (many-sorted) first-order language including a sort R,
constants 0 : R and 1 : R and function symbols + , × : R × R → R
whose intended interpretations form the field of the real numbers. Let M be
some class of structures for K in which R and these symbols have their intended
interpretations and let T be the theory of M, i.e., the set of all sentences valid
in every member of M. If there is a formula N(x) of K with one free variable
x of sort R such that in some structure in the class M, N(x) defines the set of
natural numbers (i.e., {x : R | N(x)} = N), then there is a primitive recursive
reduction of second order arithmetic to T .

Here is a sketch of the proof: one can write down a sentence Nat which
asserts that the subset of the reals defined by N(x) satisfies the Peano axioms,
and then, in any structure for the language in which the reals have their intended
interpretation, Nat holds iff N(x) does indeed define the natural numbers. Now
if P is any sentence in the language of Peano arithmetic, we may view P as
a sentence in the first order language of the reals and then construct a new
sentence P ∗ by relativizing all quantifiers to N(x) (i.e., ∀x· Q is replaced by
∀x· N(x) ⇒ Q and ∃x· Q is replaced by ∃x· N(x) ∧ Q). But then the sentence
Nat ⇒ P ∗ is in T iff it P is valid in arithmetic. This gives a reduction of first
order arithmetic to T . A reduction of second order arithmetic is obtained in a
similar way using real numbers to represent sets of natural numbers, e.g., using
n-ary expansions.

So, for example, this gives a very simple proof that the first order theory
of metric spaces is undecidable: in the metric space Z whose elements are the
integers with the distance defined by d(p,q) = |p − q|, we can clearly define
the natural numbers by the formula N(x) := ∃p q· x = d(p,q). By the above
theorem, the theory of metric spaces must therefore admit a primitive recursive
reduction of second order arithmetic and hence is undecidable.

Write NS, resp., NSn, resp., NSF, resp., NS∞ for the theories of normed
spaces where the dimension is unconstrained, resp., constrained to be n, resp.,
constrained to be finite, resp., constrained to be infinite, and write BS, BSn

etc. for the theories of Banach spaces with the corresponding constraints on the
dimension. We have the following theorem which implies that with the exception
of NS1 = BS1 (which is the same as the the theory of the real field) all of these
theories are undecidable.

Theorem 3 There is a primitive recursive reduction of second order arithmetic
to each of the theories BS, BS∞, NS, NSn = BSn, NSF = BSF, and NS∞ (n ≥ 2).

The proof is based on a construction of a 2-dimensional normed space X in
which a certain first order formula defines the natural numbers as a subset of the
field of scalars. By theorem 2, this immediately gives the result for NS2 = BS2

and NSF = BSF. The other parts of the result follow by considering the cartesian
product of X and a Hilbert space of appropriate dimension. X is constructed
by taking the norm whose unit disc is the “infinigon” D shown in figure 3. D
is the convex hull of the set comprising the two vectors ±e1 together with the
unit vectors ±vi on the lines through the origin and the points (i, 1), i ∈ Z.
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Fig. 3. The unit disc in the space X

Observing that the points ±vi are the isolated extreme points of the unit
disc, while the only non-isolated extreme points are the points ±e1, one finds
that the language of normed spaces is sufficiently expressive for us to characterise
the set of points (i, 1) for i ∈ Z and then it is easy to give a formula N(x) which
defines the natural numbers in X.

We say a formula is additive if the left operand of all multiplications in
the formula are rational constants. With a little care one can arrange for the
formula N(x) above to be additive and then with a little more geometric effort,
one can give an additive formula M(x, y, z) that in X defines the graph of the
multiplication function × : R × R → R. A variant of theorem 2 can then be
used to show that the that even the purely additive fragments of the various
theories of normed spaces and Banach spaces are undecidable.

On the positive side for normed spaces, we have the following result on the
existence of norms:

Theorem 4 Let x1, . . . ,xn be vectors in a real vector space V and b1, . . . , bn be
real numbers. Then there exists a norm || || on V such that ||xi|| = bi for all
1 ≤ i ≤ n iff:

– For all 1 ≤ i ≤ n, bi ≥ 0.
– For all 1 ≤ i ≤ n, if bi = 0 then xi = 0
– For each 1 ≤ k ≤ n there are no real numbers c1, . . . , cn such that some

xk =
∑n

i=1 c1xi with
∑n

i=1 |ci|bi < bk.

Now a quantifier-free formula P in the language of normed spaces containing
k free vector variables has a model iff it has a model of dimension k (since in
any model the subspace W spanned by the interpretations of the free vector
variables is again a model of dimension n ≤ k and then W × Rk−n gives a
model of dimension k). From this observation and theorem 4, one can effectively
transform P into a formula in the first order language of the real field that is
satisfiable iff P is. This gives a decision procedure for purely universal formulae
in the language of normed spaces. For purely additive formulae, there is a more
efficient procedure which uses a parametrised linear programming algorithm to
reduce the problem to linear real arithmetic. An implementation of the latter
procedure in HOL Light has proved to be a useful tool.
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4 Concluding Remarks

The approach to specification and verification of linear systems presented in
section 2 is simple and natural. But even in the simple case of finite-dimensional
inner product spaces, there are difficult issues to be addressed for mechanized
proof support. The decision procedures of section 3 give a starting point, but our
undecidability results show that there is much to be done in identifying useful
tractable fragments of theories and good heuristics. There are many fascinating
challenges ahead for mechanized reasoning in continuous problem domains.
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Constraint Modelling: A Challenge for First
Order Automated Reasoning

(extended abstract)

John Slaney

NICTA and the Australian National University

Abstract. The process of modelling a problem in a form suitable for
solution by constraint satisfaction or operations research techniques, as
opposed to the process of solving it once formulated, requires a signifi-
cant amount of reasoning. Contemporary modelling languages separate
the first order description or “model” from its grounding instantiation
or “data”. Properties of the model independent of the data may thus be
established by first order reasoning. In this talk, I survey the opportuni-
ties arising from this new application direction for automated deduction,
and note some of the formidable obstacles in the way of a practically
useful implementation.

1 Constraint Programming

A constraint satisfaction problem (CSP) is normally described in the following
terms: given a finite set of decision variables v1, . . . , vn with associated domains
D1, . . . , Dn, and a relation C(v1, . . . vn) betwen the variables, a state is an as-
signment to each variable vi of a value di from Di. A state is a solution to the
CSP iff C(d1, . . . , di) holds. In practice, C is the conjunction of a number of
constraints each of which relates a small number of variables. It is common to
seek not just any solution, but an optimal one in the sense that it minimises the
value of a specified objective function.

Mathematical programming is the special case in which the domains are
numerical (integers or real numbers) and the constraints are equalities or in-
equalities between functions (usually polynomial, nearly always linear, in fact)
of these. The techniques usable for numbers are so different from those for the
general case, however, that CP and MP are often seen as contrasting or even
opposing approaches.

Logically, C is a theory in a language in which the vi are proper names
(“constants” in the usual terminology of logic). A state is an interpretation of
the language over a domain (or several domains, if the language is many-sorted)
corresponding to the domains of the variables, and a solution is an interpretation
that satisfies C. On this view, CSP reasoning is the dual of theorem proving: it
is seeking to establish possibility (satisfiability) rather than necessity (unsatisfi-
ability of the negation).
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Techniques used to solve CSPs range from the purely logical, such as SAT
solving, through finite domain (FD) reasoning which similarly consists of a back-
tracking search over assignments, using a range of propagators appropriate to
different constraints to force some notion of local consistency after each assign-
ment, to mixed integer programming using a variety of numerical optimisation
algorithms. Hybrid solution methods, in which different solvers are applied to
sub-problems, include SMT (satisfiability modulo theories), column generation,
large neighbourhood search and many more or less ad hoc solver combinations
for specific purposes. The whole area has been researched intensively over the
last half century, generating an extensive literature from the automated reason-
ing, artificial intelligence and operations research communities. The reader is
referred to Dechter’s overview [3] for an introduction to the field.

Constraint programming is an approach to designing software for CSPs,
whereby a library of solvers is used in the same maner as libraries of mathe-
matical function computations. The search is controlled by a program written
in some high-level language (sometimes a logic programming language, but in
modern systems often C++ or something similar) and specific solvers may be
used to evaluate particular predicates or perform propagation steps, or may be
passed the entire problem after some preprocessing. CP platforms vary in the
degree to which they automate control of the propagation queue and the like, or
leave it in the hands of the programmer. The constraint programming paradigm
gives a great deal of flexibility, allowing techniques to be tailored to problems,
while at the same time accessing the power and efficiency of high-performance
CSP solvers.

1.1 Separating Modelling from Solving

Engineering a constraint program for a given problem is traditionally a two-phase
process. First the problem must be modelled. This is a matter of determining
what are the decision variables, what are their domains of possible values and
what constraints they must satisfy. Then a program must be written to evaluate
the model by using some solver or combinaton of solvers to search for solutions.
Most of the CP and OR literature concerns the second phase, assuming that
“the problem” resulting from the modelling phase is given.

In recent years, there has been a growing realisation of the importance of
modelling as part of the overall process, so modern CP or MP platforms feature
a carefully designed modelling language such as ILOG’s OPL [7] or AMPL from
Bell Labs [5]. Contemporary work on modelling languages such as ESRA [4],
ESSENCE [6] and Zinc [8] aims to provide a rich representation tool, with prim-
itives for manipulating sets, arrays, records and suchlike data structures and
with the full expressive power of (at least) first order quantification. It also aims
to make the problem representation independent of the solver(s) so that one and
the same conceptual model can be mapped to a form suitable for solution by
mixed integer programming, by SAT solving or by local search.

In the present report, the modelling language used will be Zinc, which is
part of the G12 platform currently under development by NICTA (Australia).
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My involvement is in designing and implementing the user environment for G12,
which will incorporate theorem proving technology along with much else. The
current theorem proving research is joint work with Peter Baumgartner.1

1.2 The G12 Platform

The G12 constraint programming platform provides a series of languages and
associated tools. At the base is Mercury [10, 2] , a logic programming language
with adaptations for contraint logic programming with a propagation queue
architecture (http://www.cs.mu.oz.au/research/mercury/). Below that are
the solvers, which include commercial ones like CPLEX, third party open source
ones like MiniSAT and many of our own. The API for incorporating solvers is
quite straihtforward. On the top level is the modelling language Zinc, of which
more below. Between Mercury and Zinc (remember your periodic table) is Cad-
mium, a very declarative programming language based on term rewriting, which
is designed for mapping one syntax to another and is used in G12 mainly to con-
vert Zinc specifications into simpler ones. For instance, they may be flattened
by unrolling quantifiers, or clausified, or expressed as linear programs or as SAT
problems.

G12 clearly separates the conceptual model, written in Zinc, from the design
model intended to be realised as a Mercury program. It also draws a distinction
between the model, which is a first order description of the generic problem,
and the data which are the facts serving to ground the model in a particular
instance. The commonly used distinction between facts and rules or “integrity
constraints” in deductive databases is somewhat similar.

G12 programs can be related to Zinc models in a spectrum of ways. It is
possible to write a constraint program to solve the problem, treating the Zinc
specification just as a guide, as is often done in conventional CP. The program
can throw the entire problem onto one solver such as CPLEX, or onto MiniSAT
as Paradox does, or can mix solvers in arbitrarily fine-grained ways to produce
hybrids tailored to individual problems. Alternatively, the program can take the
Zinc specification and data as input, in which case we think of it as a way of
evaluating the model over the data. It is even possible to avoid writing any
program, leaving the G12 system itself with its default mappings to do the
evaluation and writing only in Zinc. This last represents the closest approach
yet to the Holy Grail of high-level programming: one does not program at all;
one tells the computer what the problem is, and it replies with the solution.

1 We have benefitted greatly from being in a team that has included Michael Norrish,
Rajeev Gore, Jeremy Dawson, Jia Meng, Anbulagan and Jinbo Huang, and from the
presence in the same laboratory of an AI team including Phil Kilby, Jussi Rintanen,
Sylvie Thiébaux and others. The G12 project involves well over 20 researchers, in-
cluding Peter Stuckey, Kim Marriott, Mark Wallace, Toby Walsh, Michael Maher,
Andrew Verden and Abdul Sattar. The details of our indebtedness to these people
and their colleagues are too intricate to be spelt out here.
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Zinc Zinc is a typed (mostly) first order language. It has as basic types int,
float and bool, and user-defined finite enumerated types. To these are applied
the set-of, array-of, tuple, record and subrange type constructors. These
may be nested, with some restrictions mainly to avoid such things as infinite
arrays and explicitly higher order types (functions with functional arguments).
The type string is present, but is only used for formatting output. It also allows
a certain amount of functional programming, which is not of present interest.
It provides facilities for declaring decision variables of most types and constants
(parameters) of all types. Standard mathematical functions such as + and sqrt
are built in. Constraints may be written using the expected comparators such as
= and ≤ or user-defined predicates to form atoms, and the usual boolean connec-
tives and quantifiers (over finite domains) to build up compounds. Assignments
are special constraints whereby parameters are given their values. The values of
decision variables are not normally fixed in the Zinc specification, but have to
be found by some sort of search.

For details, see http://users.rsise.anu.edu.au/∼jks/zinc-spec.pdf.

Analysing models It is normal to place the Zinc model in one file, and the
data (parameters, assignments and perhaps some enumerations) in another. The
model tends to stay the same as the data vary. For example, without changing
any definitions or general specifications, a new schedule can be designed for
each day as fresh information about orders, jobs, customers and prices becomes
available.

The user support tools provided by the G12 development environment should
facilitate debugging and other reasoning about models independently of any
data. However, since the solvers cannot evaluate a model until at least the do-
mains are specified, it is unclear how this can be done. Some static visualisation
of the problem, such as views of the Zinc-level constraint graph, can help a little,
but to go much further we need a different sort of reasoning.

2 Deductive Tasks

There is no good reason to expect a theorem prover to be used as one of the
solvers for the purposes of a constraint programming platform such as G12.
Apart from the fact that typical constraint satisfaction problems are trivially
satisfiable—the main issue is optimality, not the existence of solutions—the rea-
soning required amounts to propagation of constraints over finite domains rather
than to chaining together complex inferences. For this purpose SAT solvers
and the like are useful, but traditional first order provers are not. However,
for analysing the models before they have been grounded by data, first order
deduction is the only option. The following tasks are all capable of automation:

1. Proof that the model is inconsistent.
Inconsistency can indicate a bug, or merely a problem overconstrained by
too many requirements. It can arise in “what if” reasoning, where the pro-
grammer has added speculative conditions to the basic description or it can
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arise where partial problem descriptions from different sources have been
combined without ensuring that their background assumptions mesh. Often,
inconsistency does not afflict the pure model, but arises only after part of
the data has been added, so detecting it can require a certain amount of
grounded reasoning as well as first order unification-driven inference.
A traditional debugging move, also useful in the other cases of inconsistency,
is to find and present a [near] minimal inconsistent core: that is, a minimally
inconsistent subset of the constraints. The problem of “axiom pinpointing”
in reasoning about large databases is similar, except that in the constraint
programming case the number of possible axioms tends to be comparatively
small and the proofs of inconsistency comparatively long. The advantage
of finding a first order proof of inconsistency, rather than merely analysing
nogoods from a backtracking search, is that there is some hope of presenting
the proof to a programmer, thus answering the question of why the particular
subset of constraints is inconsistent.

2. Proof of symmetry.
The detection and removal of symmetries is of enormous importance to fi-
nite domain search. Where there exist isomorphic solutions, there exist also
isomorphic subtrees of the search tree. Moreover, there can be thousands
or millions of solutions isomorphic to a given one, meaning that almost all
of the search is a waste of time and can be eliminated if the symmetries
are detected early enough. A standard technique is to introduce “symmetry
breakers”, which are extra constraints imposing conditions satisfied by some
but not all (preferably exactly one) of the solutions in a symmetry class.
Symmetry breakers prevent entry to subtrees of the search tree isomorphic
to the canonical one.
It may be evident to the constraint programmer that some transformation
gives rise to a symmetry. Rotating or reflecting the board in the N Queens
problem would be an example. However, other cases may be less obvious,
especially where there are side constraints that could interfere with symme-
try. Moreover, it may be unclear whether the intuitively obvious symmetry
has been properly encoded or whether in fact every possible solution can be
transformed into one which satisfies all of the imposed symmetry breakers.
It is therefore important to be able to show that a given transformation
defined over the state space of the problem does actually preserve the con-
straints, and therefore that it transforms solutions into solutions. Since sym-
metry breakers may be part of the model rather than part of the data, we
may wish to prove such a property independently of details such as domain
sizes. There is an example in the next section.

3. Redundancy tests.
A redundant constraint is one that is a logical consequence of the rest. It
is common to add redundant constraints to a problem specification, usually
in order to increase the effect of propagation at each node of the search
tree. Sometimes, however, redundancy may be unintentional: this may indi-
cate a bug—perhaps an intended symmetry-breaker which in fact changes
nothing—or just a clumsy encoding. Some constraints which are not redun-
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dant in the model may, of course, become redundant when the data are
added.

Where redundant constraints are detected, either during analysis of the
model or during preprocessing of the problem including data, this might use-
fully be reported to the constraint programmer who can then decide whether
such redundancy is intentional, whether it matters or not, and whether the
model should be adjusted in the light of this information. It may also be
useful to report irredundancy where a supposedly redundant constraint has
been added: the programmer might usefully be able to request a redundancy
proof in such a case.

4. Functional dependency.

The analogue at the level of functions of redundancy at the level of propo-
sitions is dependency in the sense that the values of certain functions may
completely determine the value of another for all possible arguments. As in
the case of constraint redundancy, functional dependence may be intentional
or accidental, and either way it ay be useful to the constraint programmer
to know whether a function is dependent or not.

Consider graph colouring as an example. It is obvious that in general (that
is, independently of the graph in question) the extensions of all but one of
the colours are sufficient to fix the extension of the final one, but that this
is not true of any proper subset of the “all but one”. In the presence of side
constraints, however, and especially of symmetry breakers, this may not be
obvious at all. In such cases, theorem proving is the appropriate technology.

5. Equivalence of models.

It is very common in constraint programming that different approaches to a
given problem may result in very different encodings, expressing constraints
in different forms and even using different signatures and different types. The
problem of deciding whether two models are equivalent, even in the weak
sense that solutions exist for the same values of some parameters such as
domain sizes, is in general hard. Indeed, in the worst case, it is undecidable.
However, hardness in that sense is nothing new for theorem proving, so there
is reason to hope that equivalence can often enough be established by the
means commonly used in automated reasoning about axiomatisations.

6. Simplification

A special case of redundancy, which in turn is a special case of model equiv-
alence, occurs in circumstances where the full strength of a constraint is not
required. A common example is that of a biconditional (⇔) where in fact
one half of it (⇒) would be sufficient. Näıve translation between problem
formulations can easily lead to unnecessarily complicated constraints such as
x < sup(S) which is naturally rendered as ∃y ∈ S((∀z ∈ S.z ≤ y) ∧ x < y),
while the simpler ∃y ∈ S.x < y would do just as well. Formal proofs of the
correctness of simplifications can usefully be offered to the programmer at
the model analysis stage.
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int: N;

array[1..N] of var int: q;

constraint forall (x in 1..N, y in 1..x-1) (q[x] != q[y]);

constraint forall (x in 1..N, y in 1..x-1) (q[x]+x != q[y]+y);

constraint forall (x in 1..N, y in 1..x-1) (q[x]-x != q[y]-y);

solve satisfy;

Fig. 1. Zinc model for the N Queens problem

2.1 Preliminary experiments

Our experiments are very much work in progress, so we are in a position only
to report preliminary findings rather than the final word. Here are comments on
just two toy examples, more to give a flavour than to present systematic results.

Proving symmetry We consider the N Queens problem, a staple of CSP
reasoning. N queens are to be placed on an a chessboard of size N ×N in such
a way that no queen attacks any other along any row, column or diagonal. The
model is given in Figure 1 and the data consists of one line giving the value of N
(e.g. ‘N = 8;’). Suppose that as a result of inspection of this problem for small
values of N it is conjectured2 that the transformation s[x] = q[n + 1 − x] is a
symmetry. We wish to prove this for all values of N . That is, we need a first
order proof that the constraints with s substituted for q follow from the model as
given and the definition of s. Intuitively, the result is obvious, as it corresponds
to the operation of reflecting the board, but intuitive obviousness is not proof
and we wish to see what a standard theorem prover makes of it.

The prover we took off the shelf for this experiment was Prover9 by McCune
[9]. Clearly a certain amount of numerical reasoning is required, for which ad-
ditional axioms must be supplied. The full theory of the integers is not needed:
algebraic properties of addition and subtraction, along with numerical order,
seem to be sufficient. All of this is captured in the theory of totally ordered
abelian groups, which is quite convenient for first order reasoning in the style of
Prover9. We tried two encodings: one in terms of the order relation ≤ and the
other an equational version in terms of the lattice operations max and min.

The first three goals:
(1 ≤ x ∧ x ≤ n) ⇒ 1 ≤ s(x)
(1 ≤ x ∧ x ≤ n) ⇒ s(x) ≤ n
s(x) = s(y) ⇒ x = y

are quite easy for Prover9 when s(x) is defined as q(n + 1− x). By contrast, the
other two

(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n) ⇒ s(x) + x 6= s(y) + y
(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n) ⇒ s(x)− x 6= s(y)− y

are not provable inside a time limit of 30 minutes, even with numerous helpful
lemmas and weight specifications to deflect useless subformulae like q(q(x)) and
2 In fact, there is experimental software to come up with such conjectures automati-

cally.
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q(n). It makes little difference to these results whether the abelian l-group axioms
are presented in terms of the order relation or as equations.

To push the investigation one more step, we also considered the transforma-
tion obtained by setting s to q−1. This is also a symmetry, corresponding to
reflection of the board about a diagonal, or rotation through 90o followed by
reflection as above. This time, it was necessary to add an axiom to the Queens
problem definition, as the all-different constraint on q is not inherited by s.
The reason is that for all we can say in the first order vocabulary, N might
be infinite—e.g. it could be any infinite number in a nonstandard model of the
integers—and in that case a function from {1 . . . N} to {1 . . . N} could be injec-
tive without being surjective.

The immediate fix is to add surjectivity of the ‘q’ function to the problem
definition, after which in the relational formulation Prover9 can easily deduce
the three small goals and the first of the two diagonal conditions. The second is
beyond it, until we add the redundant axiom

x1 − y1 = x2 − y2 ⇒ x1 − x2 = y1 − y2

With this, it finds a proof in a second or so. In the equational formulation, no
proofs are found in reasonable time.

The more general issue, however, is that many CSP encodings make implicit
use of the fact that domains are finite, as a result of which it may be impossible
to deduce important properties by first-order reasoning without fixing bounds
on parameters. If theorem proving is to be a useful tool in G12, ways will have
to be found to circumvent such difficulties, issuing warnings if necessary.

Another message from the experiments is that a lot of arithmetical reasoning
tricks and transformations will have to be identified and coded into the system.
The above transformation of equalities between differences (and its counterparts
for inequalities) illustrates this.

An encouraging feature is that a considerable amount of the reasoning turns
only on algebraic properties of the number systems, and so may be amenable to
treatment by standard first order provers.

Proving redundancy A toy example of redundant constraints is found in the
following logic puzzle [1]:

On June 1st, five couples will celebrate their wedding anniversaries. Their
surnames are Johnstone, Parker, Watson, Graves and Shearer. The husbands’
given names are Russell, Douglas, Charles, Peter and Everett. The wives’ given
names are Elaine, Joyce, Marcia, Elizabeth and Mildred.

1. Joyce has not been married as long as Charles or the Parkers, but longer
than Douglas and the Johnstones.

2. Elizabeth has been married twice as long as the Watsons, but only half as
long as Russell.

3. The Shearers have been married ten years longer than Peter and ten years
less than Marcia.

4. Douglas and Mildred have been married for 25 years less than the Graves
who, having been married for 30 years, are the couple who have been
married the longest.
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5. Neither Elaine nor the Johnstones have been married the shortest amount
of time.

6. Everett has been married for 25 years

Who is married to whom, and how long have they been married?

Parts of clue 1, that Joyce has been married longer than Douglas and also longer
than the Johnstones, are deducible from the other clues. Half of clue 5, that
Elaine has not been married the shortest amount of time, is also redundant. The
argument is not very difficult: a little arithmetical reasoning establishes that the
five numbers of years married are 5, 10, 20, 25 and 30 (three of them are 30, 5
and 25, and the five contain a sequence of the form x, 2x, 4x). Mildred has been
married for 5 years (clue 4) from which it quickly follows that both Elaine and
Joyce have been married for longer than Mildred and therefore than Douglas.
That Joyce has been married for longer than the Johnstones is a slightly more
obscure consequence of the other clues, but a finite domain constraint solver has
no difficulty with it.

Presenting the problem of deriving any of these redundancies to Prover9 is
not easy. The small amount of arithmetic involved is enough to require a painful
amount of axiomatisation, and even when the addition table for the natural
numbers up to 30 is completely spelt out, making use of that to derive simple
facts such as those above is beyond the abilities of the prover. Even given an
extra clause stating that the five numbers involved are 5, 10, 20, 25 and 30, in
ten thousand iterations of the given clause loop it gets nowhere near deducing
that Joyce has been married for longer than Douglas.

If the fact that the numbers of years are all in the set {5, 10, 15, 20, 25, 30} is
given as an axiom, and extra arguments are given to all function and relation
symbols to prevent unification across sorts, then of course the redundancy proofs
become easy for the prover. However, it is unreasonable to expect that so much
help will be forthcoming in general. Even requiring just a little of the numerical
reasoning to be carried out by the prover takes the problem out of range.

Part of the difficulty is due to the lack of numerical reasoning, but as before,
forcing the problem statement into a single-sorted logic causes dramatic inef-
ficiency. It is also worth noting that the proofs of redundancy are long (some
hundreds of lines) and involve nearly all of the assumptions, indicating that ax-
iom pinpointing is likely to be useless for explaining overconstrainedness at least
in some range of cases.

2.2 Conclusions

While, as noted, the investigation is still preliminary, some conclusions can al-
ready be drawn. Notably, work is required on expanding the capacities of con-
ventional automatic theorem provers:

1. Numerical reasoning, both discrete and continuous, is essential. The the-
orems involved are not deep—showing that a simple transformation like
reversing the order 1 . . . N is a homomorphism on a model or restricting
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attention to numbers divisible by 5—but are not easy for standard theorem
proving technology either. Theorem provers will not succeed in analysing
constraint models until this hurdle is cleared.

2. Other features of the rich representation language also call for specialised
reasoning. Notably, the vocabulary of set theory is pervasive in CSP models,
but normal theorem provers have difficulties with the most elementary of
set properties. Some first order reasoning technology akin to SMT, whereby
specialist modules return information about sets, arrays, tuples, numbers,
etc. which a resolution-based theorem prover can use, is strongly indicated.
Theory resolution is the obvious starting point, but is it enough?

3. Many-sorted logic is absolutely required. There are theorem provers able to
exploit sorts, but most do not—a telling point is that TPTP still does not
incorporate sorts in its notation or its problems.

4. Constraint models sometimes depend on the finiteness of parameters. Sim-
ple facts about them may be unprovable without additional constraints to
capture the effects of this, as illustrated by the case of the symmetries of the
N Queens problem. This is not a challenge for theorem provers as such but
rather for the process of preparing constraint models for first order reasoning.

5. In some cases, proofs need to be presented to human programmers who are
not working in the vocabulary of theorem proving, who are not logicians, and
who are not interested in working out the details of complicated pramodula-
tion inferences. Despite some efforts, the state of the art in proof presentation
remains lamentable. This must be addressed somehow.

Despite the above challenges, and perhaps in a sense because of them, con-
straint model analysis offers an exciting range of potential rôles for automated
deduction. Constrait-based reasoning has far wider application than most can-
vassed uses of theorem provers, such as software verification, and certainly con-
nects with practical concerns much more readily than most of [automated] pure
mathematics. Reasoning about constraint models without their data is a niche
that only first (or higher) order deductive systems can fill. Those of us who
are concerned to find practical applications for automated reasoning should be
working to help them fill it.
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1 Introduction

The ESHOL sessions of the PAAR workshop focussed on the use of higher-order
reasoning systems. A particular focus was on means to evaluate higher-order
reasoning systems. The notion of higher-order included, but was not limited to,
ramified type theory, simple type theory, intuitionistic and constructive type
theory, and logical frameworks. The notion of reasoning systems included auto-
mated and semi-automated provers, model generators, as well as proof and model
checkers. There were two parts to the ESHOL sessions: (i) higher-order system
demonstrations, and (ii) a panel discussion. Additionally, one of the PAAR in-
vited speakers, Rob Arthan, gave a talk in the ESHOL topic area.

2 Higher-order System Demonstrations

The following higher-order systems were demonstrated in the system demon-
stration sessions. Each presenter gave a 10 minute “talk” slot to present the
system to the audience in the traditional laptop+projector mode (giving a brief
overview of the system and a demonstration of it running and solving some of
the problems in Appendix A). Following the 10 minute presentations there was
an open forum during which presenters were all available to give individual and
more detailed information and demonstrations.

– Coq, Guillaume Melquiond
– Delphin, Carsten Schürmann
– HOL, Joe Hurd
– Isabelle, Stefan Berghofer
– IsaPlanner, Lucas Dixon
– LEO-II, Christoph Benzmüler and Frank Theiss
– Mizar, Josef Urban
– Omega, Frank Theiss and Christoph Benzmüller
– ProofPower, Rob Arthan
– TPS, Mark Kaminski
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3 Panel Discussion

The ESHOL panelists were Rob Arthan, Lucas Dixon, and Joe Hurd. The panel
discussed ideas, suggestions, and potential problems related to:

– The buildup of an higher-order TPTP infrastructure.
– The development of automated reasoning systems for higher-order logic (or

fragments of it).
– Promising application areas for automated higher-order reasoning systems.
– The planned organization of a higher-order CASC at CADE-22 in 2009.
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A Sample Problems for System Demonstrations

The two first problems should be simple enough for every system, to provide
a starting point for comparisons and discussion. The third example is Cantor’s
Theorem, which might be more difficult. The problems are presented in the
TPTP “THF” language for simple type theory, which was recently developed by
the organizers [1]. The language is based on Church’s simple type theory, and is
a syntactically conservative extension of the untyped first-order TPTP language.
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A.1 Puzzle Example

%------------------------------------------------------------------------

thf(islander,type,( islander: $i )).

thf(knight,type,( knight: $i )).

thf(knave,type,( knave: $i )).

thf(says,type,( says: $i > $o > $o )).

thf(zoey,type,( zoey: $i )).

thf(mel,type,( mel: $i )).

thf(is_a,type,( is_a: $i > $i > $o )).

thf(kk_6_1,axiom,(

! [X: $i] :

( ( is_a @ X @ islander )

=> ( ( is_a @ X @ knight )

| ( is_a @ X @ knave ) ) ) )).

thf(kk_6_2,axiom,(

! [X: $i] :

( ( is_a @ X @ knight )

=> ! [A: $o] :

( ( says @ X @ A ) => A ) ) )).

thf(kk_6_3,axiom,

! [X: $i] :

( ( is_a @ X @ knave )

=> ! [A: $o] :

( ( says @ X @ A ) => ~ ( A ) ) )).

thf(kk_6_4,axiom,

( ( is_a @ zoey @ islander )

& ( is_a @ mel @ islander ) )).

thf(kk_6_5,axiom,

( says @ zoey @ ( is_a @ mel @ knave ) )).

thf(kk_6_6,axiom,

( says @ mel

@ ~ ( ( is_a @ zoey @ knave )

| ( is_a @ mel @ knave ) ) )).

thf(query,theorem,(

? [Y: $i,Z: $i] :

( ( ( Y = knight )

<~> ( Y = knave ) )

& ( ( Z = knight )

<~> ( Z = knave ) )

& ( is_a @ mel @ Y )

& ( is_a @ zoey @ Z ) ) )).

%------------------------------------------------------------------------
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A.2 Set Theory Example

%-----------------------------------------------------------------------

%----Signatures for basic set theory predicates and functions.

thf(const_in,type,(

in: $i > ( $i > $o ) > $o )).

thf(const_intersection,type,(

intersection: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) )).

thf(const_union,type,(

union: ( $i > $o ) > ( $i > $o ) > ( $i > $o ) )).

%----Some axioms for basic set theory.

thf(ax_in,axiom,(

( in

= ( ^ [X: $i,S: ( $i > $o )] :

( S @ X ) ) ) )).

thf(ax_intersection,axiom,(

( intersection

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

& ( in @ U @ S2 ) ) ) ) )).

thf(ax_union,axiom,(

( union

= ( ^ [S1: ( $i > $o ),S2: ( $i > $o ),U: $i] :

( ( in @ U @ S1 )

| ( in @ U @ S2 ) ) ) ) )).

%----The distributivity of union over intersection.

thf(thm_distr,conjecture,(

! [A: ( $i > $o ),B: ( $i > $o ),C: ( $i > $o )] :

( ( union @ A @ ( intersection @ B @ C ) )

= ( intersection @ ( union @ A @ B ) @ ( union @ A @ C ) ) ) )).

%------------------------------------------------------------------------

A.3 Cantor’s Theorem

%------------------------------------------------------------------------

thf(surjectiveCantorThm,conjecture,(

~ ( ? [G: $i > $i > $o] :

! [F: $i > $o] :

? [X: $i] :

( ( G @ X )

= F ) ) )).

%------------------------------------------------------------------------
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Abstract. Bit vectors and bit operations are proposed for efficient
propositional inference. Bit arithmetic has efficient software and hard-
ware implementations, which can be put to advantage in Boolean sati-
sability procedures. Sets of variables are represented as bit vectors and
formulæ as matrices. Symbolic operations are performed by bit arith-
metic. As examples of inference done in this fashion, we describe ground
resolution and ground completion.

“It does take a little bit of inference.”

– Tony Fratto, Deputy Press Secretary, USA

1 Introduction

Boolean satisfiability, though NP-complete, is a problem that is solved on a
daily basis with real-life industrial instances comprising millions of variables
and clauses. See, for example, [18].

1.1 The Problem

Suppose B is a Boolean formula and p1, . . . , pv are its propositional variables.
The Boolean satisfiability (SAT) problem is to find an assignment of truth values
(0 and 1) to a subset of the variables, such that the formula becomes a tautology,
or else to determine that no such assignment exists, in which case the formula
is unsatisfiable.

Formulæ are often framed in clausal form. A literal is any variable pj or its
negation pj. A clause c is a (multi-) set of positive and negative literals, intending
their disjunction. A (clausal) formula C is a set or list of clauses, intending their
conjunction.

1.2 An Idea

Bit arithmetic enjoys efficient software and hardware implementations. These
can be put to great advantage in satisfiability procedures. Sets of variables can
be represented as bit vectors, rather than as (linked) lists, or tries. Formulæ
would be represented as matrices, rather than as linked lists or binary decision
diagrams [5]. Symbolic operations are, accordingly, replaced by bit arithmetic.
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1.3 Related Work

There has been considerable work on the use of reconfigurable hardware for SAT
solving in general or for individual instances (e.g. [24,22]). In contrast, here we
are interested in leveraging the native operations of binary hardware for the
problem.

1.4 This Paper

The use of bit operations on large bit arrays for the purpose of large-scale propo-
sitional inference, as elaborated here, appears to be novel.

The next section shows how formulæ are encoded as vectors of bits. As exam-
ples of the use of bit operations, the following two sections consider two impor-
tant families of propositional inference, namely, ground resolution and ground
completion. Ground resolution is the resolution rule for variable-free clauses,
as used for SAT in [8]. Ground completion is an inference rule for variable-free
equations, using equations from left-to-right to replace “equals-by-equals”. The
final two sections discuss aspects of the practicality of the suggestion.

2 Representation

A clause c can be represented by two bit vectors c

0[1: v] and c

1[1: v], where v

is the number of bits in the vector, c

0[j] = 1 iff the negative literal pj occurs
in c, and c

1[j] = 1 iff the positive literal pj occurs therein. Thus, a variable pk

(or literal pk) is identified with the vector containing a single 1 in position k

(or k + v, respectively). Let c also denote the 2v-bit-long concatenation of c

0

and c

1, symbolized c

0⌢
c

1, and c

∗ the reverse concatenation c

1⌢
c

0. To encode a
tautological clause “true”, one can add a bit in the 0th position, c[0], to clauses
c, and use ⊤ to abbreviate the corresponding vector p0.

The standard set operations will denote the corresponding bit-vector func-
tions. For example, ∩ represents logical-and and ∅ is the zero-vector, which
corresponds to the value false. So, if c

0 ∩ c

1 6= ∅, then c is tautological, as it
includes both a literal and its negation. Symmetric-difference (exclusive-or) is
⊕. Set difference can be obtained in two steps when it is not directly available:
x\ y = x∩y. We will let ‖c‖ count the number of ones (the “population count”)
in vector c. Inequalities of bit vectors treat the low-index bits as most significant.
It is customary to also use 0 and 1 for false and true, respectively.

A binomial equation e

L = e

R between Boolean monomials (products of
propositional variables) can likewise be represented as two bit vectors e

L[1: v]
and e

R[1: v], where e

L[j] = 1 iff the variable pj occurs in the left side e

L and
e

R[j] = 1 iff it occurs in the right side e

R. In this case, the most significant
bits e

L[0] and e

R[0] can conveniently be set to indicate the monomial 0 (false),
regardless of the values of other bits (thinking of the zero-bit as indicating a
0-factor). Thus, p0 represents the truth constant false, but so does any vector
with its most significant bit on. Accordingly, the truth constant true is denoted
by the zero-vector (empty monomial) ∅.
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A list C of n clauses c1, . . . , cn may be represented as a pair of n × (v + 1)
matrices, C

0 and C

1, where C

r[i, j] = 1 iff c

r
i [j] = 1 (for r = 0, 1). To refer to

the whole jth column, one can write C

r[∗, j] (r = 0, 1, or blank). All or half of
the ith row, C

r[i, ∗], is just c

r
i (r = 0, 1, or blank, for left half, right half, or both

halves, respectively). Similarly, a list of n Boolean equations may be represented
as a pair of matrices, C

L and C

R, for left and right sides of equations.

3 Resolution

A clause is empty, and hence unsatisfiable, if c = ∅ (that is, ‖c‖ = 0). A clause
is a unit if ‖c‖ = 1, which coerces the truth value of its one literal. A clause is
trivial (tautological), and may be deleted, if c

0∩c

1 6= ∅, since it disjoins a literal
and its complement. To delete a clause, we will set its (high-order) 0-bit to 1.
Two clauses c and d resolve on pk if c

∗ ∩ d = pk, for some (positive or negative)
literal pk, producing a new clause (c ∪ d) \ (pk ∪ p

∗

k). The resultant clause may
be empty or a unit, but resolving non-units yields a non-empty clause.

Resolution provers invariably include simplification stages, such as unit prop-
agation and subsumption, which we discuss next.

3.1 Unit Propagation

A unit clause c propagates and simplifies clause d if c

∗ ⊆ d, in which case the re-
sult is d

′ = d \ c

∗. If the result d

′ is empty (d = c

∗), the problem is unsatisfiable.
If the result is a unit, then d

′ can be used in the same fashion. Binary con-

straint propagation (BCP) is the repeated application of subsumption by units
and unit propagation – until no further simplifications are possible. BCP is a
central component of the Davis-Putnam-Logemann-Loveland backtracking SAT
procedure [7], and its modern incarnations. It is expensive (typically consuming
80–90% of the running time), but is not necessary for completeness (and can
significantly degrade proof search; see [11]).

Let n be the number of clauses, and let u[0: 2v] be a bit-vector of length
2v + 1. At the conclusion of the algorithm in Fig. 1, all the units obtained by
propagating the clauses of C will be marked in u. The n-step main loop repeats
at most v times. An empty clause ci means the problem is unsatisfiable. To
delete a row, we set ci := ⊤; it would be enough to let ci[0] := 1. The matrix
can be compacted by removing the deleted rows (at any juncture) and/or the
columns marked in u (after any complete pass).

3.2 Subsumption

Clause c subsumes clause d if c ⊆ d, in which case d is superfluous. For this to
be the case, we must have c ≤ d, as binary numbers, but this is an insufficient
condition. Using standard operations, c ⊆ d iff c ∪ d = d.

Subsumption is more expensive than unit propagation and should normally
be preceded by BCP. It can be implemented like sorting, with the addition of
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u := ∅

b := true

while b do

b := false

for i := 1, . . . , n do

if u ∩ ci = ∅

then ci := ci \ u∗

if ci = ∅ then fail

if ‖ci‖ = 1
then u := u ∪ ci

b := true

else ci := ⊤

Fig. 1. Binary constraint propagation

for i := 1, . . . , n − 1 do

if ci 6= ⊤ then

for j := i + 1, . . . , n do

if ci > cj

then if cj ⊆ ci

then ci := cj

cj := ⊤
else cj :=: ci

else if ci ⊆ cj

then cj := ⊤

Fig. 2. Subsumption

checking whether the smaller of any pair subsumes the larger, in which case, the
larger is deleted – for a cost of O(n lg n) vector-operations to check all clauses.
Deleted rows should be removed. For an n

2 version, à la selection sort, see Fig. 2.
Subsumption is often not cost-effective in standard implementations, but might
be in this context. (Satellite [3,12], interestingly, does use bit vectors to estimate
the applicability of subsumption.)

Other implementations of these algorithms, taking advantage of matrix op-
erations, are conceivable.

3.3 The Davis-Putnam Resolution Procedure

The original Davis-Putnam (DP) procedure resolves clauses, variable by vari-
able [8]. See Fig. 3. There are various heuristics for ordering the variables, such
as choosing the one that appears in the most clauses. Columns can be presorted
to reflect such policies. BCP can be incorporated, and perhaps subsumption,
taking into account that the literals pk and pk are removed with each iteration
on k.
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m := n

for k := 1, . . . , v do

n := m

for i := 1, . . . , n − 1 do

for j := i + 1, . . . , n do

if ci ∩ c∗j ⊂ (pk ∪ pk)
then m := m + 1

cm := (ci ∪ cj) \ (pk ∪ pk)
if cm = ∅ then fail

Fig. 3. Davis-Putnam resolution

m := 0
k := n

while k > m do

n := m

m := k

for i := 1, . . . , m do

for j := n + 1, . . . , m do

if eL
i ⊆ eR

j

then eR
j := eR

j \ eL
i ∪ eR

i

if eL
i ⊆ eL

j

then eL
j := eL

j \ eL
i ∪ eR

i

if eR
j > eL

j then ej := e∗j
else if eL

i ∩ eL
j 6= ∅

then k := k + 1
eL

k := eL
j \ eL

i ∪ eR
i

eR
k := eL

i \ eL
j ∪ eR

j

if eR
k > eL

k then ek := e∗k

Fig. 4. Knuth-Bendix completion

4 Completion

Knuth-Bendix completion [14], and its extensions, repeatedly finds overlaps be-
tween equations (using only the larger side of any equation), to infer new equa-
tions. (In contrast, paramodulation [23] looks at both sides of equations.) Equa-
tional reasoning provides an alternative inference paradigm to propositional rea-
soning, with equations in completion playing an analogous rôle to clauses in
resolution.

We are interested in the ground (variable-free) case of completion, where the
operations are associative and commutative [1,16,17]. As examples of completion
in the realm of Boolean formulæ, we will consider ground Horn-clause theories
and Gaussian elimination over Z2.
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b := true

while b do

b := false

for i := 1, . . . , n − 1 do

for j := i + 1, . . . , n do

if eL
i ⊆ eL

j

then eL
j := eL

j \ eL
i ∪ eR

i

if eR
j > eL

j then eL
j :=: eR

j

b := true

if eL
i ⊆ eR

j

then eR
j := eR

j \ eL
i ∪ eR

i

b := true

Fig. 5. Inter-reduction

4.1 Horn-Clause Completion

A clause is Horn if it has at most one positive literal. A Horn clause p0 ∨ ¬p1 ∨
· · ·∨¬pn is equivalent to the binomial equation p0p1 · · · pn = p1 · · · pn; a negative
Horn clause ¬p1∨· · ·∨¬pn is equivalent to the monomial equation p1 · · · pn = 0.
See [4] for details regarding such representations.

Two equations ei and ej are critical iff e

L
i ∩ e

L
j 6= ∅. The critical equation

(or critical pair) is e

L = e

R, where e

L := e

L
j \ e

L
i ∪ e

R
i and e

R := e

L
i \ e

L
j ∪ e

R
j .

Critical equations may need to be oriented. Knuth-Bendix (KB) completion
(or the analogous Gröbner basis construction [6]) is the repeated generation of
critical pairs, interleaved with inter-reduction.

In this manner, completion serves as the inference engine, generating critical
pairs from the equational representation of Horn clauses, as shown in Fig. 4.

4.2 Reduction

A major component of completion is simplification, akin to demodulation [23],
by which we mean using equations in one direction to “simplify” other equations
(with respect to some measure).

An oriented equation e

L = e

R is unitary and can be used to simplify in any
of the following three cases:

– Positive Unit. If e

R = ∅, then the equation signifies e

L = 1 (since we agreed
in Sect. 2 to interpret ∅ as truth). It follows that pi = 1 for every pi ∈ e

L.
Apply e

R = ∅ to a monomial m by removing the (superfluous) positive bits:
m := m \ e

R.
– Negative Unit. If ‖eL‖ = 1 and e

R[0] = 1, then pk = 0 for the pk ∈ e

L.
Apply pk = 0 by zeroing any monomial in which it appears: if m[k] then

m[0] := 1.
– Unit Equivalence. If ‖eL‖ = ‖eR‖ = 1 and e

L[0] = e

R[0] = 0, then pk = pj

for the pk ∈ e

L and pj ∈ e

R. Apply pk = pj by replacing occurrences of pk

with pj : if m[k] then m[j] := 1.
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i := 1
k := 1
while k ≤ v ∧ i ≤ n do

m := i

while m ≤ n ∧ ¬cm[k] do m := m + 1
if m ≤ n then

cm :=: ci

for j := 1, . . . , i − 1, m + 1, . . . , n do

if cj [k] then cj := cj ⊕ ci

i := i + 1
k := k + 1

Fig. 6. Gaussian elimination

The results of such unit simplifications can propagate as in resolution.
More generally, an equation e

L = e

R can be used to simplify a monomial m

provided all the variables in e

L appear in m, that is, when e

L ⊆ m. The rewrite

step is the assignment m := m \ e

L ∪ e

R. If we use the 0-bit to signify the term
0, as explained above, then reducing products to 0 works as expected.

The lexicographic ordering of monomials is ordinary bit-string inequality. An
equation c needs to reoriented if e

R
> e

L, which may transpire after reducing a
left side. Other orderings are possible.

To inter-reduce a system C of equations, applying all equations to all
equations, as much as possible, first sort C in ascending order according to
〈‖eR‖ − ‖eL‖, eL

, e1〉 and then apply the algorithm in Fig. 5. The idea is that
reducing with a “rewrite rule” ℓ → r decreases the binary value of the string
it is applied to by ‖ℓ‖ − ‖r‖, and, long range, one wants to maximize the de-
creases obtained with each reduction, so as to converge as quickly as possible.
This näıve program can presumably still require exponentially many vector oper-
ations, but hopefully much better algorithms for inter-reduction can be devised
(compare the non-commutative case [13,21]). One may prefer to limit reduction
to equations with few variables on the left.

4.3 Gaussian Elimination

A linear equation over Z2 takes the form P = 0, where P is an exclusive dis-
junction of some of the propositional variables p1, . . . , pv. (Since we are using ⊕,
coefficients are 0 or 1.)

We represent an equation P = 0 as a bit vector c of length v+1, where c[k] = 1
iff pk is a summand in P and p0 is the constant 1. Adding (or subtracting) a linear
equation c to d is just d := d ⊕ c. A standard quadratic (vn vector operations)
Gaussian elimination procedure is given in Fig. 6.

When (after elimination, say) ‖c‖ ≤ 2, the equation c is unitary and is of
one of the following three forms: pk = 0, pk = 1, or pk = pj , for some k ≥ 1 and
1 ≤ j 6= k.
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LOAD 0, ci0

OR 0, cj0

LOAD 2, ci0

AND 2, cj1

DIFF 0, 2

STORE 0, c0

LOAD 0, ci1

OR 0, cj1

LOAD 2, ci1

AND 2, cj0

DIFF 0, 2

STORE 0, c0

Fig. 7. A resolution step in an assembly language

4.4 Combining the Two

For non-Horn clauses, one needs also to incorporate negation in some form.
The BinLin representation of propositional formulæ, proposed in [9,10], uses a
combination of equations between monomials and linear equations over Z2 to
represent propositional formulæ in exclusive-or (Boolean ring) normal-form. It
provides an alternative to other propositional satisfiability procedures, whether
search-based, saturation-based, or hybrid intersection-based methods. In this for-
malism, variables and equations are added in a satisfiability-preserving fashion,
to obtain a set of binomial equations and a set of linear Boolean equations. The
binomials undergo inter-reduction and the linear equations undergo Gaussian
elimination. Unitary equations are propagated among both sets. This method,
too, can be implemented naturally within the framework proposed here.

5 Implementation

Most of the bit-vector operations used in the above sections are readily available
on digital computers. Some processors, even way back to the IBM Stretch, pro-
vide a hardware instruction for the number of ones in a machine word; in any
case, computing ‖c‖ requires only a few machine instructions [2, No. 169]. Most
operations are also available in many software languages (e.g. C). They are all
easy to implement in general-purpose or special-purpose hardware.

For example, resolving two single-word (or double-word – for machines with
double-word operations) clauses requires approximately 12 machine instructions.
Thus v variables require 12⌈v/w⌉ instructions on a w-bit machine. For example,
if w = 64 and v = 1000, fewer than 200 machine instructions are needed. See
Fig. 7. This should be contrasted with the large number of machine operations
used in a pointer-based implementation.

For large (but presumably sparse) vectors, (iterated) summary bits should
prove helpful. (The summary bit for a subvector x is 0 iff x = 0.) Column
operations, such as erasing all occurrences of a true propositional variable, may
be sped up by also maintaining transpose matrices [20].

Industrial-strength problems can easily involve hundreds of thousands of vari-
ables and millions of clauses. The storage requirements for a bit matrix of that
size is in the hundreds-of-gigabyte range. Given enough storage, full-fledged n lg n

subsumption would take a few minutes on a 5000 MIPS 64-bit machine.
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6 Discussion

Davis-Putnam resolution is a saturation-based methods for checking proposi-
tional satisfiability. The original set of clauses is satisfiable if and only if res-
olution terminates without having derived the empty clause. Similarly, Knuth-
Bendix completion derives the contradiction 1 = 0 if and only if the input clauses
are unsatisfiable. Thus, both methods (Figs. 3 and 4) repeatedly add rows to
the matrices of formulæ.

Saturation is often considered too costly in practice. Instead, a backtrack
search [7] – based on the clausal representation with unit propagation and sub-
sumption – can easily be built around the above procedures. One simple way to
keep track would be to mark rows of the matrix that are added or deleted with
the search level. (Instead of changing a row, one would delete and add.) After a
significant number of assignments, it may pay to compact the matrix.

Similarly, a recursive-learning intersection-based method [15,19], combining
limited saturation, generous simplification, and judicious search can be designed.

The algorithms given here are readily adaptable to highly parallel vector or
array architectures. Experiments with simulations are needed to evaluate their
practical feasibility.
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Abstract. Collaborative Programming is characterized by groups of
people issuing instructions to computer systems. Collaborative Program-
ming languages differ from traditional programming languages because
instruction sets can be incomplete and conflicting, and more of the bur-
den for efficient execution is placed on the computer system. This paper
introduces Collaborative Programming and through the discussion of two
practical examples argues that tools from logic and automated reason-
ing form a good foundation for Collaborative Programming technology
while at the same time illustrating the need for nonstandard automated
reasoning techniques.

1 Introduction

Collaborative Programming comprises all those settings where groups of people
issue instructions to computer systems. In contrast to traditional programming
languages, Collaborative Programming languages must make combining instruc-
tion sets from different parties straightforward and may allow users to express
incomplete and conflicting1 instruction sets. An incomplete instruction set may
only say what to do some of the time or what actions the system is forbidden
from performing. A conflicting instruction set may simultaneously instruct the
system to perform some action and forbid the system from performing that same
action. Technology that supports Collaborative Programming must be able to
combine independently authored instruction sets and be tolerant of incomplete-
ness and conflicts.

The notion of Collaborative Programming was developed as a pedagogical
device for explaining to researchers in traditional programming languages and
systems (e.g. networks, operating systems) the benefits and limitations of logical
languages and automated reasoning as compared to more traditional approaches.
The word “collaborative” was chosen to capture situations where statements
made by independent parties must be combined, a simple operation in logical
languages. The word “programming” was chosen to capture situations in which
the statements made by independent parties can be construed as instructions to
1 Here we use the word “conflicting” as opposed to “inconsistent” to differentiate the

informal notion of a disagreement and the proof and model theoretic notions of
consistency.
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a computer system, which is often the case when the statements are made in a
formal language. The concept of Collaborative Programming covers situations
that leverage the order-irrelevance and formal semantics of logical languages.

The connection between Collaborative Programming and logical languages
was forged because of the need and ability to combine instruction sets; however,
the connection runs deeper than that. In collaborative settings, it is very natural
for users to submit incomplete and conflicting instruction sets. Sometimes people
only have opinions on some issues; thus, for a language to reflect a user’s true
intentions, it must allow users to express incomplete instruction sets, a natural
feature of many logical languages. Likewise, when collaborating, people rarely
agree on everything; hence, a Collaborative Programming language must allow
users to express disagreements, another feature of logical languages. Thus, logical
languages are a natural foundation for Collaborative Programming languages,
which means that Collaborative Programming language implementations rely on
tools from automated reasoning.

Some of the most celebrated tools in automated reasoning, e.g. first-order
theorem provers, are designed to detect a particular kind of conflict: a logical
inconsistency. More precisely, they determine whether or not an inconsistency
exists. As we illustrate in this paper, Collaborative Programming applications
sometimes require knowing more than whether or not a conflict exists; they
must act based on the type of conflict that occurred. To meet this requirement,
theorem provers for Collaborative Programming applications must implement a
paraconsistent entailment relation [14]: one that coincides with classical entail-
ment for consistent theories but is more discerning for inconsistent theories.

Paraconsistent theorem provers must overcome an additional computational
burden as compared to traditional programming languages. Given a set of in-
structions issued in a logical language, a computer system must determine which
action to perform by analyzing those instructions, resolving conflicts, and filling
in gaps. Unlike traditional programming languages, where computing the next
action is guaranteed to be fast, computing the next action in a Collaborative
Programming setting might require significant computation, which is especially
worrisome for real-world applications where efficiency guarantees are important.
To alleviate such concerns, we advocate custom-designing a Collaborative Pro-
gramming language for each application so that it is expressive enough to be
useful but no less efficient than is tolerable.

When custom-designing a Collaborative Programming language based on
logic, one must choose which style of logic to use. In this paper we consider two
specific logics, FHL and datalog¬, that from the perspective of Collaborative
Programming represent two interesting language classes: classical logic and logic
programming. FHL is a decidable fragment of first-order logic that allows arbi-
trary quantification (syntactically). datalog¬ is a language for describing and
querying relational databases, perhaps the most successful application of logic
in computer science. These two languages were chosen because FHL provides
the opportunity to confront paraconsistency, while datalog¬ demonstrates that
classical logics are not the only option for Collaborative Programming.
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This paper examines Collaborative Programming languages for two practical
applications: logical spreadsheets (Section 3) and authorization languages (Sec-
tion 4). In each case, the strengths and weaknesses of FHL and datalog¬ are
examined, and in the end one is chosen as the foundation of the language; addi-
tionally, issues surrounding conflicts and incompleteness for the chosen language
are illustrated and resolved. Finally, we make some closing remarks (Section 5).

2 Preliminaries

The two languages studied in this paper, FHL and datalog¬, are well-known;
we use common conventions for their syntax and semantics. FHL, a classical
logic, is first-order logic with equality and the following three restrictions: no
function constants, a domain closure assumption (DCA), and a unique names
assumption (UNA). In this logic, the objects in the universe of every model are
exactly the object constants in the language. We call this logic Finite Herbrand
Logic (FHL) because the only models of interest are the finite Herbrand models.

The definitions for FHL’s syntax are the same as for function-free first-
order logic. The definitions for a model and for satisfaction are standard but are
simplified to take advantage of the UNA and DCA. A model in FHL is a set of
ground atoms from the language. A model satisfies all the ground atoms included
in the set. Satisfaction is defined as usual for the Boolean connectives applied to
ground sentences. Satisfaction of non-ground sentences reduces to satisfaction
of ground sentences. Free variables are implicitly universally quantified. ∀x.φ(x)
is satisfied exactly when φ(a) is satisfied for every object constant a. ∃x.φ(x) is
satisfied exactly when φ(a) is satisfied for some object a.

The other language of interest, datalog¬, is datalog with stratified nega-
tion. Again, the definitions for its syntax are standard, and we focus on seman-
tics. A model for datalog¬ is the same as that for FHL: a set of ground atoms;
however, in contrast to FHL where sentences may be satisfied by more than one
model, a set of datalog¬ sentences is always satisfied by exactly one model.
Without negation, that model is the smallest one (ordered by subset) that sat-
isfies the sentences under the FHL definition of satisfaction. With negation, the
stratified semantics [15] use minimality criteria to choose one model out of all
those that satisfy the sentences under the FHL definition.

A set of sentences is satisfiable (or consistent) when there is at least one model
that satisfies it. Logical entailment is defined as usual: ∆ |= φ if and only if every
model that satisfies ∆ also satisfies φ. Entailment for FHL is coNEXPTIME-
complete [5], and entailment for datalog¬ is NEXPTIME-complete, e.g. [16].

FHL and datalog¬ are similar because they are both Herbrand-based log-
ics. They are different in that FHL allows a sentence set to be satisfied by
multiple models, whereas a datalog¬ sentence set is always satisfied by exactly
one model. For the purposes of this paper, the most important consequence of
this distinction is that FHL can express true disjunction (entailing/satisfying a
disjunction without entailing/satisfying any disjunct) but datalog¬ cannot.
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3 Use Case: Logical Spreadsheets

One area of research, popular enough to support a dedicated workshop in 2005
and a DARPA funding opportunity (in the small business sector) in 2004 [9],
investigates the application of logic and automated reasoning to bring about
the next generation of spreadsheets for the personal computer. These logical
spreadsheets remove some of the limitations of traditional spreadsheets. Instead
of equations that specify how to compute the value of one cell given the values of
other cells, logical spreadsheeets accept arbitrary logical formulae, which allows
updates to propagate in any direction and cells to be constrained to obey many-
to-many relationships.

For example, using a logical spreadsheet one can require two cells to be as-
signed the same value; fill in the value of either cell, and the other one updates
automatically. In addition, it is possible to constrain one cell to contain a postal
code and another cell to contain a city. The postal code is not sufficient to com-
pute the city, nor is the city sufficient to compute the postal code. Nevertheless,
choosing a city restricts the possible postal codes, and vice versa.

Logical spreadsheets allow users to specify a set of constraints on the cells
in the spreadsheet and then provide visual cues to indicate which values do not
satisfy the constraints. Those visual cues include highlighting cells whose values
conflict with the constraints and showing a list of values for any given cell that
satisfy the constraints given the values of the other cells.

Particularly well-known examples of logical spreadsheets are the HTML forms
found on the web. When ordering merchandise from e-commerce web sites, a form
that asks for billing information often includes constraints on the combinations
of values that can be entered, e.g. the city and postal code must be compati-
ble. Often, web programmers use Javascript to check those constraints as the
user enters information. When a constraint violation occurs, an error message
appears somewhere on the page.

The difficulty with using Javascript to check constraints is that if the con-
straints change, the Javascript may require a substantial rewrite. Research into
logical spreadsheets has the potential benefit that a web programmer could write
down the necessary constraints for the web form elements in a logical language,
and the Javascript for checking those constraints would be generated automati-
cally. Small constraint changes that result in large Javascript changes would no
longer be problematic because those large changes would be auto-generated.

Different approaches to logical spreadsheets expose different languages for
users to express constraints. The language presented here is based on FHL and
follows the presentation in [8]. Cells in the spreadsheet correspond to monadic
predicates, and a (partial) cell assignment corresponds to a set of ground atoms.
Constraints on a spreadsheet are FHL sentences.

For example, to require two cells named cell1 and cell2 to contain the same
value, a user could enter the following sentence.

cell1(x) ⇔ cell2(x)
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Likewise, to force the postal cell and the city cell to contain compatible values,
one could write the implication

postal(x) ∧ city(y) ⇒ compatible(x, y),

where compatible is appropriately defined. Assigning cell city the value paris is
represented by the atom city(paris).

Conflicts in this language correspond to inconsistent FHL theories. This is
problematic because using the traditional notions of satisfaction and entailment,
there is no way to differentiate one conflict from another, which is vital infor-
mation for visually indicating which cells fail to satisfy the constraints.

For example, consider again the web form where two cells are required to
contain the same value, and a city cell and a postal code cell are required to
contain compatible values. The constraints are the two sentences shown above.
Assigning cell1 and cell2 different values causes an inconsistency, i.e. there are
no models that satisfy the constraints together with the assignments to cell1 and
cell2. This means that every sentence in the language is entailed. Compare this
conflict with a conflict that occurs because the city and postal code cells were
assigned incompatible values. Again, the theory is inconsistent, which means
there are no satisfying models, and all sentences are entailed. Neither satisfaction
nor entailment is sufficient for providing the user feedback as to which cells
conflict with each other.

Such problems are addressed by work on paraconsistent logics, e.g. [14]. A
paraconsistent logic is one in which an inconsistent theory does not entail all
logical sentences. The approach described in [8], called existential entailment
and denoted |=E , combines the traditional notions of satisfaction and entailment
in a simple way. In the case of consistent theories, traditional entailment and
existential entailment coincide, but in the case of inconsistent theories, existential
entailment isolates one conflict from another.

Intuitively, the problem with traditional entailment is that an inconsistent
premise set entails every sentence, even if that inconsistency has nothing to
do with the sentence in question. For example, the three premises below are
inconsistent, which means that both the sentences q(a) and ¬q(a) are entailed.

p(a)
¬p(a)
q(a)

(1)

However q(a) would be entailed even without the inconsistency, but ¬q(a) is
only entailed because of the inconsistency. Existential entailment differentiates
these two cases by requiring a satisfiable premise set for proving a conclusion.

Definition 1 (Existential Entailment [8]). A set of sentences ∆ existentially
entails a sentence φ (∆ |=E φ) if and only if there is some satisfiable ∆′ that is
a subset of ∆ such that ∆′ |= φ.

Existential entailment can be employed as follows to pinpoint those cells in a
spreadsheet that conflict with the constraints. Suppose that the constraints are
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satisfiable and named ∆ and that the assignments of values to cells is Γ . Recall
that assigning cell p to value a is represented as p(a). Cell value p(a) conflicts
with the constraints and other cell values whenever ∆ ∪ Γ existentially entails
the negation of p(a).

Definition 2 (Logical Spreadsheet Conflict). Cell p assigned to value a
conflicts with the spreadsheet constraints ∆ and the partial cell assignment Γ
exactly when ∆ ∪ Γ |=E ¬p(a).

We can view Example 1 from above as a set of constraints and cell values for
a spreadsheet with a cell p and a cell q. Cell p, having been assigned the value
a, should be highlighted as a conflict because ¬p(a) is existentially entailed (by
the singleton, satisfiable premise set {¬p(a)}). But, cell q assigned a should not
be highlighted as a conflict because ¬q(a) is not existentially entailed.

Using this definition of conflict, every time a user changes the value of a cell,
the logical spreadsheet must compute existential entailment. Moreover, one cell
assignment can cause other cells to violate constraints, meaning that multiple
existential entailment queries must be answered for each cell assignment change.
Thus, it is important that the computation of existential entailment runs effi-
ciently enough for the spreadsheet to provide real-time visual cues to the user.

Our current implementation focuses on the web form application of logical
spreadsheets. It converts a given set of constraints into conjunctive database
queries that when evaluated compute existential entailment. Those queries are
evaluated by the browser each time a cell value is changed using an in memory
database implemented in Javascript. Preliminary testing appears promising both
in ease of implementation and performance.

It is noteworthy that the choice to use FHL as the constraint language was
not made arbitrarily. When compared to datalog¬, FHL is better suited as
the foundation of the constraint language because it can express disjunction2,
whereas datalog¬ cannot. The importance of disjunction for logical spread-
sheets can be seen in two ways.

First, FHL semantics is closer in spirit to a natural formalization of logical
spreadsheets than is datalog¬. From a mathematical perspective, a logical
spreadsheet maps a set of constraints and a partial assignment of cells to the set
of all consistent extensions to that assignment. Similarly, FHL semantics maps
a set of logical sentences to the set of models that satisfy those sentences. Both
map the input to a set of alternatives. In contrast, datalog¬ semantics maps
a set of sentences to a single model—to a single alternative.

Second, one of the features logical spreadsheets support that traditional
spreadsheets do not, bidirectional update, is intimately tied to disjunction. A
simple implication such as cell1(a) ⇐ cell2(a) represents two possibilities: ei-
ther the premises are false or the conclusion is true. For bidirectional update
to be supported, falsifying the conclusion of the implication requires falsifying
the premise, and satisfying the premise requires satisfying the conclusion. These
2 Here we mean true disjunction: in FHL a theory can entail p ∨ q without entailing

either p or q.
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two equally plausible possibilities are represented succinctly by a disjunction:
cell1(a) ∨ ¬cell2(a).

Logical spreadsheets exemplify Collaborative Programming because the in-
structions issued by users can conflict, can be incomplete, and can come from
multiple sources. Collaboration comes about in a variety of ways. In the case
of web forms, the form developers contribute the constraints and the users con-
tribute data. In the case of a standalone application, constraints might originate
from different people, each with expertise in different areas of the problem. Even
if all of the constraints are created by a single individual, that individual might
be collaborating with herself if over time she adds new constraints to the system.
Collaboration breeds conflict, and because FHL, the constraint language, is a
classical logic, the traditional notion of entailment does not support the func-
tionality promised by the logical spreadsheet paradigm; hence, a paraconsistent
entailment relation must be used and implemented efficiently.

4 Use Case: Authorization languages

An active area of research in security centers around logical languages for ex-
pressing authorization policies. An authorization policy says, for example, which
users can access which resources in which ways, e.g. Alice has permission to write
myfile.txt. Such policies are often written by several individuals, each of whom
may want to operate independently of the others. The security systems that
enforce authorization policies require that every request be either allowed or de-
nied. There is no way to simultaneously allow and deny a request, and there is
no way to neither allow nor deny a request. Thus, while authorization policies
are defined in collaborative settings, neither conflicting nor incomplete policies
can be tolerated by security systems. Formally, an authorization policy maps
requests R to either allow or deny3.

R → {allow, deny}

Despite the fact that an authorization policy is developed for a system that
cannot tolerate conflicts or incompleteness, there is no reason to believe that the
people collaboratively defining such a policy will disagree less or know more than
people in another Collaborative Programming setting. Thus, an authorization
language should be able to express conflicts and incompleteness, less people en-
code instructions they do not intend, yet at the same time should hide conflicts
and incompleteness from the security system. Hiding conflicts and incomplete-
ness means that the language should include mechanisms for resolving conflicts
and incompleteness when they occur.

For conflicting authorization policies, where a request is both allowed and
denied, there are at least two options for resolving that conflict. Deny might

3 Depending on the setting, a request may contain a number of properties, e.g. the
user, the resource, the action to be performed on the resource. For simplicity and
generality, we treat a request as an opaque object.
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take precedence over allow, or vice versa. It is important that the form of conflict
resolution chosen is made known to users so that they can predict the results.

In FHL, it is natural to use a single distinguished predicate allow, and when-
ever an authorization request r is made, it is allowed if allow(r) is entailed and
denied if ¬allow(r) is entailed. Conflicts amount to inconsistent theories where
allow(r) and ¬allow(r) are both entailed. Conflict resolution is based on exis-
tential entailment as described in Section 3.

In datalog¬, a single predicate allow is insufficient for expressing conflicts.
The language guarantees that if allow(r) is entailed then ¬allow(r) is not en-
tailed. However, by using two distinguished predicates allow and deny, it is
possible to encode conflicts and incompleteness. For any authorization request
r, an authorization policy could entail allow(r), deny(r), both, or neither. Again,
conflicts can be resolved by giving preference to either allow or deny.

For incomplete authorization policies, where a request is neither allowed nor
denied, there are two separable cases. One form of incompleteness arises because
the policy says nothing about a particular request. Similar to the case of conflict
resolution, this form of incompleteness can be resolved by choosing either to allow
or to deny the request, as the policy makes no commitment whatsoever. The
other type of incompleteness, which is only possible in FHL-based languages,
occurs when a request appears as a disjunctive consequence of the authorization
policy. Resolving this type of incompleteness is more problematic than the first.

For example, consider an authorization policy with two FHL statements:

allow(r1) ∨ allow(r2)
¬allow(r1) ∨ ¬allow(r2).

Together the statements say that either r1 or r2 must be allowed, and the other
must be denied. Arguably, this policy is enforceable: simply make the choice. The
problem is that the user may not be able to predict the result. It is imaginable
that if the policy were written another way, the opposite choice might be made.

The resolution mechanism for disjunctive incompleteness requires making
choices between requests, which is qualitatively different than making a choice
between allow and deny. It is far easier to communicate a tie-breaking mechanism
about allow and deny than about requests; moreover, it is unnatural to treat
some requests differently than others when the authorization policy fails to do
so. Thus, authorization languages should not be able to express disjunction.

While there are fragments of FHL that are guaranteed to be nondisjunctive,
e.g. Horn clauses, datalog¬ has the benefit that it supports negation and lim-
ited recursion, which are difficult to support using nondisjunctive FHL. Thus,
datalog¬ is the better choice for authorization languages.

Formalizing and implementing the conflict and incompleteness resolution
mechanisms for a datalog¬-based language is straightforward. For example,
if the conflict resolution mechanism deems that deny should override allow (a
reasonable choice in the context of security), and policy completion allows all
unspecified requests, the semantics for the authorization language (|=′) would

43



be defined as follows, where |= is the usual datalog¬ semantics.

∆ |=′ deny(r) iff ∆ |= deny(r)
∆ |=′ allow(r) iff ∆ 6|= deny(r)

This layered approach to language design has two benefits. The core of the
language (|=) is defined using traditional means and hence can leverage well-
known tools. Those tools can be used to analyze a policy according to |=, identify
conflicts, and inform the authors who contributed the conflicting statements; yet,
at the same time, a security system can use |=′ to make authorization decisions
using a policy without conflicts or incompleteness.

Thus, unlike FHL, which requires nonstandard automated reasoning tools for
handling conflicts, conflict resolution in datalog¬ can be built on top of well-
known techniques. This could explain the popularity of datalog¬ for authoriza-
tion languages in the security literature [7, 2, 12, 17, 3, 13, 1, 6]. The drawback is
that datalog¬ can only express conflicts in settings where all possible conflicts
are known ahead of time. Keywords must be introduced into the language and
built into the algorithms for processing that language.

5 Conclusion

Kowalski is famous for illustrating that logic can be used as a programming
language, the result of which was the Logic Programming paradigm [10]. Today,
the term “Logic Programming” has come to mean a particular type of logic
and automated reasoning, syntactically based on implication and semantically
concerned with negation as failure. Logic Programming today is consistent with
Kowalski’s original vision but is more narrowly defined than he intended.

Logic Programming (in Kowalski’s original intent) is the right choice for
industrial applications only in certain situations. The notion of Collaborative
Programming was developed to explain to non-experts what those situations are
and to reinvigorate Kowalski’s original idea. Other similarly motivated work in-
cludes Golog [11], which includes nondeterministic choice operators, and Partial
Programs [4], which enable programmers to express incomplete instruction sets.

Collaborative Programming differs from similar initiatives because of its com-
mitment to conflicts. Because instruction sets are issued by multiple people, and
people often disagree with one another, a Collaborative Programming language
must allow conflicts to be expressed, simply so that the language is capable
of capturing peoples’ true intentions. Consequently, automated reasoning tools
for processing instruction sets must be aware of and tolerate conflicts. In the
case of classical logic, this requires automated reasoning tools that implement a
paraconsistent entailment relation. In the case of logic programming languages,
it requires making ontological commitments within the language and employing
algorithms that adhere to those commitments. Each language class has strengths
and weaknesses, making the right choice for any particular Collaborative Pro-
gramming application dependent on the demands of that application.
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Towards fully automated axiom extraction
for finite-valued logics
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Abstract. We implement an algorithm for extracting appropriate col-
lections of classic-like sound and complete tableaux rules for a large class
of finite-valued logics. Its output consists of Isabelle theories.1

Key words: Many-valued logics, tableaux, automated theorem proving.

1 Introduction

This note will report on the first developments towards the implementation
of a fully automated system for the extraction of adequate proof-theoretical
counterparts for sufficiently expressive logics characterized by way of a finite
set of finite-valued truth-tables. The underlying algorithm was first described
in [2]. Surveys on tableaux for many-valued logics can be found in [4, 1]. The
implementation has been performed in ML, and its application gives rise to an
Isabelle theory (check [5]) formalizing a given finite-valued logic in terms of
two-signed tableau rules.

The survey paper [4] points at a few very good theoretical motivations for
studying tableaux for many-valued logics, among them:
– tableau systems are a particularly well-suited starting point for the develop-

ment of computational insights into many-valued logics;
– a close interplay between model-theoretic and proof-theoretic tools is neces-

sary and fruitful during the development of proof procedures for non-classical
logics.

Section 2, right below, recalls the relevant definitions and results concerning
many-valued logics as well as their homologous presentation in terms of biva-
lent semantics defined by clauses of a certain format we call ‘gentzenian’. An
algorithm for endowing any sufficiently expressive finite-valued logic with an
adequate bivalent semantics is exhibited and illustrated for the case of  L3, the
well-known 3-valued logic of  Lukasiewicz.

The concepts concerning tableau systems in general and the particular re-
sults that allow one to transform any computable gentzenian semantics into a
corresponding collection of tableau rules are illustrated in section 3, for the case
of  L3.
1 A snapshot of the corresponding code can be checked in
http://tinyurl.com/5cakro.
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Section 4 discusses our current implementation, carefully explaining its ex-
pected inputs and outputs, and again illustrates its functioning for the case of  L3.
Advantages and shortcomings of our system, in its present state of completion,
as well as conclusions and some directions for future work are mentioned in
section 5.

2 Many-valued logics

Given a denumerable set At of atoms and a finite family Cct = { c©i
j}j∈J of

connectives, where arity( c©i
j) = i, let S denote the term algebra freely generated

by Cct over At. Here, a semantics Sem for the algebra S will be given by any
collection of mappings {§Vk }k∈K where dom(§Vk ) = S and codom(§Vk ) = Vk, and
where each collection of truth-values Vk is partitioned into sets of designated val-
ues, Dk, and undesignated ones, Uk. The mappings §Vk themselves may be called
(ν-valued) valuations, where ν = Card(Vk). A bivalent semantics is any seman-
tics where Dk and Uk are singleton sets, for any k ∈ K. For bivalent semantics,
valuations are often called bivaluations.

The canonical notion of (single-conclusion) entailment |=Sem ⊆ Pow(S) ×
S induced by a semantics Sem is defined by setting Γ �Sem ϕ iff §Vk (ϕ) ∈
Dk whenever §Vk (Γ ) ⊆ Dk, for every §Vk ∈ Sem. The pair 〈S, |=Sem〉 may be
called a generic ν-valued logic, where ν = Maxk∈K(Card(Vk)).

If one now fixes the sets of truth-values V, D and U , and considers, for each
connective c©i

j an interpretation ĉ©i
j : Vi −→ V, one may immediately build

from that an associated algebra of truth-values T V = 〈V,D, { ĉ©i
j}j∈J〉 (in the

present paper, whenever there is no risk of confusion, we shall not differentiate
notationally between a connective symbol c© and its interpretation ĉ©). A truth-
functional semantics is then defined by the collection of all homomorphisms of
S into T V. In this paper, the shorter expression ν-valued logic will be used to
qualify any generic ν-valued truth-functional logic, for some finite ν, where ν is
the minimal value for which the mentioned logic can be given a truth-functional
semantics characterizing the same associated notion of entailment.

The canonical notion of entailment of any given semantics, and in particular
of any given truth-functional semantics, may be emulated by a bivalent seman-
tics. Indeed, consider V2 = {T, F} and D2 = {T}, and consider the ‘binary
print’ of the algebraic truth-values produced by the total mapping t : V −→ V2,
defined by t(v) = T iff v ∈ D. For any ν-valuation §V of a given semantics Sem,
consider now the characteristic total function b§ = t ◦ §V . Now, collect all such
bivaluations b§’s into a new semantics Sem(2), and note that Γ �Sem(2) ϕ iff
Γ �Sem ϕ. The standard 2-valued notion of inference of Classical Logic is char-
acterized indeed by a bivalent truth-functional semantics. In general, though, a
bivalent characterization of a logic with a ν-valued truth-functional semantics
explores the trade-off between the ‘algebraic perspective’ of many-valuedness,
with its many ‘algebraic truth-values’ and its semantic characterization in terms
of a set of homomorphisms, on the one hand, and the classic-inclined ‘logical
perspective’, with its emphasis on characterizations based on 2 ‘logical values’,
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on the other hand (for more detailed discussions of this issue, check [2, 7]). Our
interest in this paper is to probe some of the practical advantages of the bi-
valent classic-like perspective as applied to the wider domain of finite-valued
truth-functional logics.

Our running example in this paper will involve  Lukasiewicz’s well-known
3-valued logic  L3, characterized by the algebra of truth-values 〈{1, 1

2 , 0}, {1},
{¬,→,∨,∧}〉, where the interpretation of the unary negation connective ¬ sets
¬v1 = 1 − v1 and the interpretation of the binary implication connective →
sets (v1 → v2) = Min(1, 1 − v1 + v2). The binary symbols ∨ and ∧ can be
introduced as primitive interpreting them through (v1 ∨ v2) = Max(v1, v2) and
(v1∧v2) = Min(v1, v2), but they can also more simply be introduced by definition
just like in Classical Logic, setting α∨β def

== (α→ β)→ β and α∧β def
== ¬(¬α∨¬β).

The binary print of an arbitrary atom of  L3 and of its negation is illustrated in
the table below.

v t(v) ¬v t(¬v)

1 T 0 F
1
2 F 1

2 F

0 F 1 T

(1)

Given some finite-valued logic L based on a set of truth-values V, we say
that L is functionally complete over V if any n-valued operation, for n = Card(V),
may be defined with the help of a suitable combination of its primitive opera-
tors { ĉ©i

j}j∈J . When L is not functionally complete from the start, we may
consider Lfc as any functionally complete n-valued conservative extension of L.
Given truth-values v1, v2 ∈ V, we say that they are separated, and we write
v1]v2, in case v1 and v2 belong to different classes of truth-values, that is, in
case either v1 ∈ D and v2 ∈ U , or v1 ∈ U and v2 ∈ D. Given a unary, primitive
or defined, connectives of a given truth-functional logic, with interpretation ŝ,
we say that s separates v1 and v2 in case ŝ(v1)]ŝ(v2). Obviously, for any pair
of truth-values of Lfc it is possible to find or to define in the corresponding term
algebra an appropriate separating connective s. When that separation can be
done exclusively with the help of the original language of L, we say that V is
effectively separable and the logic L, in that case, will be considered to be suffi-
ciently expressive for our purposes. It should be noticed that the vast majority
of the most well-known finite-valued logics enjoy this expressivity property.

Notice in particular, from Table 1, how the negation connective of  L3 sepa-
rates the two undesignated truth-values. Based on Table 1, one may in fact easily
provide a unique identification to each of the 3 initial algebraic truth-values, by
way of the following statements:

v = 1 iff t(v) = T (I)
v = 1

2 iff t(v) = F and t(¬v) = F
v = 0 iff t(v) = F and t(¬v) = T
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One can also use this separating connective s : λu.¬u in order to provide
a bivalent description of each of the operators of the language. Consider for
instance the cases of A : λvw.(v → w) and B : λvw.¬(v → w) (that is, B
is sA):

A 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2

0 1 1 1

B 1 1
2 0

1 0 1
2 1

1
2 0 0 1

2

0 0 0 0

(2)

From those tables it is clear for instance that:

§(¬(α→ β)) = 1 iff §(α) = 1 and §(β) = 0 (II)

Let’s write T : ϕ and F : ϕ, respectively, as abbreviations for t(§(ϕ)) = T and
t(§(ϕ)) = F . Then, the statement (II) may be described in bivalent form, with
the help of (I), by writing:

T : ¬(α→ β) iff T : α and (F : β and T : ¬β) (III)

In [2] an algorithm that constructively specifies a bivalent semantics for any
sufficiently expressive finite-valued logic was proposed. The output of the al-
gorithm is a computable class of clauses governing the behavior of all the bi-
valuations that together will define a notion of entailment that coincides with
the original entailment defined with the help of the algebra of truth-values T V.
Moreover, all those clauses are in a specific format we call gentzenian, namely,
they are conditional expressions of the form (Φ ⇒ Ψ) where both Φ and Ψ are
(meta)formulas of the form > (top), ⊥ (bottom) or a clause of the form
b(ϕ1

1) = w1
1 & . . .& b(ϕn1

1 ) = wn1
1 | . . . | b(ϕ1

m) = w1
m & . . .& b(ϕnm

m ) = wnm
m .(G)

Here, wj
i ∈ {T, F}, each ϕj

i is a formula of L, the symbol ⇒ represents impli-
cation (and ⇔ shall represent bi-implication, abbreviating the conjunction of
two clauses of the form (G)), the symbol & represents conjunction, and | rep-
resents disjunction. The (meta)logic governing these clauses is fol, First-Order
Classical Logic. One may alternatively represent a clause of the form (G) as∨

1≤k≤m

∧
1≤s≤nm

(b(ϕs
k) = ws

k).
With a slight notational change and using fol, one can see (III) as a descrip-

tion done in an abbreviated gentzenian format:

T : ¬(α→ β)⇔ T : α & F : β & T : ¬β (IV)

Following the above line of reasoning, it is also correct to write, for instance, the
clause:

F : (α→ β)⇔ T : α & F : β & F : ¬β | (V)
T : α & F : β & T : ¬β |
F : α & F : ¬α & F : β & T : ¬β
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According to the reductive algorithm described in [2], a sound and complete
bivalent version of any sufficiently expressive finite-valued logic L is obtained if:
(i) the above illustrated procedure is iterated in order to obtain clauses de-
scribing exactly in which situation one may assert T : c©i

j(α1, . . . , αi) and
F : c©i

j(α1, . . . , αi), as well as T : s c©i
j(α1, . . . , αi) and F : s c©i

j(α1, . . . , αi),
for each c©i

k ∈ Cct and each one of the separating connectives s of L;
(ii) to all those clauses one adds the following extra axioms governing the be-
havior of the admissible collection of bivaluations:

(C1) > ⇒ T : α | F : α (C2) T : α & F : α ⇒ ⊥
(C3) T : α ⇒

∨
d∈D

∧
1≤m<n≤Card(D) w

d
mn : smn(α)

(C4) F : α ⇒
∨

u∈U
∧

1≤m<n≤Card(U) w
u
mn : smn(α)

for every α ∈ S, where smn is the unary (primitive or defined) connective that
we use to separate the truth-values m and n, and wv

mn = t(smn(v)).

3 Tableaux

Generic tableau systems for finite-valued logics are known at least since [3]. In
the corresponding tableaux, however, formulas may receive as many labels as the
number of truth-values in V, and that somewhat obstructs the task of comparing
for instance the associated notions of proof and of consequence relation to the
corresponding classical notions. But with the help of the bivalent semantics
illustrated in the previous section it is now straightforward to produce sound
and complete collections of classic-like two-signed tableau rules (i.e., each formula
appears with exactly one of two labels at the head of each rule).

The basic idea, explained in [2], is to dispose the gentzenian clauses governing
the admissible bivaluations in an appropriate way. For that matter, clauses such
as (IV) and (V) can be rendered, respectively, as the following tableau rules:

(IV)tab T : ¬(α→ β)

T : α
F : β
T : ¬β

F : (α→ β)

T : α
F : β
F : ¬β

T : α
F : β
T : ¬β

F : α
F : ¬α
F : β
T : ¬β

(V)tab

To those rules corresponding to the truth-tables of the operators and the sep-
arating connectives, one should also add rules corresponding to the extra ax-
ioms (C1)–(C4). In practical cases, however, axioms (C3) and (C4) can often be
proven from the remaining ones. Moreover, axiom (C2) expresses just the usual
closure condition on tableau branches. On the other hand, axiom (C1) gives rise
in general to the following ‘dual-cut’ branching rule, for arbitrary α:

T : α F : α
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All other definitions and concepts concerning the construction of tableaux are
standard (check [6]).

One might be worried, with good reason, that the unrestrained use of the
branching rule may potentially make the corresponding tableaux non-analytic.
We will discuss that in the conclusion. The tableau rules originated from the
above procedure can naturally be used in order to prove theorems, check con-
jectures and suggest counter-models, but also, in the meta-theory, to formulate
and prove derived rules that can be used to simplify the original presentation of
the logic as originated by our algorithm. So, for instance, the above illustrated
complex three-branching rule for F : (α → β) can eventually be simplified into
one of the following equivalent two-branching rules:

(V∗)tab F : (α→ β)

T : α
F : β

F : α
F : ¬α
F : β
T : ¬β

F : (α→ β)

T : α
F : β

F : ¬α
T : ¬β

(V∗∗)tab

4 Implementation

We used the functional programming language ML to automate the axiom ex-
traction process. ML provides us, among other advantages, with an elegant and
suggestive syntax, and a very handy compile-time type checking and type infer-
ence that guarantees that we never run into unexpected run-time problems with
our program, once it is proved correct with respect to the specification.

The relevant inputs of our program include the detailed definition of a finite-
valued logic, such as the logic  L3 presented in the previous sections, together
with an appropriate set of separating connectives for that logic.

Here’s an example of a input for the logic  L3, presented above, where the func-
tions CSym, CAri and CTab take a connective and return its symbol (for printing),
arity and truth-table, respectively. A truth-table of a given connective c© is rep-
resented as the list of all pairs ([x1, . . . , xn], y) such that c©(x1, . . . , xn) = y.

(* PROGRAM SIGNATURE *) (* EXAMPLE OF L3 *)

signature LOGIC =

sig

type cct datatype cct = Neg | Imp

val Values ["0", "1/2", "1"];

val Designated ["1"];

val Connectives [Neg, Imp];

val SeparatingD [];

val SeparatingND [Neg];

val CSym fun CSym Neg = "~"

| CSym Imp = "-->";

val CAri fun CAri Neg = 1

| CAri Imp = 2;
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val CTab fun CTab Neg = [ (["0"], "1"),

(["1/2"], "1/2"),

(["1"], "0") ]

| CTab Imp = [ (["0", "0"], "1"),

(["0", "1/2"], "1"),

(["0", "1"], "1"),

(["1/2", "0"], "1/2"),

(...)

(["1", "1"], "1") ]

end;

To perform the extraction, our program first generates a list of all necessary
rules, as explained in section 2.

val rulesList = [T "~(A0)", T "A0 --> A1",

T "~(~(A0))", T "~(A0 --> A1)",

F "~(A0)", F "A0 --> A1",

F "~(~(A0))", F "~(A0 --> A1)" ];

Next, the program converts each connective’s truth-table, here given by the
function CTab, into a table where each value is exchanged by its binary print. The
binary print of a value is calculated based on the separating connectives given as
input (SeparatingD for designated values and SeparatingND for undesignated
values). For instance, for the case of the connective Neg, the clauses are the
following:

(* A0 *) (* ~(A0) *)

([F "A0",T "~(A0)"], [T "~(A0)"])

([F "A0",F "~(A0)"], [F "~(A0)",F "~(~(A0))"])

([T "A0"], [F "~(A0)",T "~(~(A0))"])

Now, for each formula in the list of rules, a search is performed through all
tables generated in the latter step, and all clauses in which the given formula
appears on the right hand side are returned. The left hand side of these clauses
represents the branches of the desired tableau rule. For instance, the rules for
T:~A and F:~A are:

(* T:~A *) ([ [F "A0",T "~(A0)"] ], T "~(A0)")

(* F:~A *) ([ [F "A0",F "~(A0)"], [T "A0"] ], F "~(A0)")

The next steps include the calculus of axioms (C3) and (C4), and the printing
of all definitions, concrete syntax and rules into a text file containing the full
theory ready to use in Isabelle. Isabelle, also written in ML, is a generic
theorem-proving environment based on a higher-order meta-logic in which it
is quite simple to create theories with rules and axioms for various kinds of
deductive formalisms, and equally straightforward to define tacticals for the
automation of routine tasks and to prove theorems about these systems.

For the case of  L3, here is the corresponding theory produced as output by
our program:

52



theory TL3

imports Sequents

begin

typedecl a

consts

Trueprop :: "(seq’=>seq’) => prop"

True :: o

False :: o

TR :: "a => o" ("T:_" [20] 20)

FR :: "a => o" ("F:_" [20] 20)

Neg :: "a => a" ("~ _" [40] 40)

Imp :: "[a,a] => a" ("_-->_" [24,25] 25)

syntax

"@Trueprop" :: "(seq) => prop" ("[_]" 5)

ML

{*

fun seqtab_tr c [s] = Const(c,dummyT) $ seq_tr s;

fun seqtab_tr’ c [s] = Const(c,dummyT) $ seq_tr’ s;

*}

parse_translation {* [("@Trueprop", seqtab_tr "Trueprop")] *}

print_translation {* [("Trueprop", seqtab_tr’ "@Trueprop")] *}

local

axioms

axC1: "[| [ $H, T:A ] ; [ $H, F:A ] |] ==> [$H]"

axC21: "[ $H, T:A, $E, F:A, $G]"

axC22: "[ $H, F:A, $E, T:A, $G]"

axC3: "[| [ $H, T:A, $G ] |] ==> [ $H, T:A, $G ]"

axC4: "[| [ $H, T:~(A), $G ] ; [ $H, F:~(A), $G ] |]

==> [ $H, F:A, $G ]"

ax0: "[| [ $H, F:A0, T:~(A0), $G ] |] ==> [ $H, T:~(A0), $G ]"

ax1: "[| [ $H, F:A0, F:~(A0), $G ] ; [ $H, T:A0, $G ] |]

==> [ $H, F:~(A0), $G ]"

ax2: "[| [ $H, F:A0, F:~(A0), $G ] |] ==> [ $H, F:~(~(A0)), $G ]"

ax3: "[| [ $H, T:A0, $G ] |] ==> [ $H, T:~(~(A0)), $G ]"

ax4: "[| [ $H, F:A0, T:~(A0), F:A1, T:~(A1), $G ] ;

[ $H, T:A0, T:A1, $G ] ;

[ $H, F:A0, F:~(A0), T:A1, $G ] ;

[ $H, F:A0, F:~(A0), F:A1, F:~(A1), $G ] ;

[ $H, F:A0, T:~(A0), T:A1, $G ] ;

[ $H, F:A0, T:~(A0), F:A1, F:~(A1), $G ] |]

==> [ $H, T:A0 --> A1, $G ]"
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ax5: "[| [ $H, F:A0, F:~(A0), F:A1, T:~(A1), $G ] ;

[ $H, T:A0, F:A1, F:~(A1), $G ] ;

[ $H, T:A0, F:A1, T:~(A1), $G ] |]

==> [ $H, F:A0 --> A1, $G ]"

ax6: "[| [ $H, F:A0, F:~(A0), F:A1, T:~(A1), $G ] ;

[ $H, T:A0, F:A1, F:~(A1), $G ] |]

==> [ $H, F:~(A0 --> A1), $G ]"

ax7: "[| [ $H, T:A0, F:A1, T:~(A1), $G ] |]

==> [ $H, T:~(A0 --> A1), $G ]"

ML {* use_legacy_bindings (the_context ()) *}

end

In this theory, consts lists the formula constructors. TR :: "a => o" means
that the constructor TR takes a formula (typed a) and returns a signed formula
(typed o). We also extract from the logic received as input each constructor’s
name to use as syntactic sugar, as well as its associativity rules and priority
order.

In the generated axioms corresponding to the tableau rules, T:X and F:X are
(signed) formulas, $H and $E are sequences of such formulas (contexts) that are
not directly involved in the rule, each sequence between square brackets repre-
sents a tableau branch, and a collection of branches is delimited by [| and |].
The symbol ==> denotes Isabelle’s meta-implication. In Isabelle, the appli-
cation of a rule means that is possible to achieve the goal (sequence on the right
of the meta-implication) once it’s possible to prove the hypotheses (sequences on
the left of the meta-implication), which constitute the collection of new subgoals
at each step. The branching rule corresponds to axiom axC1, and the closure
rule for a branch of the tableau corresponds to the axioms axC21 and axC22.

Note for instance that ax5 corresponds to rule (V)tab from the last section.
The simpler rule (V∗∗)tab, mentioned in the same section, can of course be written
in Isabelle as:

ax5SS: "[| [ $H, T:A0, F:A1, $E ] ;

[ $H, F:~(A0), T:~(A1), $E ] |]

==> [$H, F:A0 --> A1, $E]"

The proof that ax5 and ax5S are indeed equivalent tableau rules, i.e., that one
can derive one from the other in the presence of the remaining rules of our theory,
can now be done directly with the help of Isabelle’s meta-logic. One might
notice that, while in [3] the number of rules for each given primitive connective
is exponential in its arity, here the number of rules for each such connective is
always polynomial both in the arity and in the number of separating connectives
of the input logic. The worst-case number of nodes involved in each tableau rule,
however, using our algorithm, is exponential in the arity of the corresponding
connective. Using Isabelle’s meta-logic to prove simplifications such as the one
illustrated above, for the case of rule (V), the number of nodes involved in each
tableau rule may be substantially reduced.
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5 Epilogue

The present note has reported on the first concrete implementation of a cer-
tain constructive procedure for obtaining adequate two-signed tableau systems
for a large number of finite-valued logics. Expressing a variety of logics in the
same framework is quite useful for the development of comparisons between such
logics, including their expressive and deductive powers.

There still remains some room for improvement and extension of both our
algorithm (which should still, for instance, be upgraded in order to deal in general
with first-order truth-functional logics) and its implementation. By way of an
example, we have assumed from the start that the logics received as inputs to
our program came together with a suitable collection of separating connectives.
This second input, however, could be dispensed with, as the set of all definable
unary connectives can in fact be automatically generated in finite time from
any given initial set of operators of the input logic. That generation, however,
may be costly for logics with a large number of truth-values and is not as yet
performed by our system. Another direction that must be better explored, from
the theoretical perspective, concerns the conditions for the admissibility or at
least for the explicit control of the application of the dual-cut branching rule.
On the one hand, the elimination of dual-cut has an obvious favorable effect on
the definition of completely automated theorem-proving tacticals for our logics.
If that result cannot be obtained in general but if we can at least guarantee,
on the other hand, that this branching rule will never be needed, in each case,
for more than a finite number of known formulas —say, the ones related to the
original goal as constituting its subformulas or being the result of applying the
separating connectives to its subformulas— then again this will make it possible
to devise tacticals for obtaining fully automated derivations using the above
described tableaux for our finite-valued logics.
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Abstract. We describe a framework with which first order theorem
provers can be used for checking formal proofs. The main aim of the
framework is to take as much advantage as possible from the strength of
first order theorem provers in the formalization of realistic formal proofs.
In order to obtain this, we restricted the use of higher order constructs
to a minimum. In particular, we refrained from λ notation in formulas
and from currying.
The first order prover can be freely chosen. All communication with the
theorem prover uses TPTP syntax.
The system is intended for teaching, for checking mathematical proofs or
correctness proofs of algorithms and also for improving the effectiveness
of theorem provers. In its current set up, the system is not intended for
building large libraries of checked mathematics.

1 Introduction

We describe a framework with which first order theorem provers can be used
for checking formal proofs. The main aim of the framework is to take as much
advantage as possible from the strength of first order theorem provers. In order
to obtain this, we try to stay as close as possible to first order logic. The only
higher order constructs in the logic are second order quantifications. Second order
quantification is strong enough to express induction axioms, and set theoretic
axioms.
We call the formulas that the framework uses weak untyped second order (WUSO)
formulas. They are formally defined in Section 1.1. The system stores formulas
in contexts. A context is essentially a stack of formulas. By specifying operators
that modify contexts, the natural deduction rules →-intro and ∀-intro can be
defined. The complementary rules →-elim and ∀-elim are obtained by explicitly
specifying instances and moduls ponens combinations when a formula is used.
These four rules together specify natural deduction for the (∀,→) fragment of
WUSO formulas.
All other reasoning is done by delegating reasoning tasks to a first order theorem
prover. The theorem prover can be freely chosen by the user. The user can specify
with which parameters the theorem prover has to be called, and how it can be
recognized when the prover has found a proof.
The main aim of this work is to obtain insight into the question how useful first
order theorem provers can be as assistant in the verification of realistic proofs,
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and to obtain realistic test data for theorem provers. In addition, we intend to
use the system as a tool for teaching logic and verification.

There have been quite a few more attempts to connect first order provers to
interactive provers. (See for example [7], [2]) The main difference with these
approaches is that we try to adopt the calculus as much as possible towards
the theorem prover, instead of plugging the theorem prover into a calculus that
is already fixed. Most interactive theorem provers use a variant of higher order
logic (with currying) and a rich type system. The standard logic operators are
usually defined inside the logic. Translating such formulas into first order logic
is a nontrivial task, We hope that we can avoid most of the translation problems
by using a logic close to the logic of the theorem prover.

In the literature, a lot of attention has been given to the problem of translating
proofs found by a theorem prover back into the calculus of the interactive proof
assistant. (See [8], [1], [5], [6]) Using such a translation, it can be avoided that
the external theorem prover has to be trusted. In the present implementation, we
completely ignore this problem. We acknowledge that this problem is important,
but it is not the aspect that we want to study with the present system. We want
to study the problem of the effectiveness of first order theorem proving. Our
experience (from [1]) is that automated theorem provers are not as effective
in solving real life problems as one would hope. Discussions with developers of
interactive proof checkers confirm this experience. The problem is also mentioned
in [8]. It is our hope that, by taking first order theorem proving into account from
the beginning, a system can be obtained in which first order theorem proving
can be more effective.

Our approach to proof checking is closely related to Mizar [10], but more basic.
Mizar has a rich type system, while we don’t have a type system. Mizar internally
uses a very weak theorem prover, (somewhat described in [11]), which is able to
do some equality reasoning, and some propositional reasoning.

In [9] a proof checking system is described that is in structure somewhat similar
to our current system. Both systems use an external theorem prover for proof
checking. The main difference is that we want to use our system for checking
realistic proofs, while the system of [9] is intended for checking the outputs of
theorem provers. In our system, if one wants to increase reliability, one can use
multiple theorem provers and have each step checked by different provers.

1.1 Weak Untyped Second Order Logic

We define the fragment of weak second order logic used by our system. The
fragment is chosen as a compromise between expressibility on one hand, and
suitability for first order theorem proving on the other hand. In order to obtain
sufficient expressibility, some higher-order features are necessary. In order to
remain close to first order logic, we refrained from λ notation and currying in
formulas. At present, the fragment is untyped, but this can easily be changed
since there are no real obstacles for adding simple types to first order theorem
provers.
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The fragment is a second order logic, because it is allowed to quantify over
functions and predicates that work on objects. We call the logic fragment weak

second order logic, because second order functions cannot be used as arguments
of other functions or predicates, and because λ notation is not allowed inside
formulas. Although the logic is untyped, we still insist that variables are declared.

Definition 1. A declaration has one of the following two forms:

– A function declaration FUNCTION f:n declares f as a function symbol of

arity n. In case n = 0, the function symbol is a constant.

– A predicate declaration PREDICATE p:n declares p as a predicate with arity

n.

We usually abbreviate FUNCTION f:n to FUNC f:n and PREDICATE p:n to

PRED p:n.

The logic is untyped, and there are no higher-order functions/predicates. The-
fore, it is sufficient to specify the arity of a symbol in order to declare it.

Definition 2. The set of weakly untyped second order (WUSO) formulas is

recursively defined as follows:

– A usual (first order) atom is a WUSO formula.

– ⊥ and ⊤ are WUSO formulas.

– If F is a WUSO formula, then ¬F is a WUSO formula.

– If F1 and F2 are WUSO formulas, then F1 ∧ F2, F1 ∨ F2, F1 → F2, and

F1 ↔ F2 are also WUSO formulas.

– If F is a WUSO formula, D1, . . . , Dn, n > 0, is a sequence of declarations,

then ∀D1, . . . , Dn F and ∃D1, . . . , Dn F are WUSO formulas.

Quantifications of form ∀∃ FUNC x1:0, . . . , xn:0 F are called first order. We

usually abbreviate first order quantifications to ∀∃ x1 · · ·xn F.

A WUSO formula is called schematic first order if it has form ∀D1, . . . , Dn F

or form F, and F contains only first order quantifications.

In addition to satisfying Definition 2, a formula must be well formed, which
means that all symbols occurring in it have to be declared.
Our fragment is a bit stronger than the logic used by Mizar [10], which uses
schematic first order formulas, but we will probably not make use of this fact in
applications. We now give some examples of WUSO formulas:

Example 1. The induction schema for natural numbers:

∀ PRED p:1 p(0) ∧ [ ∀ FUNC n:0 N(n) → P (n) → P (succ(n))]

→ ∀ FUNC m:0 N(m) → P (m).

The axiom of separation (Aussonderungsaxiom):

∀ PRED p:1 ∀ FUNC x:0 ∃ FUNC y:0

(∀ FUNC α:0 α ∈ y ↔ α ∈ x ∧ p(α)).
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1.2 Contexts

The system collects all its assumptions, declarations and proven theorems in a
context.

Definition 3. A context Γ is a sequence of form Γ1, . . . , Γp, p ≥ 0. Each Γi

either has form Ci or form Li:Ci. Each Ci in turn must have one of the forms

listed below. Each Li, when it is present, is a label. We explain in Definition 4

under which conditions Ci can have a label. Here we list the possible forms of

the Ci.

– A declaration of form FUNC f:n or PRED p:n.

– A definition of form FUNC f := λx1 · · ·xn t, or of form

PRED p := λx1 · · ·xn F.

– An indirect function definition of form FUNC f := λx1 · · ·xn y F. The

other definitions are called direct.
– An assumption F.

– A proven formula F.

In the list, F denotes a WUSO formula, t a first order term.

Note that λ abstraction cannot be used in formulas, only in definitions and in
substitutions. Because abstraction is possible only on 0-arity function variables,
there is no need to include type information in an abstraction.
An indirect function definition defines an n-ary function through an (n + 1)-
ary predicate. In order to be accepted by the system, the user has to provide
proofs of ∀x1 · · ·xn∃y F (x1, . . . , xn, y) and of ∀x1 · · ·xn∀y1y2 F (x1, . . . , xn, y1)∧
F (x1, . . . , xn, y2) → y1 = y2.

Definition 4. Most of the elements Ci that can occur in a context have a mean-

ing that can be expressed by a formula. We call this formula the characteristic
formula of Ci. It is defined as follows:

– A declaration of form FUNC f:n or PRED p:n has no characteristic for-

mula.
– If Ci has form FUNC f := λx1 · · ·xn t, then the characteristic formula

equals

∀x1 · · ·xn f(x1, . . . , xn) = t[x1, . . . , xn].

The characteristic formula of PRED p := λx1 · · ·xn F equals

∀x1 · · ·xn p(x1, . . . , xn) ↔ F [x1, . . . , xn].

– The characteristic formula of an indirect function definition FUNC f :=
λx1 · · ·xn y F equals

∀x1 · · ·xn y f(x1, . . . , xn) = y ↔ F [x1, . . . , xn, y].

– The characteristic formula of a formula assumption F equals F.

– The characteristic formula of a proven formula F equals F.

A context element Ci can have a label exactly when it has a characteristic for-

mula. The purpose of the label is to assign a name to the characteristic formula.
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1.3 Forward Reasoning

The calculus has three mechanisms for forward reasoning. These are instanti-
ation, modus ponens and first order reasoning. There is also a mechanism for
conditional reasoning, which will be discussed in the next section. The reason-
ing mechanisms (already without first order theorem proving) cover the usual
natural deduction rules for ∀ and → .

Instantiation is the following rule: From ∀x F derive F [x := t]. Modus ponens
is the rule: From A and A → B derive B. Instantiation and modus ponens are
handled together in references. References are used in first order reasoning steps
for referring back to formulas that have been proven before. In the references,
one can specify which instantiations have to be used, and how modus ponens
must be applied.
First-order reasoning is delegated to a first order theorem prover, which can be
chosen by the user. Every time a first order reasoning step has to be made, the
system prepares an input file in TPTP-syntax, starts the theorem prover, waits
for a result, and checks the outputfile for a characteristic string that indicates
that a proof was found. At this moment, we do not attempt to check the proof
that was found by the theorem prover. The system is designed such a way that
it is possible to run each goal on more than one theorem prover, in case one
wants to avoid trusting a single theorem prover.
For each first order reasoning step, the user has to indicate its result, and he
has to indicate from which premisses he expects the result to be provable. If
the proof succeeds, the new formula will be added to the context as a proven
formula. The user can assign a label to the formula. The general schema is given
in Section 2.1. Although it is a bit more work for the user, listing the premisses
avoids that the theorem prover has to be called with large input sets.
In order to prove a new formula using a context Γ, every characteristic formula of
an element of Γ can be used. In order to refer to the characteristic formulas, one
can make use of the labels. Additionally, indirect references of form ’3 formulas
after label X’ , ’2 formulas before label X’, ’the last formula’, or ’the second last
formula’ are allowed.

Definition 5. Given a context Γ, we recursively define the set of references and

the formulas that they refer to:

– A label L is a reference. In case Γ contains an element with label L, the

reference refers to the characteristic formula of L.

– An expression of form L + i or L − i is a reference. In case Γ contains an

element with label L, the reference refers to the i-th characteristic formula

after (or before) L. The references L+0 and L−0 refer to the same formula

as L.

– An expression of form −i is a reference. In this case −i refers to the i-th

characteristic formula from the end of Γ. The last characteristic formula in

Γ can be referred to by −1.

– If R is a reference, then RΘ is a reference. Θ must a be a substitution of

form

{ FUNC f1 := λx1t1, . . . , FUNC fm := λxmtm,
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PRED p1 := λy

1
F1, . . . , PRED pn := λynFn }.

If R refers to a formula of form

∀ FUNC f1 · · · FUNC fm PRED p1 · · · PRED pn F,

(possibly after reshuffling top level ∀ quantifiers), then RΘ refers to FΘ.

– If R1 and R2 are references, then MP(R1, R2) is also a reference. If R1 refers

to a formula A, and R2 refers to a formula of form A → B, then MP(R1, R2)
refers to formula B.

The reader may think that MP is superfluous because it is a first order rule.
The reason that we added it separately is the fact that, although MP is a first
order rule, it can work on formulas that are not first order. When there is no
ambiguity, we will omit the type indicators FUNC and PRED in substitutions.

Example 2. In Example 1, the induction scheme can be instantiated by
{p := λx x + 0 = x}. The result is

0 + 0 = 0 ∧ [ ∀ FUNC n:0 N(n) → n + 0 = n → succ(n) + 0 = succ(n) ] →

∀ FUNC m:0 N(m) → m + 0 = m.

The separation axiom can be instantiated by { p := λx interesting(x) }. The
result is

∀ FUNC x:0 ∃ FUNC y:0

∀ FUNC α:0 α ∈ y ↔ α ∈ x ∧ interesting(α).

It is also possible to instantiate with { p := λx ¬interesting(x), x := λ nat }.
The result is

∃ FUNC y:0 ∀ FUNC α:0 α ∈ y ↔ α ∈ nat ∧ ¬interesting(α).

(The last set y can be proven empty by a simple induction argument)

1.4 Conditional Reasoning

Conditional reasoning handles the introduction and dropping of assumptions,
and the introduction and dropping of eigenvariables. When an assumption A is
dropped, every formula F that was proven in the context of A, has to be replaced
by A → F. When an eigenvariable x is dropped, every formula F that is proven
in the context of x, has to be replaced by ∀x A.

In our system, conditional reasoning is handled by modifications on the context
Γ. Suppose that Γ has form Γ1, C, Γ2, and that we want to drop C. We specify
for each element in Γ2, how it will be modified. It is not always possible to define
a meaningful effect on each element of Γ2, but we try to be as general as possible.
When for some element of Γ2, no meaningful effect can be defined, it is forbidden
to drop C.
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– If C is a declaration of form FUNC c:0, then Γ2 must consist of definitions
and proven formulas only. C is removed by the following procedure: As long
as C is not the last element of Γ2, the complete context can be written in the
form Γ1, C, D, ∆. We will exchange C with D. During the replacement, D is
modified, and possibly also ∆. The exchanges are repeated until C reaches
the end of Γ2. Then it can be removed without consequences.
Write Γ2 in the form C, D, ∆, and assume that D is a definition with form
FUNC f := λx1 · · ·xn t.

Then D is replaced by FUNC f

′ := λc x1 · · ·xn t, and ∆ is replaced by
∆{ f := λx1 · · ·xn f

′(c, x1, . . . , xn) }.
If D has form PRED p := λx1 · · ·xn F then it is treated analogeously. D

is replaced by PRED p

′ := λc x1 · · ·xn F, and ∆ is replaced by ∆{ p :=
λx1 · · ·xn p

′(c, x1, . . . , xn) }.
Indirect function definitions are dealt with in the same way. We omit the
details.
If D is a proven formula F, then it is replaced by ∀FUNC c:0 F, and ∆ is
not changed.

– If C is a declaration of form FUNC f:n with n 6= 0, or of form PRED p:n,

then Γ2 must consist only of proven formulas. Each proven formula F is
replaced by ∀ FUNC f:n F. (or by ∀ PRED p:n F )

– If C is a direct function definition of form FUNC f:n := λx1 · · ·xn t, then
Γ2 is replaced by Γ2 { f := λx1 · · ·xn t }.
Direct predicate definitions are substituted away in the same way.

– If C is an indirect function definition, it cannot be dropped, because we have
no way of substituting it away.

– If C is a formula assumption of form F, then Γ2 must consist of proven
formulas F1, . . . , Fn only. Each formula Fi is replaced by F → Fi.

We think that most of the modifications on Γ2 are more or less obvious, except for
the first case, where a 0-arity function variable is dropped. We give an example
of this situation:

Example 3. Consider the context

FUNC n:0,

PRED E := N(n) ∧ ∃ FUNC m:0 N(m) ∧ m + m = n,

PROVEN E → ∃ FUNC m:0 d(m) = n.

The propositional variable E means ’n is even’, N(n) denotes ’n is a natural
number’, and d denotes the doubling function λx x + x.

Suppose that we want to drop the first assumption FUNC n:0. Then the defini-
tion and the proven formula have to be modified. First, the definition PRED E :=
N(n)∧∃ FUNC m:0 N(m)∧m+m = n is replaced by PRED E

′ := λn N(n)∧
∃ FUNC m:0 N(m) ∧ m + m = n, and in the proven formula, the substitution
{ E := E

′(n) } is made.
After that, the formula E

′(n) → ∃ FUNC m:0 d(m) = n is replaced by
∀ FUNC n:0 E

′(n) → ∃ FUNC m:0 d(m) = n.
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The resulting context is

PRED E

′ := λn N(n) ∧ ∃ FUNC m:0 N(m) ∧ m + m = n,

∀ FUNC n:0 E

′(n) → ∃ FUNC m:0 d(m) = n.

A practical implementation will try to reuse the identifier E, instead of replac-
ing E by E

′
. Note that if one would use the Curry-Howard isomorphism, the

two types of modifications, (adding a parameter to a definition, and adding a
universal quantifier to a proven formula) would be the same, because under the
Curry-Howard isomorphism, definitions and proofs of theorems are the same.

2 Proof Structure

The input to the system consists of a file containing the proof. The system is
a batch system. It reads the proof, checks the steps in it, and reports errors.
While reading the proof, the system maintains a context Γ, which is updated
after every proof step. We list some of the constructions that can occur in proofs.
The FROM-rule handles the forward reasoning by the external theorem prover.
Most of the other reasoning rules are straightforwardly based on the context
modifications that we defined in Section 1.4.

2.1 From

FROM is the rule for first order forward reasoning, it is analogeous to the by rule
of Mizar. It has form:

PROVE L:F FROM R1, . . . , Rn.

The R1, . . . , Rn must be references that refer to a first order formula. F must be
a first order formula. The system calls the external theorem prover which tries
to prove F from the formulas denoted by the first order references R1, . . . , Rn.

If it succeeds, F is added to the context as a proven formula. The label L is
optional. If a label is present, F will receive label L.

2.2 Permanent Predicate/Function Definitions

A function or predicate definition has one of the following three forms:

DEFINE FUNC D INDIRECTLY BY L : E

EXISTENCE R1, . . . , Rm UNIQUENESS S1, . . . , Sn.

DEFINE FUNC D BY L : E, or

DEFINE PRED D BY L : E.
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D is the identifier being defined. L is a optional label, that will be used for the
characteristic formula. E is an expression of form λx1 · · ·xn y F, in which F is
a formula or a term, dependent on the type of the definition.

In case of an indirect definition, R1, . . . , Rm is a list of references from which the
theorem prover must be able to prove

∀x1 · · ·xn∃y F [x1, . . . , xn, y].

S1, . . . , Sn is a list of references from which the theorem prover must be able to
prove

∀x1 · · ·xn∀y1y2 F [x1, . . . , xn, y1] ∧ F [x1, . . . , xn, y2] → y1 = y2.

2.3 Local Assumptions

A local assumption block has form

ASSUME D1, . . . , Dn IN P1, . . . , Pm END .

Each Di has one of the following five forms:

1. PREDICATE p:n,

2. PREDICATE p := λx1 · · ·xn F,

3. FUNCTION f:n,

4. FUNCTION f := λx1 · · ·xn t,

5. FORMULA F, in which F is a WUSO formula.

The sequence P1, . . . , Pm must be a proof by itself. The system first adds the
assumptions D1, . . . , Dn to the context. After that, it reads the proof P1, . . . , Pm,

which can make further additions to the context. When reading of P1, . . . , Pm is
complete, the assumptions D1, . . . , Dn are dropped from the context in the order
Dn, Dn−1, . . . , D1. The additions, made by the proof P1, . . . , Pm, are modified
according to the rules of Section 1.4.

2.4 Permanent Assumptions

A permanent assumption block has form

ASSUME D1, . . . , Dn.

Each Di must have one of the following three forms:

1. PREDICATE p:n,

2. FUNCTION f:n,

3. FORMULA F.

64



3 Conclusions and Future Work

The system is only intended as a first attempt. Probably the most important
modification that has to be made, is to add a simple type system. Simple types
are very easy to implement in resolution or tableaux. Unfortunately, still none
of the existing theorem provers supports simple types. We will extend the next
version of Geo with simple types. We also plan to redo the verifications of [3]
and of [4] in our system.
The system can be obtained from the homepage of the second author. If the
system turns out succesful enough, and stabilizes, we will rewrite it with a trusted
code base.
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Abstract

Previous CASC competitions have focused on proving difficult problems on small numbers of axioms. 
However, typical reasoning applications for expert systems rely on knowledge bases that have large numbers 
of axioms of which only a small number may be relevant to any given query.  We have created a category in 
the new LTB division of CASC to test this sort of situation.  We present an analysis of performance of last 
year's  entrants   in  CASC to show how they perform before any opportunity  for   tuning them to  this  new 
competition.

 1. Introduction
Previous CASC competitions have focused on proving difficult problems on relatively small numbers of 
axioms.  However, typical reasoning applications for expert systems rely on knowledge bases that have 
large numbers of axioms, of which only a small number may be relevant to any given query.  We have 
chosen the Suggested Upper Merged Ontology as the basis for a category of the new Large Theory 
Batch (LTB) division of CASC.

The Suggested Upper Merged Ontology (SUMO) (Niles & Pease, 2001) is a free, formal 
ontology of about 1000 terms and 4000 definitional statements. It is provided in the SUO­KIF language 
(Pease, 2003), which is a first order logic with some second­order extensions, and also translated into 
the OWL semantic web language (which is a necessarily lossy translation, given the limited 
expressiveness of OWL). In prior work we have described how we transformed SUMO into a strictly 
first­order form (Pease&Sutcliffe, 2007). SUMO has also been extended with a MId­Level Ontology 
(MILO), and a number of domain ontologies, which together number some 20,000 terms and 70,000 
axioms.  SUMO has been mapped to the WordNet lexicon (Fellbaum, 1998) of over 100,000 noun, verb, 
adjective, and adverb word senses (Niles & Pease, 2003), which not only acts as a check on coverage 
and completeness, but also provides a basis for work in natural language processing (Pease & Murray, 
2003) (Elkateb et al, 2006) (Scheffczyk et al, 2006). SUMO is now in its 75th free version; having 
undergone five years of development, review by a community of hundreds of people, and application in 
expert reasoning and linguistics. Various versions of SUMO have been subjected to formal verification 
with Vampire (Riazanov&Voronkov 2002), which until recently was the only prover we had integrated 
into our browsing and inference tool suite called Sigma (Pease, 2003). SUMO and all the associated 
tools and products are available at www.ontologyportal.org.

 2.The Competition
The SUMO inference prizes totaling US$3000.00 will be awarded to the best performance on the SMO 
category of the LTB division of CASC, held at IJCAR 2008. The LTB division has an assurance 
ranking class and a proof ranking class. In each ranking class the winner will receive $750, the second 
place $500, and the third place $250 (a system that wins the proof ranking class might also win the 
assurance ranking class).
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We created an additional test to support the participation of model­finders. The SUMO 
validation prize totaling US$300 will test these systems, and hopefully improve SUMO by finding any 
problems with the theory.  Three subdivisions, each with a $100 prize will be given to those systems 
which

 1. Verify the consistency of, or provide feedback to repair, the base SUMO ontology.
 2. Verify the consistency of, or provide feedback to repair, the combined SUMO and MILO ontologies.
 3. Verify the consistency of, or provide feedback to repair, the combined SUMO, MILO, and domain 
ontologies. 

The winners of the SUMO challenges will be announced and receive their awards at IJCAR following 
successful completion of a challenge. 

 3.Example Test
To give a flavor of what the tests consist of, we present one of them.  The question posed to the system 
can be described as “Can a human perform an intentional action if he or she is dead?”.  We create in the 
test an example instance of an action
(instance DoingSomething4-1 IntentionalProcess)

then state that an individual is performing the action
(agent DoingSomething4-1 Entity4-1)

and that the individual is human
(instance Entity4-1 Human)

The successful theorem prover will then find the following axioms and apply them to prove the 
conjecture
(<=>
   (instance ?X4 Agent)
   (exists (?X5)
     (agent ?X5 ?X4)))

(subclass IntentionalProcess Process)

(=>
  (and
    (subclass ?X403 ?X404)
    (instance ?X405 ?X403))
  (instance ?X405 ?X404))

(=>
  (and
    (agent ?X5 ?X4)
    (instance ?X5 IntentionalProcess))
  (and
    (instance ?X4 CognitiveAgent)
    (not
      (holdsDuring
        (WhenFn ?X5) 
        (attribute ?X4 Dead)))))
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We should note that this proof has the interesting feature that although the form appears to be second 
order (holdsDuring arg <formula>), the system treats the embedded formula as an uninterpreted 
list and is able to solve the problem simply by unifying clauses in the list.

While this example is trivial when the necessary axioms are found ahead of time, it becomes 
very challenging in the context of a large knowledge base, where, in a practical situation, the relevant 
axioms cannot be known ahead of time.  There are hundreds or thousands of axioms involving the term 
“agent” in SUMO, for example, and the successful theorem prover will have to hunt through those 
axioms very quickly in order to find just the ones that are relevant to the query being posed.

 4.Analysis
In order to test whether the competition was even reasonable, we decided to run it on all the provers in 
the SystemOnTPTP suite.  These were Bliksem 1.12, CARINE 0.734, CiME 2.01, Darwin 1.4.1, 
DarwinFM 1.4.1, DCTP 1.31, E 0.999, E­KRHyper 1.0, EQP 0.9d, Equinox 1.3, Fampire 1.3, Faust 1.0, 
FDP 0.9.16, Fiesta 2, Gandalf c­2.6, Geo 2007f, GrAnDe 1.1, iProver 0.2, leanCoP 2.0, LeanTAP 2.3, 
Mace2 2.2, Mace4 1207, Matita 0.1.0, Metis 2.0, Muscadet 2.7a, Otter 3.3, Paradox 2.3, Prover9 1207, 
S­SETHEO 0.0, SETHEO 3.3, SNARK 20070805, SOS 2.0, SPASS 3.0, SRASS 0.1, Theo 2006, 
Vampire 9.0, Waldmeister 806, zChaff 04.11.15, Zenon 0.5.0.  We gave each prover 600 seconds on 
each of 102 problems, generated from 33 distinct queries (possibly with some additional assertions to 
the knowledge base) each tested with just the ~4000 axioms in SUMO, the ~9000 axioms of 
SUMO+MILO or the tens of thousands of axioms in SUMO+MILO and all the domain ontologies.

Overall performance is shown in the first column above with Vampire achieving first place. All 
other provers not listed failed to solve any of the problems.  The best performance with SUMO alone is 
shown then SUMO+MILO and finally performance with all the domain ontologies loaded.  The best 
performing provers still did not solve a majority of the 105 problems in the test set.  Vampire solved 31, 
Fampire 20, E 15 and Metis 14, with the other provers in the single digits or no solutions at all.  Prover 
failing to find solutions were stopped generally because of timeouts, rather than errors in parsing or 
memory space.  Average running times approached the 600 seconds allocated for all provers because of 

Overall SUMO SUMO+MILO All
Vampire   .9 0 Vampire   .9 0 Vampire   .9 0 Metis     .2 0
Metis     .2 0 E         .0 999 Metis     .2 0 Zenon     . .0 5 0
E         .0 999 iProver   .0 2 SNARK  20070805 Equinox   .1 3
iProver   .0 2 leanCoP   .2 0 Zenon     . .0 5 0
leanCoP   .2 0 Metis     .2 0 Equinox   .1 3
Darwin    . .1 4 1 Darwin    . .1 4 1 Muscadet  . a2 7
Zenon     . .0 5 0 Fampire   .1 3
Equinox   .1 3 SNARK  20070805
Fampire   .1 3 Zenon     . .0 5 0
SNARK  20070805 Equinox   .1 3
Muscadet  . a2 7 Muscadet  . a2 7
SPASS     .3 0 SPASS     .3 0
Faust     .1 0 Faust     .1 0

Table 1: Performance ranking
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the low percentage of solved problems.
The differing strengths of several of the provers suggested creating a “meta­prover” combining 

several systems.  The strategy is to give Vampire 400 seconds, then give Metis up to 200 seconds if 
Vampire failed to find a proof. The combined system gets 33 answers compared to 31 for Vampire alone 
or 14 for Metis alone, and performance overall is slightly better at 48158 seconds vs. 55419 for Metis 
and 48599 for Vampire. We might be able to tweak the timeslice allocation to do still better, although 
further efforts in that regard could be considered overtraining to this particular problem set.

We performed an analysis to determine what set of systems would cover the maximum number 
of problems (see Figure 1).  This is termed a “SOTA” analysis as per (Sutcliffe & Suttner 2001). 
Vampire solved eight problems solved by no other prover.  Metis uniquely solved two, and Fampire 1. 
This analysis suggests that we should revisit creation of a meta­prover composed of Vampire, Metis and 
Fampire.

 5.Conclusions
We have created a category called “SMO” in the new LTB division of CASC to motivate high 
performance reasoning on practical problems using a broad knowledge base.  We believe this will yield 
some exciting research results, as well as provide the application development community with provers 
that are more closely optimized to the needs to one sort of practical inference.  We have run the tests 
with existing theorem provers and found the competition to be a reasonable goal for these systems. 
With tuning, we expect even better performance.  

In the future we expect to expand the number of tests in the SMO category.  We also anticipate 
providing a “stratified” set of tests of different expressiveness, in which we extract the horn clause and 
description logic subsets of SUMO and provide tests on those subsets.

VampireFampire Metis

iProver
E

Equinox

Zenon

SNARK MuscadetleanCoP

SPASS

FaustFigure 1: SOTA analysis
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Abstract. The LogAnswer system is an application of automated rea-
soning to the field of open domain question answering, which aims at
finding answers to natural language questions regarding arbitrary top-
ics. In our system we have integrated an automated theorem prover in
a framework of natural language processing tools to allow for deductive
reasoning over an extensive knowledge base derived from textual sources.
For this purpose we had to intertwine two opposing approaches: on the
one hand formal logic with its precision but brittleness, and on the other
hand, machine learning applied to shallow linguistic features, which are
robust but less precise. In the paper we present implementation details
and discuss obstacles and their proposed solutions.

1 Introduction

Question answering (QA) systems generate natural language (NL) answers in
response to NL questions, using a large collection of textual documents.3 Simple
factual questions can be answered using only information retrieval and shallow
linguistic methods like named entity recognition [1]. More advanced cases, like
questions involving a temporal description, call for deduction based question
answering which can provide support for temporal reasoning and other natural
language related inferences [2]. Complete QA systems which integrate question
answering and logical reasoning are [3,4,5]. The junctures of logic and answer
validation are also addressed in research on recognizing textual entailment [6,7].

Our LogAnswer system uses first order logic to represent an extensive knowl-
edge base, and a combination of NL processing tools and an automated theorem
prover to derive answers within a few seconds, i.e. in a time frame appropriate
for ad-hoc question answering on the web. The fields of automated reasoning
and natural language processing (NLP) differ greatly in their methodologies. A

3 A survey on the progress in question answering technology is provided by the QA
track of the TREC conference series (see http://trec.nist.gov) and by the CLEF
workshops (see http://www.clef-campaign.org/).
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Fig. 1. Screenshot of the LogAnswer prototype. The system is available online at
www.loganswer.de.

theorem prover generally implements a sound and complete deduction calcu-
lus which can produce complex proofs using hundreds of inference steps, and it
operates on a set of clauses or formulas where consistency or lack thereof is crit-
ical for the result. By contrast, natural language is ambiguous, textual sources
may be imperfect, and as a consequence a knowledge base derived from such
sources cannot be expected to be consistent. Moreover, it is not feasible to pro-
vide a complete formalization of the background knowledge used by persons in
understanding natural language. A practical NLP approach must take this into
account and employ robustness-enhancing methods to overcome the flaws and
deliver useful results.

Merging the reasoning depth of an automated theorem prover with the ro-
bustness of NL processing presents a number of difficulties. We will provide a
short overview of our LogAnswer system and then address the obstacles and
solutions in detail.

2 Description of the LogAnswer System

LogAnswer is a QA-system supporting the German language. A full system de-
scription is presented in [8]. LogAnswer operates on a knowledge base consisting
of general semantic background rules as well as factual knowledge derived from
the German Wikipedia and a corpus of newspaper articles. This knowledge is
represented by semantic networks in the MultiNet formalism [9]. The user inter-
acts with LogAnswer via the user interface, where a NL question can be entered
into a search box, as shown in Figure 1. The query is then processed in several
stages. The WOCADI parser module [10] translates the query into a MultiNet
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representation. The formalized text passages from the MultiNet knowledge base
are then searched for the query terms, and the matching network fragments are
returned as the basis for generating answer candidates. Each retrieved fragment
corresponds to a text passage which may contain an answer to the question.
Currently, 200 MultiNet passage representations are retrieved for each question.
Shallow linguistic methods provide additional filtering, further cutting down the
number of candidate passages.

At this stage the deduction-based processing begins. The automated reason-
ing component of LogAnswer is E-KRHyper [11], an automated theorem prover
for first order logic with equality, based on the hyper tableaux calculus [12,13].
E-KRHyper is an in-house system, developed for embedding in knowledge rep-
resentation applications. It has been equipped with several features, commands
and modes of operation for this purpose. Our familiarity with the system allows
us to perform deep modifications when required. Because of our experience in
adapting this prover to numerous systems in the past, it was a natural choice
for a reasoner in LogAnswer. Its performance is roughly comparable to Otter
[14], a system which generally serves as a benchmark among automated theorem
provers.

The query and the MultiNet candidate passages are converted into first order
logic representations. For each answer candidate the theorem prover E-KRHyper
attempts to refute the negated query representation in conjunction with the
background knowledge rules and the respective candidate. A successful refutation
indicates that an answer has been found, and the queried information is extracted
from the refutational proof.

If answers are found for multiple candidate passages, then they are ranked
according to features extracted from logic processing and from shallow linguistic
analysis (e.g. lexical overlap). The five best answers are presented to the user.
Depending on user choice, the answers are given only in the form of snippets from
the textual sources or as precise answers together with the snippets providing
context. The quality score shown with each result is an estimate of the correct-
ness probability of the answer determined by a machine learning approach.

3 Knowledge Representation

MultiNet (Multilayered Extended Semantic Networks) [9] is a formalism for
knowledge representation via semantic networks, which is particularly suited for
the meaning representation of natural language. Characteristic of MultiNet is
its stable inventory of pre-defined relations (edge labels), which made possible
the long-term development of a computational lexicon based on MultiNet [15],
and the introduction of so-called layer attributes. These attributes are used in
multi-dimensional node descriptions which serve to capture quantification and
other aspects of meaning that cannot be expressed using the relational means of
a semantic network.

The formalism is generally independent of any particular natural language,
although the tools for translating NL into MultiNet are only available for German
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(and in a rudimentary form for English) at this time.4 The knowledge base of
LogAnswer was therefore derived from textual sources in German, namely the
German Wikipedia and a corpus of newspaper articles. All in all about 12 million
sentences have been translated into semantic networks, which are stored using
Scheme syntax.

For the deduction-based processing in LogAnswer this knowledge base is fur-
ther translated into first-order logic, stored in the TPTP format [16], a standard
among automated theorem provers. The MultiNet nodes and attributed arcs can
be translated in a fairly straightforward manner into relations and constants,
and the same holds for the logical MultiNet rules which express the semantics of
words and the logical properties of the MultiNet relations. However, it should be
noted that MultiNet goes beyond the expressivity of pure first-order logic and
TPTP. For example, MultiNet networks can contain generalized quantifiers like
‘most’ or ‘almost all’. These aspects of the MultiNet representation are lost in
the translation to logical expressions. In fact, our current translation from Multi-
Net to logic results in Horn logic (plus arithmetic expressions). It is planned to
translate into a more powerful logic including equality in order to better capture
the actual meaning of the natural language sentences. In order to allow such
an extension, the E-KRHyper prover for full first-order logic with equality was
chosen, which also supports arithmetic expressions.

4 Query Representation

For our purposes of logic-based question answering, the NL question must be
translated into a conjunctive list of query literals. Synonyms are normalized by
replacing all lexical concepts with canonical synset representatives. If the ques-
tion asks for specific information, then this is represented by a special FOCUS
variable. In a successful proof this variable will be instantiated with the desired
information from the knowledge base.

For example, Rudy Giuliani war Bürgermeister welcher US-Stadt?5 translates
into the following logical query:

attr(X1, X2), attr(X1, X3), val(X2, rudy.0), sub(X2, vorname.1.1),

val(X3, giuliani.0), sub(X3, nachname.1.1), sub(FOCUS, usstadt.1.1),

attch(FOCUS, X1), sub(X1, bürgermeister.1.1)

5 Deduction-based Query Processing

Each of the candidate passages retrieved from the knowledge base may contain
an answer to the query, so a separate proof attempt is made for each candidate.
4 In order to adapt the system to another language, a computational lexicon and a

parser for generating MultiNet representations from expressions in that language
must be provided. While the logical core of LogAnswer can remain the same, the
lexical-semantic relations (synonyms, nominalizations etc.) used by LogAnswer must
also be adapted to the language of interest.

5 Rudy Giuliani was the mayor of which city in the USA?
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The proof is done by refutation, with the logical query representation being
treated as a negated conjecture. E-KRHyper operates on a clause normal form
(CNF) representation and converts its first order input accordingly. To continue
our example, E-KRHyper uses the following representation of the query:

¬ attr(X1, X2) ∨ ¬ attr(X1, X3) ∨ ¬ val(X2, rudy.0) ∨ ¬ sub(X2, vorname.1.1)∨
¬ val(X3, giuliani.0) ∨ ¬ sub(X3, nachname.1.1) ∨ ¬ sub(FOCUS, usstadt.1.1)∨
¬ attch(FOCUS, X1) ∨ ¬ sub(X1, bürgermeister.1.1) .

The prover keeps track of the FOCUS variable throughout all clause trans-
formations and inference steps, so that its binding can be extracted from a proof
even if it has been renamed.

As its derivation E-KRHyper builds a hyper tableau in the form of a literal
tree, using the hyper extension inference: if the negative literals of a clause unify
with complementary literals from a tableau branch, then the positive literals of
the clause are added as leaves. A branch is closed once it is found to contain a
contradiction. In a derivation for LogAnswer this is the case when all the negative
literals from the query unify with the branch; given that the query has no positive
literals, the branch gets closed. The term bound to the FOCUS variable in the
unifying substitution used in the refutational proof then represents the queried
information.

The current logical background knowledge consists of Horn formulas only, but
with the ongoing translation of the MultiNet knowledge the logical rules will
eventually contain non-Horn formulas as well. In a hyper tableaux derivation
these can lead to tableau branching, with multiple closed branches and thus
multiple closing unifiers. In such a case E-KRHyper extracts all the bindings for
the FOCUS variable from the proof and presents them as different answers to
the main LogAnswer system.

6 Ensuring Robustness

A knowledge base derived from textual sources is bound to have imperfections.
Furthermore, the logical background knowledge provided to the prover will never
completely cover the actual background knowledge of a person who reads the
text. Finally, the candidate passages are not guaranteed to contain an answer to
the query, since they have only been selected by relatively simple filtering. For
these reasons it is not certain that E-KRHyper can find a proof within an answer
candidate, even if the corresponding NL source actually contains the queried
information. Given that LogAnswer is supposed to provide answers in a short
amount of time, the maximum time slot dedicated to a single proof attempt is
constrained severely to ensure that all answer candidates can be tested. However,
while a time limit ensures that the prover will not work indefinitely on one futile
candidate when answers would be readily available in others, it does not help
against missing an answer due to minor mismatches. When the formulas being
reasoned upon have all been derived from imperfect textual sources and by
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imperfect tools for linguistic analysis, then formal logic may be too rigorous in
demanding a perfect proof for an answer, and small compromises may actually
be acceptable.6

For this reason E-KRHyper is embedded in a relaxation loop: if no proof
is found within a time limit, then the query is relaxed by dropping a query
literal and restarting the prover with the shortened query.7 In theory this can
be continued until a proof of the simplified query succeeds, but since LogAnswer
aims to produce useful answers the loop will be stopped before all literals are
skipped.

Also, rather than skipping a random query literal, the derivation progress
during the failed refutation attempt can be used to guide the choice of which
literal to drop. Given a negated query clause ¬Q1∨· · ·∨¬Qn, E-KRHyper tries to
unify the query literals with fresh variants B1, . . . , Bn of complementary branch
literals from the current tableau branch b by testing the query literals from left to
right. The unifying substitution is extended in every step such that starting with
the empty substitution σ0, σk is a substitution with Qiσk = Bi,∀i ∈ {1 . . . k},
with k ∈ {1 . . . n}. If one query literal ¬Ql fails to find a matching partner in
the branch which would allow an extension of the current substitution σl−1 to
σl, then the remaining literals ¬Ql+1, . . . ,¬Qn are not tested under σl−1.

Instead E-KRHyper generates a partial result. A partial result is represented
by a triple ({Q1, . . . , Ql−1}, σl−1, {Ql, . . . , Qn}), consisting of the list of success-
fully unified query literals, the unifying substitution, and the list of query literals
that were not unified, the first of which being the one that failed, whereas the
remaining were not tested at all. If E-KRHyper fails to find a proof within the
time limit, then all partial results generated so far are returned to the main Log-
Answer system. One of the best partial results is selected (i.e. one of the partial
results with the highest number of refuted query literals), the failed literal ¬Ql

is removed from the negated query clause and E-KRHyper restarts its derivation
with the new query clause ¬Q1 ∨ · · · ∨ ¬Ql−1 ∨ ¬Ql+1 ∨ · · · ∨ ¬Qn. When two
partial results have the same number of failed literals, then additional criteria
are used for selecting the best partial result: (a) partial results which provide a
binding to the FOCUS variable are considered better than partial results which
do not bind the queried variable (this criterion is important since the system
can only generate answers when the FOCUS variable has been bound); and (b)
a binding of the FOCUS variable to a constant is preferable to a binding of the
FOCUS variable to a complex term (at the moment, the system is unable to
generate answers for skolem terms, so answer extraction will only succeed when
the queried variable is bound to a constant which directly represents a discourse
entity).

6 A training set is used to learn a useful interpretation of results for failed proofs [17].
7 See Sect. 8 for an example. Another system which uses relaxation for achieving more

robustness in logic-based QA is COGEX [3].
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7 A Theorem Prover as a Reasoning Server

At the time of this writing LogAnswer is deployed as a web-based QA-system
with an interface analogous to that of a typical search engine. This usage places
certain demands on the performance of LogAnswer which must be able to re-
spond to numerous queries from multiple users in a short time. The reasoning
stage within E-KRHyper can easily be the most time-consuming phase in the
processing of a query, even with relaxation. Cutting back on operations here is
crucial for maintaining responsiveness. Fortunately there are several opportuni-
ties for such measures.

To summarize, the clause input for a single proof attempt consists of:

– background knowledge: 10,200 CNF clauses,
– query: the negated query clause, on average 8 literals before relaxation,
– answer candidate: the logic representation of the candidate passage, circa

230 unit clauses.8

E-KRHyper maintains this clause set with the help of several dicrimination-
tree indexes [18]. The time required for the construction of these extensive tree
data structures can exceed the allotment for the reasoning phase. Repeating this
for each proof attempt would be prohibitive, in particular when considering that
there may be m answer candidates to check for a single query, with n relaxation
steps for each candidate, resulting in m× n proof attempts for each query.

However, the clause sets and their indexing trees differ only very slightly
between any two reasoning tasks. Only the current query and answer candi-
date can change between two proof attempts. The background knowledge, which
comprises approximately 97% of every clause set, remains the same. Therefore
LogAnswer does not restart E-KRHyper for each reasoning task. Instead the
prover is started once and provided with the background knowledge, so that the
construction of the bulk of the indexing structures is only done once during this
initialization. The task-specific clauses are then added and retracted again as
needed. This is done using the mechanism of layered discrimination-trees: the
task-specific clauses are not actually added to the same tree structures as the
background knowledge. Instead additional trees (the layers) will be created to
store the new clauses. Index reading operations access all layers, whereas writ-
ing operations only use the latest layer intended for new clauses. Once a proof
attempt is completed, the index layers with the now unnecessary clauses are
simply discarded. This avoids a lengthy extraction of these clauses from a single,
shared tree.

There is even less difference between the clause sets used in two consecutive
relaxation steps. The only change here is the removal of one query literal. This
allows us to reuse even more clauses. Given an (interrupted) hyper tableaux
derivation, all derived literals which were added to the initial branch before the
8 The problem set used for determining these numbers consists of 1806

query/candidate passage combinations for the CLEF 2007 questions for German.

77



first branch split can be treated as lemmas. Since the current logic representation
of the knowledge base is Horn only, the set of lemmas actually corresponds to
all derived branch literals, although this is bound to change in the future. The
lemmas are then kept for the next relaxation step. Thus a repetition of inferences
is avoided, and even if a relaxation step is not successful in finding an answer, it
still makes use of its limited time slot to add new lemmas. This way we combine
relaxation with incremental reasoning [19].

8 Prover Result Evaluation

The input for E-KRHyper is selected and updated by the LogAnswer main sys-
tem, and the operation of the prover is also directed and controlled as described
above. Given that many supporting text passages will be analysed for a query,
the results of E-KRHyper must be subjected to further evaluation as well in
order to select those answers that are most suitable for the user.

For this we apply a machine learning approach which combines both logic-
based and shallow syntactic features [17]: whenever E-KRHyper terminates with
a refutation, then the respective text passage is regarded as containing an answer
to the query. All such passages are ranked by an aggregated score, computed from
logic-based criteria regarding the respective proofs, like the number of relaxation
steps required, as well as from shallow syntactic features, like the relative pro-
portion of lexical concepts and numerals in the question which find a match in
the candidate passage. If the user has opted to receive answers in the form of
text snippets, then the five best passages are selected for presentation.

On the other hand, if precise answers are desired, then further processing
is necessary. The queried information is extracted directly from a refutational
proof as the binding of the FOCUS variable. The context of this instantiating
answer value within the semantic network underlying the candidate passage is
used to phrase the actual answer that can be presented to the user.

Continuing our running example we take a look at one of the candidate pas-
sages for which E-KRHyper will terminate: Hinter der Anklage stand der spätere
Bürgermeister von New York, Rudolph Giuliani.9 The logical representation of
the passage is shown here (actually, only the fragment of the representation
which models the relational structure):

hinter(c221, c210) ∧ sub(c220, nachname.1.1) ∧ val(c220, giuliani.0) ∧
sub(c219, vorname.1.1) ∧ val(c219, rudolph.0) ∧ prop(c218, spät.1.1) ∧ attr(c218, c220) ∧
attr(c218, c219) ∧ sub(c218, bürgermeister.1.1) ∧ val(c216, new york.0) ∧
sub(c216, name.1.1) ∧ sub(c215, stadt.1.1) ∧ attch(c215, c218) ∧ attr(c215, c216) ∧
subs(c211, stehen.1.1) ∧ loc(c211, c221) ∧ scar(c211, c218) ∧ sub(c210, anklage.1.1)

A full proof of the query fails since the system is lacking knowledge that Rudy is a
short form of Rudolph. Moreover, the fact that New York is a US city is not known
to the system. Therefore two query literals cannot be proved, viz val(X2, rudy.0)
9 Responsible for the charges was the future mayor of New York, Rudolph Giuliani.

78



and sub(FOCUS,usstadt.1.1). After two relaxation steps, which skip these two
literals, a proof is found with a constant c215 bound to the FOCUS variable,
which corresponds to an entity mentioned in the text. The information about
the position of the entity in the text string is then used to extract the answer
New York.

Some answers generated this way are discarded immediately. This includes
trivial answers which return the term from the query (Who is Virginia Kelley? -
Virginia Kelley) and non-informative answers (the mother instead of the mother
of Bill Clinton). Of those answers passing these sanity checks the five best in
the aforementioned ranking are selected and then displayed together with the
supporting passages.

9 Conclusions

In this paper we have explored an application of automated reasoning to open
domain question answering. With the ever growing amounts and availability of
digitally stored information the utilization of this data is becoming an important
but difficult task. Question answering systems strive to find specific information
in a significantly more goal-directed manner than search engines. This requires
deep reasoning over the semantics of stored data. Our approaches bridge the
gaps between the precision yet brittleness of deduction and the robustness but
limited accuracy of shallow linguistic techniques. This is achieved by combin-
ing the results of both levels using machine learning. We have shown how the
difficulties of a theorem prover dealing with imperfect NL-derived data can be
solved by embedding the deduction component in a robust knowledge processing
framework, which uses as feedback loop to gradually relax the logical query.

The proposed approach to ensuring robustness has been evaluated in [17].
The task was that of identifying the correct answer passages in a set of 12,337
retrieved candidate passages. A baseline system using shallow features but no
logical reasoning achieved an F-score of 42.7% in this experiment (other criteria
for filtering quality were also studied). When combining shallow features and
strict proofs, the F-score increased by 7.3%. Adding relaxation achieved another
7.9% improvement of the F-score. The best results were obtained in a configu-
ration which allowed three relaxation steps. This experiment demonstrates that
the performance of our QA system profits from the automated reasoning capa-
bilities of the logic prover and from the proposed relaxation technique. Another
benefit of the logic-based approach is that the answer bindings determined by
the prover provide the basis for answer extraction.

In the future we intend to further improve the translation of the MultiNet
formalism into first-order logic, enabling us to fully exploit the expressivity of
the semantic networks in combination with automated reasoning.
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8. Furbach, U., Glöckner, I., Helbig, H., Pelzer, B.: LogAnswer - A Deduction-Based
Question Answering System. In: IJCAR 2008 - 4th International Joint Conference
on Automated Reasoning, Sydney, Australia, 10th - 15th August, 2008, Proceed-
ings, to appear. Lecture Notes in Computer Science, Springer (2008)

9. Helbig, H.: Knowledge Representation and the Semantics of Natural Language.
Springer (2006)

10. Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere
Verlag, Osnabrück, Germany (2003)

11. Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Automated De-
duction - CADE-21, Proceedings. (2007) 508–513

12. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: JELIA’96, Pro-
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Abstract. This paper describes the translation of proofs in the Thou-
sands of Solutions from Theorem Provers (TSTP) solution library to the
Proof Markup Language (PML), and the subsequent use of Inference
Web (IW) tools to provide new presentations of the proofs. The trans-
lation enriches the TSTP proofs with proof provenance meta-data, and
provides new possibilities for proof processing.

1 Introduction

The Thousands of Problems for Theorem Provers (TPTP)1 problem library
[12] and the Thousands of Solutions from Theorem Provers (TSTP)2 solution
library are large corpora of data for and produced by Automated Theorem Prov-
ing (ATP) systems and tools. In particular, the TSTP provides solutions to the
TPTP problems, so that the main computation linking the two libraries is the
execution of ATP systems on the TPTP problems to produce the TSTP solu-
tions. Additionally, there are many other tools, mostly from the TPTPWorld [10],
that are used on the corpora for other tasks such as problem analysis, problem
transformation, proof analysis, proof verification, and proof presentation. The
TPTP and the TSTP files are written using the TPTP language [11]. The com-
mon modus operandi of the tools is to work on one file (problem or solution) at
a time, focussing on the first-order logical data therein.

The Inference Web (IW)3 [5] is a semantic web based knowledge provenance
infrastructure that supports interoperable explanations of sources, assumptions,
learned information, and answers, as an enabler for trust. IW includes two com-
ponents that are important for this work, the Proof Markup Language (PML)
ontology [7] and the IW toolkit. PML is a semantic web based representation
for exchanging explanations, including provenance information - annotating the
sources of knowledge, justification information - annotating the steps for deriv-
ing the conclusions or executing workflows, and trust information - annotating
trustworthiness assertions about knowledge and sources. The IW toolkit provides
web-based and standalone tools that facilitate human users to browse, debug,
1 http://www.tptp.org
2 http://www.tptp.org/TSTP/
3 http://inference-web.org/
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explain, and abstract knowledge encoded in PML. In contrast to the TPTP,
there is less focus on the logical data and the fine-grained reasoning processes -
PML supports arbitrary logical data and inference steps including, e.g., extrac-
tion of data from non-logical sources, conversion to logical forms, clausification
and first-order inferences, etc.

There are obvious parallels between the TPTP language/TPTPWorld and the
PML language/IW toolkit. While the scope of the IW is broader than the logic-
focussed TPTP/TSTP, there are obvious benefits to building bridges between
the two. Principally, the TSTP offers a large corpora of data for testing and
developing the IW, and the IW offers alternative views of the proofs in the
TSTP. This paper describes the translation of TSTP files to PML format, and
the presentation of the proofs using IW tools. The contribution of this work is
to add value to TPTP proofs, by translation to PML and viewing the translated
proofs with IW tools. Specific benefits include an XML proof format for TPTP
proofs, links to provenance information maintained in the IW (e.g., information
about ATP systems), structural search tools (rather than greping over the text
form of TPTP proofs), and new views on TPTP proofs and proof nodes.

This paper is organized as follows: Section 2 provides the necessary back-
ground about the TPTP, TSTP, and PML. Section 3 describes the translation
of TSTP files into PML format. Section 4 describes four IW tools’ presentations
of the proofs, demonstrating the value of these different views.

2 Background

2.1 About the TPTP and TSTP

The top level building blocks of TPTP and TSTP files are annotated formulae,
include directives, and comments. An annotated formula has the form:

language(name, role, formula, source, useful info).
The languages currently supported are fof - formulae in full first order form,
and cnf - formulae in clause normal form. The role gives the user semantics of
the formula, e.g., axiom, definition, lemma, conjecture, which guides the use
of the formula in an ATP system. The logical formula, in either FOF or CNF,
uses a consistent and easily understood notation [13]. The forms of identifiers
for uninterpreted functions, predicates, and variables follow Prolog conventions,
i.e., functions and predicates start with a lowercase letter, variables start with an
uppercase letter, and all contain only alphanumeric characters and underscore.
The TPTP language also supports interpreted symbols, which either start with
a $, e.g., $true and $false, or are composed of non-alphanumeric characters,
e.g., = and != for equality and inequality. The basic logical connectives are !,
?,~, |, &, =>, <=, <=>, and <~>, for ∀, ∃,¬, ∨, ∧, ⇒, ⇐, ⇔, and ⊕ respectively.
Quantified variables follow the quantifier in square brackets, with a colon to
separate the quantification from the logical formula. The source of an annotated
formula describes where the formula came from, most commonly a file record
or an inference record. A file record stores the name of the file from which the
annotated formula was read, and optionally the name of the annotated formula
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as it appears in the file. An inference record stores three items of information
about an inferred formula: the name of the inference rule provided by the ATP
system; a list of useful information items, e.g., the semantic status of the formula
as an SZS ontology value [13]; and a list of the parents. The useful info is a list
of arbitrary useful information, as required for user applications. An example of
a FOF formula, supplied from a file, is:

fof(formula_27,axiom,

! [X,Y] :

( subclass(X,Y) <=>

! [U] : ( member(U,X) => member(U,Y) )),

file(’SET005+0.ax’,subclass_defn),

[description(’Definition of subclass’), relevance(0.9)]).

An example of an inferred CNF formula is:

cnf(175,lemma,

( rsymProp(ib,sk_c3) | sk_c4 = sk_c3 ),

inference(factor_simp,[status(thm)],[

inference(para_into,[status(thm)],[96,78,theory(equality)])]),

[iquote(’para_into,96.2.1,78.1.1,factor_simp’)]).

Each problem file in the TPTP has a header section and a list of the anno-
tated formulae that describe the problem. The header section contains informa-
tion fields that provide context for the problem, including: the name and domain
of the problem, short and long English descriptions of the problem, information
about the source of the problem, the status of the problem in terms of the SZS
ontology, and statistics about the problem. Each file in the TSTP has a header
section and a list of the annotated formulae that describe the solution. The
header section contains information fields that provide context for the solution,
including: the name of the ATP system that produced the derivation, the name
of the TPTP problem, the command line issued to run the ATP system, informa-
tion about hardware and software resources used, the date and time the solution
was produced, the result and output status in terms of the SZS ontology, and
statistics about the solution.

At the time of writing this paper, the TPTP contains 11279 problems in
35 domains, and the TSTP contains the results of running 43 ATP systems and
system variants on all the problems in the TPTP. The solution files are classified
according to the TPTP problem domains, then by TPTP problem, and finally
by the ATP systems – this information is visible in the directory hierarchy and
solution file name.

2.2 About PML

PML is an interlingua for representing and sharing explanations generated by
various intelligent systems such as hybrid web-based question answering systems,
text analytic components, theorem provers, task processors, web services, rule
engines, and machine learning components. PML is split into three modules –
provenance, justification, and trust relations.
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– The provenance ontology provides primitives for recording properties of enti-
ties that have been used or processed. Properties such as name, description,
date and time of creation, authors, and owner, can be recorded. The IW
Registry provides a public repository that allows users to register meta-data
about entities.

– The justification ontology provides primitives for encoding justifications for
derived conclusions. Some details are provided below.

– The trust relation ontology provides primitives for explaining belief asser-
tions associated with information and trust assertions associated with sources.

PML classes are OWL [6] classes (they are subclasses of owl:Class), and
PML data is therefore expressible in the RDF/XML syntax. PML is used to build
OWL documents representing both proofs and proof provenance information.
For this work, the representation of proofs is of primary interest. The two main
constructs of proofs in PML are NodeSets and InferenceSteps. A NodeSet is used
to host a set of alternative justifications for one conclusion. A NodeSet contains:

– A URI that is its unique identifier.
– The conclusion of the proof step.
– The expression language in which the conclusion is written.
– Any number of InferenceSteps, each of which represents an application of an

inference rule that justifies the conclusion.

An InferenceStep contains:

– The inference rule that was applied to produce the conclusion.
– The antecedent NodeSets of the inference step.
– Bindings for variables in the inference.
– Any number of discharged assumptions.
– The original sources upon which the conclusion depends.
– The inference engine that performed the inference step.
– A time stamp recording when the inference step was performed.

A proof consists of a collection of NodeSets, with a root NodeSet as the final
goal, linked recursively to its antecedent NodeSets.

3 TPTP to PML Translation

The translation of a TSTP proof into PML is done by parsing the TSTP file using
the TPTP-parser4, and extracting the necessary information into PML object
instances. The proof is translated into a PML NodeSet collection, with each
formula in the solution being translated as singleton member of the collection
(but see Section 5 for hints about future work which will aggregate proofs, so

4 A parser for the TPTP language written in Java by Andrei Tchaltsev at ITC-irst,
available from http://www.freewebs.com/andrei ch/
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that NodeSets may have multiple elements). Additionally, the conjecture of the
corresponding TPTP problem is translated into a PML Query, and the English
header field of the problem into a PML Question. The Query contains a pointer
to the Question and to all NodeSet collections (from different ATP systems) that
provide a solution. The Query thus provides a starting point for accessing all the
proofs for that problem.

To translate a TPTP formula into a PML NodeSet, the translator needs to
determine the following:
– The language of the formula, either fof or cnf. Both fof and cnf have

corresponding PML provenance elements registered in the IW registry.
– The TPTP role. This is used to help determine the inference rule of the

formula.
– The logical formula. The formula text is used as the NodeSet conclusion

string.
– The inference engine (ATP system) that produced the proof. The trans-

lator looks in the header of the TSTP file to find the engine name. Each
engine is registered in the IW registry. For example, EP has an URI of
http://inference-web.org/registry/IE/EP.owl#EP.

– The inference rule used to derive the formula. Leaves of proofs that have an
axiom role are considered to have been derived by “direct assertion”. Leaves
of proofs that have an assumption role are considered to have been derived
by “assumption”. For internal nodes that have an inference record, the
translator extracts the inference rule from the record.

– The antecedent list (for inferred formulae). The members of the parent list
in the inference record are used to form the antecedent list of the Infer-
enceStep.

– The external source. The source is used to form the source usage of a Node-
Set’s inference step to describe where the conclusion originated from.

– Date and time. The translator obtains the date and time from the header of
the TSTP file, to record when the proof was created.

When all information is gathered from a TSTP formula, the translator creates
a NodeSet instance, and adds it to the collection forming the proof. For example,
the following node from EP 0.999’s proof of PUZ001+1 ...

cnf(57,plain,

( hates(butler,X1)

| ~ killed(X1,agatha) ),

inference(spm,[status(thm)],[36,45,theory(equality)])).

... is represented by the following PML ...

<rdf:RDF
xmlns:pmlp="http://inference-web.org/2.0/pml-provenance.owl#"
xmlns:ds="http://inference-web.org/2.0/ds.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://inference-web.org/2.0/pml-justification.owl#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#">
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<NodeSet rdf:about="http://inference-web.org/proofs/tptp/Solutions/
PUZ/PUZ001+1/EP---0.999/answer.owl#ns_57">

<pmlp:hasCreationDateTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
2008-05-01T17:11:39-04:00</pmlp:hasCreationDateTime>

<hasConclusion>
<pmlp:Information>

<pmlp:hasRawString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
hates(butler,X1) | ~ killed(X1,agatha)</pmlp:hasRawString>

<pmlp:hasLanguage rdf:resource="http://inference-web.org/registry/LG/
TPTPCNF.owl#TPTPCNF"/>

<pmlp:hasDescription>
<pmlp:Information>

<pmlp:hasRawString rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
cnf(57,plain,

( hates(butler,X1)
| ~ killed(X1,agatha) ),
inference(spm,[status(thm)],[36,45,theory(equality)])).

</pmlp:hasRawString>
<pmlp:hasLanguage rdf:resource="http://inference-web.org/registry/LG/

TPTPCNF.owl#TPTPCNF"/>
<pmlp:hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

TPTP Formula</pmlp:hasName>
<pmlp:hasURL rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Solutions&amp;
Domain=PUZ&amp;File=PUZ001+1&amp;System=EP---0.999.THM-CRf.s#57</pmlp:hasURL>

</pmlp:Information>
</pmlp:hasDescription>

</pmlp:Information>
</hasConclusion>
<isConsequentOf>

<InferenceStep>
<hasIndex rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</hasIndex>
<fromAnswer rdf:resource="http://inference-web.org/proofs/tptp/Solutions/PUZ/

PUZ001+1/EP---0.999/answer.owl#answer"/>
<hasInferenceRule rdf:resource="http://inference-web.org/registry/DPR/

EP0.999Spm.owl#EP0.999Spm"/>
<hasAntecedentList>

<NodeSetList>
<ds:first rdf:resource="http://inference-web.org/proofs/tptp/Solutions/PUZ/

PUZ001+1/EP---0.999/answer.owl#ns_36"/>
<ds:rest>

<NodeSetList>
<ds:first rdf:resource="http://inference-web.org/proofs/tptp/Solutions/PUZ/

PUZ001+1/EP---0.999/answer.owl#ns_45"/>
</NodeSetList>

</ds:rest>
</NodeSetList>

</hasAntecedentList>
<hasInferenceEngine rdf:resource="http://inference-web.org/registry/IE/EP.owl#EP"/>

</InferenceStep>
</isConsequentOf>

</NodeSet>
</rdf:RDF>

As an aside, the reverse translation from PML to TPTP is trivially possible
for proofs translated from TPTP to PML, because the hasConclusion element
of a NodeSet contains the original TPTP node as plain text. However, recon-
struction of the TPTP node from the other NodeSet elements is not always
completely possible because some minor items of information are not captured
in the PML form. For example, the fact that an inference used the theory of
equality, recorded by the theory(equality) parent of the TPTP node, is not
captured in the PML form. NodeSets that come from sources other than trans-
lation from the TPTP are unlikely to be translatable to TPTP form, due to
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different items of data being recorded, and different data formats being used. In
particular, the PML form records the logical formula of a proof node as a text
string in the hasConclusion element, and does not parse the formula into a
representative structure. Thus if the logical formula is in a non-TPTP language,
e.g., KIF [3] or DFG [4], there is no capability within IW to convert that to
TPTP form.

4 Presentations

Given the PML encoded proofs from the TSTP, it becomes possible to use IW
tools to process the proofs. Four examples are described in this section.

4.1 IW NodeSet Browser

The IW NodeSet browser allows the user to traverse the NodeSets of a proof.
The presentation of a NodeSet provides:

– the conclusion, with a control to display its metadata (which contains prove-
nance information);

– the antecedent formula and links to the NodeSets that justify (by inference)
this conclusion;

– links to the leaf (evidence) nodes upon which this node depends;
– links to information about the ATP system and the inference rule used;
– the inferred formulae and links to the NodeSets that this conclusion is used

to infer, with an option to show the sibling formulae used in each case;
– the formula and a link to the NodeSet finally concluded with the help of this

conclusion;
– the query and question answered.

Figure 1 shows a NodeSet from EP’s [8] proof for the TPTP problem PUZ001+1.
The conclusion of the NodeSet is

hates(butler,X1) | ~ killed(X1,agatha)
The two justifying antecedents are

~ richer(X1,X2) | ~ killed(X1,X2)
hates(butler,X1) | richer(X1,agatha)

The single inferred formula is
hates(butler,esk1 0)

and the final conclusion is
$false

corresponding to the end of the proof by refutation. Figure 2 shows the prove-
nance information obtained for the conclusion by expanding its show metadata
control, and also the provenance information for EP 0.999 obtained by clicking
on its link in the display.
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Fig. 1. IW NodeSet browser presentation from EP’s proof of PUZ001+1
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Fig. 2. Provenance information in the IW NodeSet browser

4.2 IWBrowser

The Inference Web Browser (IWBrowser)5 provides a graphical rendering of a
PML proof, with links to the underlying provenance information stored in the
PML. The presentation also provides options to focus in on the current path to
the root of the proof, and to hide nodes in the proof. Figure 3 shows an extract
from EP’s proof for the TPTP problem PUZ001+1, including the example from
Section 4.1. The various boxed links provide the access to provenance information
and rendering options.

4.3 Probe-It!

Probe-It!6 [1] is a browser suited to graphically rendering PML based provenance
associated with results derived from inference engines and workflows. Probe-It!
consists of three primary views to accommodate the different kinds of provenance
information: results, justifications, and provenance, which refer to final and in-
termediate data, descriptions of the generation process (i.e., execution traces)
and information about the sources respectively. Figure 4 shows the Probe-It!
rendering of SNARK’s [9] proof for the TPTP problem GEO053-2. Each node of

5 http://iw.stanford.edu/iwbrowser/. http://browser.inference-web.org/tptppml/
provides access to the PML translations of the TSTP files.

6 http://trust.cs.utep.edu/probeit/
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Fig. 3. IWBrowser presentation of an extract from EP’s proof of PUZ001+1

the proof is drawn as a square, with orange squares being leaves of the proof
and blue squares derived. Provenance information - the inference rule and ATP
system name - is given in the upper pane of each square. The logical formula is
given in the lower content pane of the square. The “panner” window in the lower
left allows the user to move around the proof, while the zoom buttons provide
more and less detailed views.

4.4 IWSearch

IWSearch7 is a service in inference web architecture. It aims to discover, index,
and search for PML objects available on the web. IWSearch consists of three
groups of services: (i) the discovery services, which utilize Swoogle [2] search re-
sults and a focused crawler to discover URLs of PML documents on the web; (ii)
the index services, which use an indexer to parse the submitted PML documents
and prepare meta-data about PML objects for future search, and use a searcher
7 http://onto.rpi.edu/iwsearch/
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Fig. 4. Probe-It! presentation of SNARK’s proof of GEO053-2

Fig. 5. IWSearch results for the query agatha
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to serve query calls invoked by users; (iii) the user interface services, which offer
keyword search and a categorical browse interface for human or machine users.
Figure 5 shows the first results returned from the query “agatha”, after indexing
the PML translations of the TSTP files. The label gives the raw string content
of the object, the type is the class in the PML ontology, the more link provides
access to that node in the IW NodeSet browser, and the source is the URL of
the PML document containing this node.

5 Conclusion

The translation of TSTP proofs into PML, and their presentation using IW
tools, changes the strict focus on logical aspects of the proof to one that encom-
passes proof provenance. This type of presentation is necessary for applications
that demand justification or explanation of the reasoning performed. This work
therefore adds value to the proofs produced by ATP systems, and makes the
ATP system more suitable as tools in hybrid reasoning applications.

Work on the translation of TSTP files to PML is ongoing. Improvements
and new features will be made in the near future. For example, an IW tool for
combining proofs will be used to aggregate proofs from different ATP systems
proofs for a given problem. This in turn will make it possible to produce new
proofs with preferred characteristics, e.g., with minimal use of certain types of
reasoning. The TPTP language has recently been extended to include typed
higher-order logic formulae (the “THF” format), and proofs that use this lan-
guage will automatically be accomodated by the translation to PML, due to the
text format used for the logic formulae.
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Abstract. We present randoCoP, a theorem prover for classical first-
order logic, which integrates randomized search techniques into the con-
nection prover leanCoP 2.0. By randomly reordering the axioms of the
problem and the literals within its clausal form, the incomplete search
variants of leanCoP 2.0 can be improved significantly. We introduce de-
tails of the implementation and present comprehensive practical results
by comparing the performance of randoCoP with leanCoP and other the-
orem provers on the TPTP library and problems involving large theories.

1 Introduction

Connection calculi, such as the connection calculus [1, 2], the connection tableau
calculus [8], or the model elimination calculus [9], are in contrast to standard
tableau or saturation-based calculi not proof confluent. Therefore a large amount
of backtracking is required during the proof search. By restricting this back-
tracking the performance of connection-based proof search procedures can be
improved significantly [13]. leanCoP 2.0 [15, 14] is a theorem prover for classical
first-order logic based on the connection calculus. A shell script consecutively
runs different variants of the core prover with different options, which control
the proof search. The most successful variants use restricted backtracking.

The downside of restricted backtracking is the loss of completeness. Whereas
proofs for some formulae can be found very quickly, it might be impossible to
find proofs for other formulae anymore. Since restricted backtracking cuts off
alternative connections, the benefit of this approach strongly depends on the
proof search order. The proof search order, in turn, usually depends on the order
of clauses and literals in the given formula. Whereas the proof search procedure
quickly finds a proof for one order, another order of the same clauses might result
in an incomplete proof search order, i.e. no proof is found at all. By reordering
the clauses, the downside of restricted backtracking can be minimized.

randoCoP extends the leanCoP 2.0 implementation by repeatedly reordering
the axioms and literals of a given problem at random. This increases the chance
to find a proof, in particular for the incomplete prover variants. In Section 2 we
present experimental results of several reordering techniques and details of the
implemented reordering strategy. In Section 3 the performance of randoCoP is
compared with current state-of-the-art theorem provers.
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2 Randomizing the Proof Search Order

We first describe the basic motivation behind the randomized reordering tech-
nique. Afterwards we present a detailed practical analysis, which determines the
specific reordering strategy that is used within randoCoP.

2.1 Motivation

leanCoP searches for connections in the order of the given input clauses. Connec-
tions to clauses at the beginning of the input clauses are considered first, before
(on backtracking) clauses at the end are examined. Therefore reordering clauses
is a simple way of modifying the proof search order. But the effect of reordering
clauses is limited for complete search strategies (see Section 2.2), since every
clause is considered sooner or later anyway.

leanCoP 2.0 has the option to restrict backtracking by cutting off alternative
connections in branches that have already been closed before [13]. With this
incomplete search technique some clauses might not be considered anymore and
the reordering of clauses has a significant effect. It makes it possible to find proofs
for problems that could not be solved before. Figure 1 illustrates this fact. The
triangle represents the search space, the crosses mark the solutions, and the grey
shaded area is the search space that can be traversed within a certain time limit
and is roughly the same for all three triangles.

Fig. 1. Search strategies: complete, restricted backtracking without/with reordering

The complete search strategy (left hand side), does not reach the proof depth
required for a solution. The search with restricted backtracking (in the middle),
reaches the depth of the solutions but not the required breadth. Only the search
strategy with restricted backtracking and repeatedly reordering the clauses (right
hand side) is able to find a proof.

Clauses can be reordered in several ways, e.g. by rotating or shifting clauses.
leanCoP 2.0 already contains an option for reordering clauses that uses a simple
perfect shuffle algorithm. But the effect on the proof search is small, since the
generated clause orders are not sufficiently diverse. A random reordering mixes
the order of clauses more thoroughly. Therefore instead of the built-in reordering
technique a randomized reordering should be used. Since the outcome of the
proof search needs to be reproducible, a deterministic pseudo-random reordering
needs to be implemented.
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2.2 Evaluation and Analysis

Our practical experiments have shown that a reordering of the axioms of a given
problem is more effective than the reordering of clauses after the clausal form
translation has been applied. These experiments also showed that reordering the
literals within the clauses has a positive effect on the proof search as well.

The proof search order is randomly modified in the following way. Let A1 ∧
A2 ∧ . . . An∧ ⇒ C be the given formula where A1, A2, . . . , An are the axioms
and C is the conjecture of the problem. Let πm : {1, . . . ,m} → {1, . . . ,m} be a
(pseudo-)random permutation.

1. Reordering of axioms: The following formula is generated: Aπn(1) ∧Aπn(2) ∧
. . . ∧Aπn(n) ⇒ C. Let C1, C2, . . . , Cm be this formula in clausal form.

2. Reordering of literals: For each clause Ci={L1, . . . , Lk} the reordered clause
C ′

i={Lπk(1), . . . , Lπk(k)} is generated. C ′
1, . . . , C

′
k is the final set of clauses.

We first want to find the options of the leanCoP 2.0 core prover that are most
suited for our randomized reordering approach. A variant of the leanCoP 2.0
Prolog core prover is determined by a set of options that control the proof search
[14]. The following options can be used:

1. nodef/def: The standard/definitional translation into clausal form is done.
If none of these options is given the standard translation is used for the
axioms whereas the definitional translation is used for the conjecture [13].

2. conj: The conjecture clauses are used as start clauses. If this option is not
given the positive clauses are used as start clauses.

3. scut: Backtracking is restricted for alternative start clauses [13].
4. cut: Backtracking is restricted for alternative reduction/extension steps [13].
5. comp(I): Restricted backtracking is switched off when iterative deepening

exceeds the active path length I.

The option conj is complete only for formulae with a provable conjecture,
and the options scut and cut are only complete if used in combination with the
option comp(I).

The following tests were performed on all 3644 non-clausal problems (FOF
division) of the TPTP library [18] version 3.3.0. The left side of Table 1 shows
the number of proved problems without reordering using a time limit of 180
seconds. The right side displays the number of proved problems with repeated
reordering. The allotted time limit for each order is 3 seconds with an overall
time limit of 180 seconds allowing around 60 reorderings for each problem.

The prover variants using restricted backtracking (options cut and scut)
benefit most from the randomized reordering technique. The greatest advance
is made for the variant using the default clausal form translation and both of
the options cut and scut. The variants using a full definitional (def) or the
standard (nodef) clausal form translation and no restricted backtracking show a
lower performance. The most successful variants using reordering use the options
{cut}, {cut,scut}, {conj,cut}, and {conj,cut,scut}.
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Table 1. Results without and with repeated reordering for different prover variants

options - cut cut,scut

- 1217 1346 1216
def 1111 1321 1204
nodef 1166 1257 1152
conj 1208 1398 1336
conj,def 1208 1407 1349
conj,nodef 1227 1319 1058

options - cut cut,scut

- 1342 1691 1684
def 1044 1402 1428
nodef 1077 1432 1436
conj 1422 1658 1597
conj,def 1095 1452 1370
conj,nodef 1152 1365 1239

We have tested the most successful variants again using different time limits
for each order of the axioms/literals. Table 2 shows the results using an overall
time limit of 180 seconds and a time limit of 2 seconds, 3 seconds and 4 seconds
for proving each order allowing around 90, 60 and 45 reorderings, respectively.
The difference in the number of proved problems is rather small with a slight
advantage for a time limit of 3 seconds.

Table 2. Results of different time limits per axiom/literal order

options \ time 2s 3s 4s

cut 1678 1691 1688
cut,scut 1670 1684 1650
conj,cut 1636 1658 1665
conj,cut,scut 1569 1597 1607

Further evaluations have shown that the most number of problems are proved
by repeatedly running the two variants {cut,scut} and {def,conj,cut} each for
a time limit of 3 seconds and 2 seconds on each axiom/literal order, respectively.

In order to prove and refute a large number of problems within the first few
seconds, the proof process is started by running the most successful complete
prover variant using the options cut and comp(7) once for 5 seconds. A complete
prover variant using the option def only is invoked at the end of the proof process
for at least 10 seconds.

2.3 The Implementation

randoCoP uses the random library of ECLiPSe Prolog, which contains the predi-
cate rand_perm/2 that randomly permutes a list, and randomise/1 to seed and
initialize the random generator, which allows the same sequence of permutations
to be generated, and thus makes the result reproducible.

randoCoP consists of a shell script that calls the leanCoP 2.0 core prover
extended by a few predicates realizing the reordering of axioms and literals.
This shell script is called with an argument that determines the overall time
limit and invokes the prover variants according to Section 2.2.
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Let TotalT ime be this given time limit in seconds. Then the shell script
invokes the following variants of the core prover in the following order:

1. Prover variant {cut,comp(7)} for 5 seconds
2. Repeated reordering step, (TotalT ime− 15)/5 times:

(a) Reordering of axioms and literals
(b) Prover variant {cut,scut} for 3 seconds
(c) Prover variant {def,conj,cut} for 2 seconds

3. Prover variant {def} for 10 seconds

If, for example, TotalT ime is set to 600 seconds, then (600-15)/5=117 re-
ordering steps are done and after each reordering the two prover variants are
run for 3 seconds and 2 seconds, respectively.

3 Performance

To evaluate the performance we tested randoCoP on all non-clausal problems
in the TPTP library, and the problems of the MPTP challenge. All tests were
done on a system with a 3 GHz Xeon processor and 4 Gbyte of memory running
Linux and ECLiPSe Prolog 5.8. We compare the performance of randoCoP with
the current state-of-the-art provers.

3.1 The TPTP Library

For the tests all 3644 problems of version 3.3.0 of the TPTP library [18] that are
in non-clausal form (FOF division) are considered. In order to solve satisfiable
or unsatisfiable problems — i.e., those problems without a conjecture — these
problems are negated. Equality is dealt with by adding the equality axioms. The
time limit for all problems is 600 seconds.

In Table 3 the performance of randoCoP is compared with the following theo-
rem provers: Otter 3.3 [10], version ”20070805r009” of SNARK [19], leanCoP 2.0
[14], version ”Dec-2007” of Prover91 [11], iProver 0.2 [5], Equinox 1.2 [3], SPASS
3.0 [23], E 0.999 [17], and Vampire 9.0 [16]. The rating and the percentage of
proved problems for some rating intervals are given. FNE, FEQ and PEQ are
problems without, with and containing only equality, respectively. Furthermore,
the number of proved problems for each domain (see [18]) that contains at least
10 problems is shown.

randoCoP proves more problems than Equinox, iProver, Prover9, leanCoP 2.0,
SNARK and Otter. It solves more problems in the SEU domain than any other
prover. The SEU domain contains problems from set theory taken from the
MPTP [20] (see also Section 3.2). Including the equality axioms, these problems
contain up to 1100 axioms, of which not all are required to prove the conjecture.
For the SEU domain randoCoP also shows the biggest improvement compared
to leanCoP 2.0, with 491 proved problems compared to 296 problems proved by
leanCoP 2.0. A notable improvement is also made for the domains NUM and
SWC. 96 of all proved problems have the highest rating of 1.0.
1 The most recent version ”2008-04A” of Prover9 has a significant lower performance.
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Table 3. Benchmark results on the TPTP v3.3.0 library

Otter SNARK leanCoP Prover9 iProver Equinox randoCoP SPASS E Vampire

3.3 08/07 2.0 12/07 0.2 1.2 1.0 3.0 0.999 9.0

proved 1310 1565 1638 1677 1858 1876 1879 2127 2250 2377
[%] 36% 43% 45% 46% 51% 52% 52% 58% 62% 66%

0s to 1s 987 1259 1124 1281 1224 1376 1161 1627 1760 1530
1s to 10s 183 130 123 197 370 239 229 248 229 283

10s to 100s 106 117 193 141 179 151 375 170 192 394
100s to 600s 34 59 198 58 85 110 114 82 69 170

rating 0.0 455 435 450 464 473 500 452 500 503 488
rating >0.0 855 1130 1188 1213 1385 1376 1427 1627 1747 1889
rating 1.0 7 8 13 8 9 18 96 19 12 30

0.00...0.24 72% 72% 72% 73% 76% 76% 73% 78% 79% 78%
0.25...0.49 40% 62% 48% 70% 73% 72% 52% 84% 85% 86%
0.50...0.74 3% 20% 36% 28% 43% 40% 43% 58% 71% 80%
0.75...1.00 1% 2% 11% 3% 7% 9% 27% 15% 19% 27%

FNE 476 437 492 526 562 541 496 555 561 566
FEQ 834 1128 1146 1151 1296 1335 1383 1572 1689 1811
PEQ 47 83 30 71 76 196 31 191 165 133

AGT 16 17 29 17 19 10 32 18 19 52
ALG 60 84 32 83 80 186 38 196 162 130
CSR 3 16 2 27 10 15 3 2 25 27
GEO 160 121 171 171 172 167 169 168 174 177
GRA 5 9 6 1 8 9 6 15 15 19
KRS 106 110 105 103 112 111 105 107 112 112
LCL 18 56 24 48 33 10 25 51 78 101
MED 5 2 7 1 9 5 5 9 8 9
MGT 54 58 45 62 65 67 50 56 67 67
NLP 6 11 13 11 22 22 15 22 22 22
NUM 31 45 70 49 43 45 87 48 62 105
PUZ 6 6 6 6 6 6 6 6 6 6
SET 229 262 339 276 316 245 335 290 339 369
SEU 149 229 296 259 291 305 491 353 316 347
SWC 84 131 87 101 170 175 99 256 326 297
SWV 157 181 177 183 210 221 181 235 225 236
SYN 210 214 217 267 277 265 218 279 276 281

refuted 0 113 33 0 329 0 33 362 366 0
time out 700 1596 1949 668 1455 1395 1732 1125 1023 985
gave up 1181 213 0 320 0 373 0 0 0 280
errors 453 157 24 979 2 0 0 30 5 2
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3.2 The MPTP Challenge

The MPTP challenge is a set of problems from the Mizar library translated into
first-order logic [20]. There are two divisions, bushy and chainy, each containing
252 problems. Whereas the bushy division contains only the relevant axioms and
lemmata required to prove the main theorem, the chainy division contains all
axioms and lemmata that were available at the time of proving the main theorem
of the challenge. The time limit for each problem is 300 seconds.

The result of randoCoP on the bushy and chainy division is shown in Table 4
and Table 5, respectively. Again, equality axioms are added, which results in
formulae with a total of up to 1700 axioms. The performance is compared with
the theorem provers mentioned in Section 3.1.

Table 4. Benchmark results for the bushy division of the MPTP challenge

Otter Prover9 SNARK leanCoP iProver Equinox E SPASS Vampire randoCoP

3.3 12/07 08/07 2.0 0.2 1.2 0.999 3.0 9.0 1.0

proved 68 119 122 128 128 131 141 160 166 189
[%] 27% 47% 48% 51% 51% 52% 56% 64% 66% 75%

0s to 1s 56 86 91 93 71 86 120 121 104 93
1s to 10s 4 19 17 7 33 23 12 16 22 23

10s to 100s 7 9 12 20 20 17 8 17 31 60
100s to 300s 1 5 2 8 4 5 1 6 9 13

time out 46 82 130 124 124 121 111 90 86 63
gave up 137 3 0 0 0 0 0 0 0 0
errors 1 48 0 0 0 0 0 2 0 0

Table 5. Benchmark results for the chainy division of the MPTP challenge

Otter Prover9 SNARKEquinox iProver Vampire SPASS leanCoP E randoCoP

3.3 12/07 08/07 1.2 0.2 9.0 3.0 2.0 0.999 1.0

proved 29 52 58 79 79 81 82 88 91 128
[%] 12% 21% 23% 31% 31% 32% 33% 35% 36% 51%

0s to 1s 17 33 22 41 29 29 45 38 47 38
1s to 10s 7 8 14 14 37 31 18 21 18 29

10s to 100s 5 6 14 17 10 14 15 23 20 34
100s to 300s 0 5 8 7 3 7 4 6 6 27

time out 150 101 194 173 173 171 170 164 161 124
gave up 73 0 0 0 0 0 0 0 0 0
errors 0 99 0 0 0 0 0 0 0 0

randoCoP shows a decent performance in both division. The time complexity
is better compared to the other provers, as many problems are (still) proved
after 10 seconds. We have not tested the provers MaLARea 0.1, SRASS 0.1, and
Fampire 1.3, which prove 187/142, 171/127, and 191/126 of the problems in the
bushy/chainy division, respectively (according to the MPTP challenge web site).
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4 Conclusion and Related Work

We have presented randoCoP, a theorem prover for classical first-order logic,
which integrates a random proof search strategy into the connection prover
leanCoP 2.0. Repeatedly reordering the axioms of the problem and the literals
within its clausal form improves performance of leanCoP 2.0 significantly.

Some incomplete strategies of leanCoP 2.0 effectively restrict backtracking
and increase the depth of the search space that can be investigated within a
certain amount of time. But they might cut off specific proof search orders
required to find a proof. randoCoP partly compensates for this disadvantage and
the loss of completeness by increasing again the breadth of the explored search
space. The combination of restricted backtracking and randomized reordering is
highly effective, in particular for hard problems containing many axioms.

The core prover of randoCoP and leanCoP 2.0 consists only of a few lines of
Prolog code. This indicates that tens to hundreds of thousands of lines in, e.g.,
C and low-level optimizations are not needed to succeed in automated theorem
proving. Instead it shows that good heuristics for traversing the vast search are
important in automated reasoning research.

The RCTHEO system [4] randomly reorders clause instances. It is a an OR-
parallel version of SETHEO [7], where each node executes one instance of the
sequential prover SETHEO. The performance is similar to PARTHEO, a parallel
version of SETHEO.

The SETHEO system offers a dynamic subgoal reordering option. The re-
ordering is not at random but prefers subgoals with the highest probability to
fail, in order to reduce the search space. Syntactic criteria, such as the number
of variables, are used to determine the specific order. The subgoal order is then
determined dynamically whenever the next subgoal is selected.

We have tested SETHEO without and with subgoal reordering on all non-
clausal problems of the TPTP library (see Section 3.1). Without subgoal reorder-
ing SETHEO proves 1192 out of the 3644 problems. With subgoal reordering
(using the option -dynsgreord 2) it only solves 1185 problems, i.e. the perfor-
mance does not really improve. This confirms our own testing with reordering
on several variants of the leanCoP 2.0 core prover (see Section 2.2). The effect of
reordering axioms (or clauses) and literals is limited when a complete search in
connection calculi is done. In this case the performance can even get worse. On
the other hand the incomplete variants of the leanCoP 2.0 core prover benefit
significantly from the randomized reordering technique.

Further research includes the adaption of randoCoP to other (non-classical)
logics — such as intuitionistic logic [12, 14] or modal logic [6] — for which matrix
characterisations exist (see also [21, 22]). It is also worth investigating approaches
that randomize, e.g., the order of the conjecture clauses, or dynamically reorders
clauses and/or literals during the proof search. And finally we plan to (slightly)
extend the leanCoP 2.0 core prover so that a compact connection proof is re-
turned. A readable proof is then output by a separate prover component.

The source code of randoCoP can be obtained at the leanCoP website at
http://www.leancop.de.
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Abstract. This paper describes the integration of the ATP support
of the TPTPWorld into the Sigma Knowledge Engineering Environment.
The result is an interactive knowledge based reasoning environment, with
strong knowledge management features, and access to modern state of
the art ATP systems for reasoning over knowledge bases.

1 Introduction

The Knowledge Based Reasoning (KBR) community within the field of Artificial
Intelligence has long conducted logical reasoning for decision support, planning
and many similar applications [8]. Much of this has been done in the context of
specialized logics and knowledge representation schemes, e.g., [10, 6]. The Auto-
mated Theorem Proving (ATP) community has grown more out of mathematical
disciplines, and its applications have tended to be in that realm using classical
first-order logic, e.g., [4, 1]. While the various uses of SNARK [20], e.g., [21, 31],
are notable exceptions, and several reasoning frameworks have been designed
and implemented with a focus on large KBR, e.g., [17, 11, 29], there has not
been a lot of use of general purpose classical ATP in KBR. This work brings
together the KBR tool SigmaKEE and the ATP support of the TPTPWorld. The
Sigma Knowledge Engineering Environment (SigmaKEE) [14] provides a mature
platform for browsing and querying a knowledge base, often the Suggested Upper
Merged Ontology (SUMO) [13]. The TPTPWorld provides well established stan-
dards, systems, and tools for first-order reasoning, stemming from the Thousands
of Problems for Theorem Provers (TPTP) problem library [25]. While SigmaKEE
has strong knowledge management features, it lacks the reasoning capabilities
found in state of the art ATP systems. Conversely, while modern ATP systems
are capable of proving hard theorems, they have limited features for interfac-
ing with users of large knowledge bases. The integration of the TPTPWorld
into SigmaKEE forms an interactive KBR environment, with strong knowledge
management features, and access to modern state of the art ATP systems for
reasoning over knowledge bases.

This paper is organized as follows: Sections 2 and 3 provide the necessary
background about SigmaKEE and the TPTPWorld. Section 4 describes their in-
tegration, including extensions added to meet the needs of SigmaKEE users.
Section 5 shows a sample use of the integrated system.
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2 SigmaKEE

The Sigma Knowledge Engineering Environment (SigmaKEE) is a KBR environ-
ment for developing and using logical theories. It was created to support the
Suggested Upper Merged Ontology (SUMO), which is written in a variant of
the Knowledge Interchange Format (KIF) language [7] called Standard Upper
Ontology Knowledge Interchange Format (SUO-KIF) [14]. SigmaKEE runs as an
Apache Tomcat service, providing a browser interface to users. The main com-
ponents are written in Java, and the user interface is generated by JSP. Users
can upload a knowledge base for browsing and querying. An uploaded knowledge
base is indexed for high performance browsing and searching. For ontology-like
knowledge bases, which have a tree structure, a graph browser is provided. Fig-
ure 1 shows the graph browser interface for the top layers of the SUMO. Results
from queries are presented in a hyperlinked KIF format that provides linkages
back into the knowledge base, as shown in the example in Section 5.

The existing version of SigmaKEE includes a customized version of Vampire
[18]. Among state of the art first order logical theorem provers available at the
time of SigmaKEE’s original development, only this version of Vampire, which is
now 5 years old, had all the features required for theorem proving applications
in SigmaKEE:
– The ability to extract an answer to a query as bindings of outermost exis-

tentially quantified variables in a conjecture.
– The ability to generate a detailed proof that explains how an answer to a

query was derived.
– The ability to ask successive queries without reloading the knowledge base.
– The ability to perform basic arithmetic.

In addition, that version of Vampire was released under an approved open source
license, and could therefore be tightly integrated with the open source SigmaKEE
system.

3 TPTPWorld

The TPTPWorld is a package of TPTP data and software, including the TPTP
problem library, a selection of ATP systems, and a suite of tools for processing
TPTP format data. Although the TPTPWorld was developed and is primarily
used for inhouse maintenance of the TPTP problem library, various components
have become publically available and used in applications, e.g., [22, 28].

One of the keys to the success of the TPTP and related projects is their
consistent use of the TPTP language [23]. The TPTP language was designed
to be suitable for writing both ATP problems and ATP solutions, to be flexible
and extensible, and easily processed by both humans and computers. The TPTP
language BNF is easy to translate into parser-generator (lex/yacc, antlr, etc.)
input [30]. The SZS ontology [26] provides a fine grained ontology of result and
output forms for ATP systems, so that their results can be precisely understood
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Fig. 1. SigmaKee Graph Browser

when used as input to other tools. The ontology also recommends the way that
ontology values should be reported in the output from systems and tools. Figure 2
shows an extract from the top of the result ontology (the full ontology is available
as part of the TPTP distribution).

The SystemOnTPTP utility is a harness that allows a problem written in the
TPTP language to be easily and quickly submitted to a range of ATP systems
and other tools. The implementation of SystemOnTPTP uses several subsidiary
tools to prepare the input for the ATP system, control the execution of the
chosen ATP system, and postprocess the output to produce an SZS result value
and a TPTP format derivation. SystemOnTPTP runs in a UNIX environment,
and is also available as an online service via http POST requests.1

The Interactive Derivation Viewer (IDV) [27] is a tool for graphical rendering
and interaction with TPTP format derivations. The rendering uses shape and
color to provide visual information about a derivation. The user can interact
with the rendering in various ways – zooming, hiding, and displaying parts of
the DAG according to various criteria, access to verification of the derivation,
and an ability to provide a synopsis of a derivation by identifying interesting
lemmas using AGInT [16]. Figure 3 shows the renderings of the derivation and
synopsis for the proof output by EP [19] for the TPTP problem PUZ001+1.

The One Answer Extraction System (OAESys) and Multiple ANSwer EXtrac-
tion framework (MANSEX) are tools for question answering using ATP. Their
development was motivated by the limited availability of modern ATP systems
that are able to return answers – examples of systems that do are Otter [12], the

1 Hosted at the University of Miami. A browser interface to the service is available at
http://www.tptp.org/cgi-bin/SystemOnTPTP.
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Fig. 2. SZS Ontology

customized version of Vampire used in SigmaKEE, and SNARK.2 OAESys is a
tool for extracting the bindings for outermost existentially quantified variables
of a conjecture, from a TPTP format proof of the conjecture. This is done by
reproving the conjecture using the Metis system [9], from only the axioms used
in the original proof. The variable bindings that Metis reports for each inference
step of its proof are analyzed to extract the required bindings (Metis is the only
system that we know of that outputs TPTP format proofs and variable bindings
for each inference step). The restriction to the axioms used in the original proof
aims to make it unlikely for Metis to find a proof with different variable bind-
ings from the original proof. If the axioms used are a subset of the axioms that
were originally available, the problem given to Metis could be significantly easier
than the original problem. MANSEX is a framework for interpreting a conjecture
with outermost existentially quantified variables as a question, and extracting
multiple answers to the question by repetitive calls to a system that can report
the bindings for the variables in one proof of the conjecture.3 Suitable systems
for reporting bindings are an ATP system that outputs answers, e.g., SNARK,
or a combination of an ATP system that outputs TPTP format proofs, e.g., EP,
with OAESys. At each iteration of MANSEX, the conjecture is augmented by
conjoining either inequalities or negative atoms that deny previously extracted
answers. The ATP system is then called again to find a proof of the modified
2 There is scant hope that more ATP system developers will add question answering

to their systems without significant financial or other inducement.
3 Acknowledgement: The original multiple answer extraction system was developed

outside the SigmaKEE project by Aparna Yerikalapudi, at the University of Miami.
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Fig. 3. EP’s Proof by Refutation of PUZ001+1

conjecture. In the SigmaKEE context the process has been extended to hide the
conjecture modifications from the user - details are provided in Section 4. OAESys
and MANSEX both use the proposed TPTP standards for question answering
in ATP [24], and SNARK has also been adpated by its developer to use those
standards.

The TPTP-parser is a highly reusable Java parser for TPTP data, built using
the antlr parser-generator.4 The parser can easily be used without modifications
in practically any application. This universality is achieved by isolating the parser
code by an interface layer that allows creation of and access to abstract syntax
representations of various TPTP elements. A simple but reasonably efficient
default implementation of the interface layer is provided with the package.

4 Integration of the TPTPWorld into SigmaKEE

The integration of the TPTPWorld provides SigmaKEE with new capabilities:
– Internal support for TPTP format problems and derivations, using a SUO-

KIF to TPTP translation and the TPTP-parser.
– Access to ATP systems for reasoning tasks, using SystemOnTPTP.

4 Acknowledgement: The TPTP-parser was written primarily by Andrei Tchaltsev
at ITC-irst. It is available from http://www.freewebs.com/andrei ch/
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– Question answering using OAESys, with the ability to provide multiple an-
swers through use of the MANSEX framework.

– Presentation of TPTP format proofs using IDV, or using the existing hyper-
linked KIF format extended with SZS ontology status values.

– An extended browser interface for access to these capabilities.

The integration has been implemented by adding external TPTPWorld tools to
the SigmaKEE distribution, and embedding Java implementations of TPTPWorld
tools directly into SigmaKEE. Figure 4 shows the relevant system components
and architecture.

SUO-KIF

to TPTP

SystemOnTPTP

interface

Remote Local Built-in

SIgmaKEE GUI

SigmaKEE

ATP suite

Local 

S'OnTPTP

Miami

S'OnTPTP

OASys
MANSEX

TPTP to

SUO-KIF

SUMO/MILO/DOM IDV

Fig. 4. Architecture of the Integrated Components

SigmaKEE was developed to support knowledge bases written in SUO-KIF,
e.g., SUMO. In order to make a large suite of ATP systems available for reasoning
over such knowledge bases through use of the SystemOnTPTP utility, knowledge
bases are translated to the TPTP language when they are loaded. While much
of the translation is syntactic, there are some constructs in SUMO that require

108



special processing [15]. These include use of sort signatures, sequence variables,
variable predicates and functions, and embedded (higher-order) formulae.

Once a knowledge base has been loaded into SigmaKEE, queries can be sub-
mitted. A query is translated to a TPTP format conjecture, and the previously
translated knowledge base provides the axioms. These are submitted to an ATP
system through the SystemOnTPTP utility. Queries with outermost existentially
quantified variables are treated as questions whose answers are the values bound
to those variables in proofs. Three versions of SystemOnTPTP are available: re-
mote access to the online SystemOnTPTP service via http POST requests, execu-
tion of a locally installed SystemOnTPTP, and a limited internal implementation
of SystemOnTPTP. The ATP systems supported by the internal implementation
are required to be TPTP-compliant in terms of both input and output, and have
licensing that allows them to be added to SigmaKEE. At this stage E/EP, Metis,
SNARK, and Paradox [5] are being used.

The advantage of using the local installation or internal implementation of
SystemOnTPTP is that they do not rely on an online connection to the remote
server. The advantage of the internal implementation is that it is portable to
operating systems that do not have the UNIX environment required for Sys-
temOnTPTP, e.g., Windows XP. The user chooses whether to use the remote
SystemOnTPTP or a local one, and which ATP system to use. In the remote
case the online system is queried to get a list of the available ATP systems. In
the local case the ATP systems available in the local SystemOnTPTP installa-
tion (if any) and the internal implementation are available. If an ATP system is
supported by the internal implementation and is also available through a local
SystemOnTPTP installation, the internally supported one is used.

Answers to “question” conjectures are extracted from proofs using an em-
bedding of OAESys into SigmaKEE. As Metis is one of the internally supported
systems, it is available for use in OAESys. When the user requests more than
one answer, an embedding of the MANSEX framework is used. In the SigmaKEE
context the MANSEX process has been extended to displace the conjecture mod-
ifications from the user. This extension is done for the second and subsequent
proofs found, as follows. After each answer has been extracted by OAESys, the
existentially quantified variables in the original conjecture, i.e., the conjecture
without the augmentations, are instantiated with the answer values. This in-
stantiated conjecture and just the axioms used in the proof found by the chosen
ATP system are passed to that ATP system. This additional ATP system run
finds a proof of the (instantiated form of the) original conjecture, rather than of
the augmented conjecture. Using MANSEX to get multiple answers is somewhat
different, and can produce different answers, from using the customized version
of Vampire mentioned in Section 2. MANSEX with OAESys requires multiple
ATP system runs: two for the first answer (one to get a proof using the chosen
ATP system and another to Metis within OAESys), and three for each succes-
sive answer (additionally the final call to the chosen ATP system). In contrast,
the customized Vampire backtracks in its proof space to find multiple answers.
As a side-effect, the customized Vampire can return the same answer multiple
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times if there are multiple proofs that produce the same variable bindings, while
MANSEX does not.

The integration of the TPTPWorld provides SigmaKEE with three options
for displaying results: TPTP format derivations in plain text format, IDV for
displaying TPTP format derivations graphically, and the hyperlinked KIF for-
mat. IDV has been embedded into SigmaKEE so that it is directly available. The
hyperlinked KIF format has been implemented by translation of TPTP format
derivations into SUO-KIF using an augmentation of the TPTP-parser code, and
then calling SigmaKEE’s hyperlinked KIF presentation feature. The hyperlinked
KIF format has been mildly extended to provide more precise information about
the formulae in a proof, and to provide SZS status values. An example with a
hyperlinked KIF format proof is given in Section 5.

The top part of Figure 5 shows the GUI interface. The interface allows the
user to submit a query or to add to the current knowledge base. The interface
has the following components (top to bottom, left to right):

– Formula text box - The query or additions are put into this text box in
SUO-KIF format.

– Local or Remote SystemOnTPTP, System - Choose which SystemOnTPTP
to use, and which ATP system.

– Maximum answers - Desired number of answers for the query.
– Query time limit - CPU time limit for the query.
– Output format - TPTP, IDV, or hyperlinked KIF
– Ask button - Execute the ATP system on the query.
– Tell button - Add the data to the knowledge base.

5 Sample Use

As an example, EP’s proof of the following SUO-KIF format query to the SUMO
knowledge base is considered: (instance ?X PrimaryColor). The query asks
for an instance of a primary color in the SUMO knowledge base. In SUMO the
following are considered primary colors: Black, Blue, Red, White, and Yellow.
The query was run using the internal implementation of SystemOnTPTP, asking
for two answers, with a CPU limit of 300s, and hyperlinked KIF output. Figure 5
shows the result.

EP returns the first proof shown in the output, with SZS status Theorem.
OAESys is used to extract the first answer - Red. The proof and answer are
translated to the hyperlinked KIF format by SigmaKEE. MANSEX then augments
the query to deny the answer Red, and EP returns another TPTP proof behind
the scenes. OAESys is used to extract the second answer - Blue, which is used
to instantiate the existentially quantified variable of the conjecture. EP returns
the second proof shown in the output. The left column of the hyperlinked KIF
is labeled SUO-KIF format formulae, with embedded HTML hyperlinks back to
terms in the SUMO knowledge base. The right column describes the source of
the formula: the parent formulae, the knowledge base (KB), or the query.
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Fig. 5. Sample hyperlinked KIF format proofs

6 Conclusion

While KBR and ATP are both mature fields, there has not been significant cross-
fertilization between the two communities. Both communities would benefit from
a greater degree of interaction. The integration of the TPTPWorld into Sigma-
KEE brings together tools that support both communities, which should make
collaboration easier, and drive further cross-disciplinary research. The use of the
remote SystemOnTPTP illustrates how KBR and other application systems can
absolve themselves of the responsibility of maintaining up-to-date ATP systems
in-house, and instead use an online service for discharging reasoning requests.
The experience with SigmaKEE can be leveraged by others to this end.

Future work includes translation of SUMO and other knowledge bases to
the new typed higher-order format (THF) of the TPTP language [3], and use
of higher-order ATP systems such as LEO II [2] to answer higher-order queries
over the knowledge bases.

Acknowledgement: Thanks to Nick Siegal for his technical advice and
contributions to the development of this software.
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Contextual Rewriting in SpassChristoph Weidenba
h and Patri
k Wis
hnewskiMax-Plan
k-Institut f�ur Informatik,Campus E 1.4, Saarbr�u
ken, Germany,{weidenb,wis
hnew}�mpi-inf.mpg.deAbstra
t. Sophisti
ated redu
tions are an important means to a
hieveprogress in automated theorem proving. We 
onsider the powerful re-du
tion rule Contextual Rewriting in the 
ontext of the superposition
al
ulus. If the rule is 
onsidered in its abstra
t, most general form, theappli
ability of 
ontextual rewriting is not de
idable. We develop a de-
idable instan
e of the general 
ontextual rewriting rule and implementit in Spass. An experimental evaluation on the TPTP gives �rst insightsinto the appli
ation potential of the rule instan
e.1 Introdu
tionIn the superposition 
ontext, �rst-order theorem proving with equality dealswith the problem of showing unsatis�ability of a (�nite) set N of 
lauses. Thisproblem is well-known to be unde
idable, in general. It is semi-de
idable in thesense that superposition is refutationally 
omplete. The superposition 
al
ulus is
omposed of inferen
e and redu
tion rules. Inferen
e rules generate new 
lausesfrom N whereas redu
tion rules delete 
lauses from N or transform them intosimpler ones. If, in parti
ular, powerful redu
tion rules are available, de
idabilityof 
ertain sub
lasses of �rst-order logi
 
an be shown and explored in pra
ti
e [1{4℄. Hen
e, sophisti
ated redu
tions are an important means for progress in auto-mated theorem proving. In this paper the redu
tion rule Contextual Rewriting is
onsidered in the 
ontext of the superposition 
al
ulus [5℄. Contextual rewritingextends rewriting with unit equations to rewriting with full 
lauses 
ontaininga positive orientable equation. In order to apply su
h a 
lause for rewriting, allother literals of that 
lause have to be entailed by the 
ontext of the 
lause tobe rewritten and potentially further 
lauses from a given 
lause set. Hen
e, thename 
ontextual rewriting.For a �rst, simpli�ed example 
onsider the two 
lausesP (x)! f(x) � x S(g(a)); a � b; P (b)! R(f(a))where we write 
lauses in impli
ation form [6℄. Now in order to rewrite R(f(a))in the se
ond 
lause to R(a) using the equation f(x) � x of the �rst 
lausewith mat
her � = fx 7! ag, we have to show that P (x)� holds in the 
ontextof the se
ond 
lause S(g(a)); a � b; P (b), i.e., j= S(g(a)); a � b; P (b) ! P (x)�.This obviously holds, so we 
an repla
e S(g(a)); a � b; P (b) ! R(f(a)) by
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S(g(a)); a � b; P (b) ! R(a) via a 
ontextual rewriting appli
ation of P (x) !f(x) � x.More general, 
ontextual rewriting is the following rule:R D = �1 ! �1; s � t C = (�2 ! �2)[u[s�℄ � v℄�1 ! �1; s � t(�2 ! �2)[u[t�℄ � v℄where (�2 ! �2)[u[s�℄ � v℄ expresses that u[s�℄ � v is an atom o

urring in �2or �2 and u 
ontains the subterm s�. Contextual rewriting redu
es the subterms� of u to t� if, among others, the following 
onditions are satis�edNC j= �2 ! A for all A in �1�NC j= A! �2 for all A in �1�where N is the 
urrent 
lause set, C;D 2 N , and NC denotes the set of 
lausesfrom N smaller than C with respe
t to a redu
tion ordering �, total on groundterms. Redu
tion rules are labeled with anR and are meant to repla
e the 
lausesabove the bar by the 
lauses below the bar. Both side 
onditions are unde
idable,in general. Therefore, in order to make the rule appli
able in pra
ti
e, it mustbe instantiated su
h that eventually these two 
onditions be
ome e�e
tive. Thisis the topi
 of this paper.For a more sophisti
ated, further motivating example, 
onsider the follow-ing 
lause set. It 
an be �nitely saturated using 
ontextual rewriting but notsolely with less sophisti
ated redu
tion me
hanisms su
h as unit rewriting orsubsumption.Let i, q, r, 
 be fun
tions, a, b be 
onstants and x1, x2, x3, x4, y1 be variablesand let r � 
 � q � i � b � a � nil using the KBO with weight 1 for all fun
tionsymbols and variables.1: ! q(nil) � b2: i(x1) � b; q(y1) � b ! q(r(x1; y1)) � b3: i(x1) � b; q(y1) � b ! q(
(x1; y1)) � a4: i(x1) � b; q(y1) � b; i(x3) � b !r(x3; 
(x1; y1)) � 
(x1; r(x3; y1))5: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a !y1 � nil; q(
(x1; 
(x2; r(x3; y1)))) � bIf we apply superposition right between 
lause 4 and 
lause 5 on the termq(
(x1; 
(x2; r(x3; y1)))) we obtain the 
lause6: i(x1) � b; i(x3) � b; i(x2) � b; i(x4) � b; q(y1) � b; q(
(x4; y1)) � b; b � a !
(x4; y1) � nil; q(
(x1; 
(x2; 
(x4; r(x3; y1))))) � bwhi
h is larger (both in the ordering and the number of symbols) than
lause 5. Applying superposition between 
lause 4 and 
lause 6 yields an evenlarger 
lause. Repeating the superposition inferen
e between 
lause 4 and these
lauses 
reates larger and larger 
lauses. Hen
e, the exhaustive appli
ation ofthe superposition 
al
ulus does not terminate on this 
lause set. Furthermore,none of the redu
tions whi
h have been implemented so far in Spass and in any
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other system we are aware of, 
an redu
e 
lause 5.1 However, with 
ontextualrewriting we 
an redu
e 
lause 5 using 
lause 3 to7: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! y1 � nil; a � b.Clause 7 is a tautology and 
an be redu
ed to true. Then the set is saturatedsin
e no further superposition inferen
e is possible. In order to apply 
ontextualrewriting we have to verify the side 
onditionsNC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � band NC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a!q(
(x2; r(x3; y1))) � b.The �rst 
ondition holds trivially and the latter follows from 
lause 3 and
lause 2.In this work we presents an instan
e of 
ontextual rewriting that redu
esthe above 
lause set, is de
idable and feasible for pra
ti
al problem instan
es.We tested our implementation on all problems of the TPTP library version3.2.0 [7℄. In Se
tion 2 we develop a pra
ti
ally useful instan
e of 
ontextualrewriting 
alled Approximated Contextual Rewriting. Se
tion 3 presents the im-plementation of approximated 
ontextual rewriting in Spass. The �nal se
tiondis
usses experimental results.2 Contextual RewritingWe 
onsider �rst-order logi
 with equality using notation from [6℄. We write
lauses in the form � ! � where � and � are multi-sets of atoms. The atomsof � denote negative literals while the atoms of � denote the positive literals. Asubstitution � is a mapping from the set of variables to the set of terms su
h thatx� 6= x for only �nitely many variables x. The redu
tion rules, in parti
ular the
ontextual rewriting rule, are de�ned with respe
t to a well-founded redu
tionordering � on terms that is total on ground terms. This ordering is then liftedto literals and 
lauses in the usual way [6℄. A term s is 
alled stri
tly maximalin � ! � if there is no di�erent o

urren
e of a term in � ! � that is greateror equal than s with respe
t to �.Contextual rewriting is a sophisti
ated redu
tion rule originally introdu
ed in[5℄ that generalizes unit rewriting and non-unit rewriting [6℄. It is an instan
e ofthe standard redundan
y notion of superposition. A 
lause C is 
alled redundantin a 
lause set N if there exist 
lauses C1; : : : ; Cn 2 N with Ci � C for i 2f1; : : : ; ng, written Ci 2 NC , su
h that C1; : : : ; Cn j= C. The 
lause C is impliedby smaller 
lauses from N . This 
ondition 
an a
tually be re�ned to groundingsubstitutions: C is redundant if for all grounding substitutions � for C thereare ground instan
es Ci�i of 
lauses Ci 2 N su
h that Ci�i � C�, writtenCi�i 2 NC�, and C1�1; : : : ; Cn�n j= C�. Redu
tion rules are marked with an Rand their appli
ation repla
es the 
lauses above the bar with the 
lauses belowthe bar.1 A
tually, the SATURATE system 
ontained the �rst implementation of 
ontextualrewriting, but it never matured to be widely usable.
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De�nition 1 (Contextual Rewriting [5℄). Let N be a 
lause set, C;D 2 N ,� be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� � t�2. C � D�3. NC j= �2 ! A for all A in �1�4. NC j= A! �2 for all A in �1�are 
alled 
ontextual rewriting.Due to 
ondition 1-1 and 
ondition 1-2 we have C 00 � C and D� � C.Then from 
ondition 1-3 and 
ondition 1-4 we obtain that there exist 
lausesC1; : : : ; Cn 2 NC and C1; : : : ; Cn; C 00; D� j= C. Therefore, the 
lause C is redun-dant in N [ fC 00g and 
an be eliminated. The rule is an instan
e of the abstra
tsuperposition redundan
y notion.The side 
onditions 1-3 and 1-4 having both the form NC j= � ! � areunde
idable, in general. There are two sour
es for the unde
idability. First, thereare in�nitely possible grounding substitutions �0 for the 
lause � ! � and C.Se
ond, for a given �0 there may be in�nitely many Æ with CiÆ � C�0, Ci 2 N .Therefore, in the following in order to e�e
tively de
ide the side 
onditions, wewill �x one �0 and restri
t the number of 
onsidered substitutions Æ yielding ade
idable instan
e of 
ontextual rewriting.First, NC j= � ! � is equivalent to NC[f9x::(� ! �)g j= ?. The existen-tial quanti�er 
an be eliminated by Skolemization yielding a Skolem substitution� that maps ea
h variable out of x to a new Skolem 
onstant. Consequently, set-ting �0 to � yields the instan
e NC j= (� ! �)� , where (� ! �)� is ground.Still there may exist in�nitely many Æ with CiÆ � C� , Ci 2 N and C� may still
ontain variables.Therefore, we restri
t Æ to those grounding substitutions that map variablesto terms only o

urring in C� or D�� where we additionally assume that �is also grounding for C and D�, i.e., it maps any variable o

urring in C orD� to an arbitrary fresh Skolem 
onstant. Let ND��C� be the set of all ground in-stan
es of 
lauses from N smaller than C� obtained by instantiation with groundterms from D��;C� . Then ND��C� is �nite and ND��C� � NC� . Consequently,ND��C� j= (� ! �)� is a suÆ
ient ground approximation of NC j= � ! �. Even
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though this is a de
idable approximation of the original problem the set ND��C� isexponentially larger than N , in general. Therefore, we representND��C� impli
itlyby approximating ND��C� j= (� ! �)� by the appli
ation of a redu
tion 
al
ulus(� ! �)� `Red >. The redu
tion 
al
ulus `Red is 
omposed of a set of redu
tionrules 
ontaining tautology redu
tion, forward subsumption, obvious redu
tion anda parti
ular instan
e of 
ontextual rewriting 
alled re
ursive 
ontextual groundrewriting de�ned below. Tautology redu
tion redu
es synta
ti
 and semanti
tautologies to true whereas forward subsumption redu
es subsumed 
lauses totrue. Obvious redu
tion eliminates trivial literals [6℄.The redu
tion 
al
ulus `Red only needs to redu
e ground 
lauses. There-fore, the following de�nition introdu
es an instan
e of 
ontextual rewriting onlyworking on ground 
lauses. Further, it adapts 
ontextual rewriting su
h that itimpli
itly 
onsiders 
lauses from ND��C� .De�nition 2 (Re
ursive Contextual Ground Rewriting). If N is a 
lauseset, D 2 N , C 0 ground, � a substitution then the redu
tionR D = �1 ! �1; s � t C 0 = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C 0 = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� is a stri
tly maximal term in D�2. u[s�℄ � v � s� � t�3. vars(s) � vars(D)4. (�2 ! A) `Red > for all A in �1�5. (A! �2) `Red > for all A in �1�is 
alled re
ursive 
ontextual ground rewriting.Condition 2-1 and 
ondition 2-2 ensure the ordering restri
tions requiredby 
ontextual rewriting. Condition 2-3 implies that D� is ground. A 
lause Dmeeting 
ondition 2-1 and 
ondition 2-3 is 
alled strongly universally redu
tive.Condition 2-4 and 
ondition 2-5 re
ursively apply the redu
tion 
al
ulus.The redu
tion 
al
ulus `Red is terminating sin
e C 0 is redu
ed to a smallerground 
lause. As a 
onsequen
e, also the redu
tion relation `Red is terminating.The approximated 
ontextual rewriting rule eventually be
omes the below rule.De�nition 3 (Approximated Contextual Rewriting). Let N be a 
lauseset, C;D 2 N , � be a substitution then the redu
tions
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R D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� � t�2. C � D�3. � maps all variables from C;D� to fresh Skolem 
onstants4. (�2 ! A)� `Red > for all A in �1�5. (A! �2)� `Red > for all A in �1�are 
alled approximated 
ontextual rewriting.Note that unit rewriting and non-unit rewriting [6℄ are also instan
es of theapproximated 
ontextual rewriting rule. Note further that the 
onditions for theapproximated 
ontextual rewriting rule are weaker 
ompared to the re
ursive
ontextual ground rewriting rule: the right premise needs not to be ground andthe equation s � t needs not to be maximal in the �rst premise. Approximated
ontextual rewriting uses re
ursive 
ontextual ground rewriting to e�e
tivelyde
ide the side 
onditions.3 ImplementationThe implementation of Spass [6℄ fo
uses on a sophisti
ated redu
tion ma
hinery.This ma
hinery 
ompletely interredu
es all 
lauses as it performs forward redu
-tion and ba
kward redu
tion whenever a 
lause is newly generated or modi�ed.Forward redu
tion redu
es the newly generated 
lause using the previously gen-erated 
lauses and ba
kward rewriting redu
es the previously generated 
lauseswith the new one.The integration of 
ontextual rewriting into this ma
hinery 
onsists of twosteps. First, the sear
h for appropriate 
ontextual rewrite appli
ation 
andidatesis analogous to the 
ase of unit rewriting and non-unit rewriting. In addition,the side 
onditions of 
ontextual rewriting have to be 
he
ked. Finding appro-priate 
ontextual rewrite appli
ation 
andidates 
an be solved by standard termindexing [8℄. This fun
tionality has already been implemented into Spass viasubstitution trees [6, 9℄.Se
ond, validating the side 
onditions of 
ontextual rewriting requires ane�e
tive implementation of the redu
tion 
al
ulus `Red. First of all, it is too
ostly to expli
itly 
ompute the Skolem substitution � for ea
h 
lause � !
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Re
ursiveValidityChe
k(CLAUSE C, CLAUSE SET N);1 Rewritten=TRUE;2 while Rewritten do3 Rewritten=FALSE;4 if IsEmpty(C) then return FALSE ;5 if IsTautology(C) then return TRUE ;6 if ForwardSubsumption(C, N) then return TRUE ;7 if ObviousRedu
tion(C) then Rewritten=TRUE;8 if Re
ursiveContextualGroundRewriting(C, N) then9 Rewritten=TRUE ;end10 return FALSE11 Algorithm 1: Re
ursiveValidityChe
k� whi
h the redu
tion 
al
ulus 
onsiders for 
ontextual rewriting. Applying� expli
itly requires to allo
ate memory for the new 
onstants and the new
lause and it requires additional 
omputations to build the 
lause. Be
ause ofthe re
ursive stru
ture of the redu
tion 
al
ulus this is not feasible. Therefore,the idea is to simply treat variables as 
onstants for this 
ase. We adapt theordering modules (KBO, RPOS) su
h that they 
an treat variables as 
onstants.Sin
e variables are not 
ontained in the pre
eden
e we have to de�ne an orderingon them. In Spass variables are represented by integers whi
h impli
itly givesan ordering on variables. Whenever we 
onsider variables to be 
onstants weassume them to have a lower pre
eden
e than any other symbol of the signature.Comparisons between variables are performed on the bases of their integer value.As a result, the implementation provides a method for applying � to a 
lause� ! � without any 
omputation or memory allo
ation.The 
omposition of the redu
tion 
al
ulus `Red to an a
tual de
ision pro
e-dure is depi
ted in Algorithm 1. The algorithm uses tautology deletion, forwardsubsumption and obvious redu
tions from the redu
tion pro
edure of Spass. Thepro
edures have to work with respe
t to the modi�ed, above explained, order-ings. Besides of this the implementation of these redu
tions remains un
hanged.Algorithm 1 expe
ts as input a 
lause C and a 
lause set N and redu
es Cwith respe
t toN in the main loop. IsEmpty(C) 
he
ks whether the given 
lauseis the empty 
lause, IsTautology(C) 
he
ks whether C is either a synta
ti
 or asemanti
 tautology. ForwardSubsumption(C, N) 
he
ks whether C is alreadysubsumed by 
lauses from N and ObviousRedu
tion(C) removes dupli
atedliterals and trivial equations from a 
lause. Further details 
an be found in theSpass Handbook [10℄.Re
ursiveContextualGroundRewriting(C, N), depi
ted in Algorithm 2,subsumes unit and non-unit rewriting and implements re
ursive 
ontextual groundrewriting. The variables o

urring in C are interpreted as 
onstants in the aboveexplained sense. The 
all to generalSDT (N; u0) returns the set of generalizationsG from N of u0 and the respe
tive mat
her �. Then the pro
edure 
omputes forea
h of the generalizations the literals and the 
lauses where they o

ur resulting
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Re
ursiveContextualGroundRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 forea
h (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 forea
h (s � t) 2 Lits do5 D = LiteralOwningClause(s � t);6 if (vars(s) � vars(D) ^7 u[s�℄ � v � s� � t�8 s� stri
tly maximal term in D� ^9 8A 2 Ante(D�) Re
ursiveValidityChe
k(� ! A) ^10 8A 2 Su

(D�) Re
ursiveValidityChe
k(A! �) ) then11 return C[u[t�℄ � v℄;12 end13 end14 end15 Algorithm 2: Re
ursiveContextualGroundRewritingin the 
ontextual rewrite 
andidates. The 
andidate 
lauses are then 
he
ked forthe non-re
ursive side 
onditions of 
ontextual rewriting. If these hold, Re
ur-siveContextualGroundRewriting builds the subproblems and re
ursively
alls Re
ursiveValidityChe
k.The implementation of approximated 
ontextual rewriting is analogous to theimplementation of re
ursive 
ontextual ground rewriting. The di�eren
e is thatthe input 
lause C is not interpreted as ground and the lo
al side 
onditions(line 7 - line 9) are 
hanged with respe
t to the de�nition of approximated
ontextual rewriting.4 Results4.1 Results on the TPTPThe TPTP 3.2.0 [7℄ is a library 
onsisting of 8984 problems for automatedtheorem proving systems. We 
ompared the Spass version 3.1 that is version3.0 extended by some bug �xes, 
ontaining our implementation of 
ontextualrewriting to Spass version 3.1 without 
ontextual rewriting.Table 1 depi
ts the results. We 
ompare two runs of Spass with a ref-eren
e run. All runs were performed with Spass options set to -RFRew=4-RBRew=2 -RTaut=2 on Opteron nodes running at speed of 2.4 GHz equippedwith 4 GB RAM for ea
h node. For the referen
e run we let Spass run on theTPTP with 
ontextual rewriting turned o� and a time limit of 300 se
onds.The �rst run of Spass with 
ontextual rewriting a
tivated and a 300 se
ondstime bound found 77 additional proofs and lost 151 proofs 
ompared to the runwith 
ontextual rewriting disabled. There were no signi�
ant di�eren
es amongthe versions on satis�able problems. The se
ond run of Spass with 
ontextual
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Time Won Lost De
eleration CoeÆ
ient Solved Open Problems300 77 151 1.46 2600 122 133 1.62 5Table 1. Forward 
ontextual rewritingrewriting and a 600 se
onds time bound found 122 additional proofs and lost 133proofs 
ompared to the run with 
ontextual rewriting disabled. Additionally, we
omputed the average running time of the referen
e run and ea
h of the othertwo runs. We 
onsidered only those 
ases where both the referen
e run and therespe
tive test run terminated and the version with 
ontextual rewriting took atleast 10 se
onds. The running time slows down on the average at a 
oeÆ
ient of1.46 for the 300 se
onds run and at a 
oeÆ
ient of 1.62 for the 600 se
onds run.The problems where Spass with 
ontextual rewriting found a proof and thereferen
e run did not were mostly problems with a high TPTP diÆ
ulty rating.In the run with 300 se
onds our instan
es even terminated on two problems withrating 1:00 and with 600 se
onds on �ve problems with rating 1:00 meaningthat no system has been able to solve these problems so far. The problems areSWC308+1, SWC335+1, in the 300 se
onds time bound and additionally in the600 se
onds time bound SWC329+1, SWC342+1, SWC345+1. All proofs were
he
ked by the Spass proof 
he
ker.It was both a surprise to us that the 
ontextual rewriting version did notimprove on satis�able problems and that it lost so many unsatis�able problems.For the satis�able problems this is simply due to the fa
t that the TPTP doesnot 
ontain suitable problems. For the unsatis�able ones we inspe
ted some indetail and �gured out that the a
tual proof found by the standard version gotlost through a 
ontextual rewriting appli
ation. This is not a new phenomenon,however, it is surprising that it o

urs so often on the TPTP. We will furtherdig into this hoping to �nd further insight.4.2 Appli
ation to the Example from the Introdu
tionIn this part we depi
t the appli
ation of approximated re
ursive 
ontextualrewriting on the introdu
tory example in detail. Therewith, we show that super-position together with our instan
e of 
ontextual rewriting terminates on thisexample. Spass with 
ontextual rewriting is able to saturate the 
lause set fromse
tion 1 whereas Spass without 
ontextual rewriting is not. Re
all that we 
anredu
e 
lause 5 with 
lause 3 using 
ontextual rewriting if the side 
onditionsare ful�lled. The ground 
lauses8 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � b9 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! q(
(x2; r(x3; y1))) � bmust be entailed by 
lauses from NC . Clause 8 is a tautology whereas 
lause 9
an be rewritten with 
lause 3 to10: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! a � b
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using 
ontextual rewriting if in addition the 
lauses11: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! i(x2) � b12: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! q(r(x3; y1)))) � bare also entailed by 
lauses from NC . Clause 11 is a synta
ti
 tautology and
lause 12 is subsumed by 
lause 2.5 SummaryIn summary, 
ontextual rewriting is 
ostly but it helps solving diÆ
ult problems.Our 
urrent implementation o�ers reasonable room for improvement. For exam-ple, in Spass, 
ontextual rewriting is implemented independently from unit andnon-unit rewriting su
h that in 
ase of non-appli
ability of the rule, the same
he
ks and indexing queries are repeated.For subsumption ni
e �lters are known to dete
t non-appli
ability. It wouldbe worthwhile to sear
h for su
h �lters for 
ontextual rewriting. Eventually, weneed to better understand why we lost surprisingly many problems from theTPTP. One possible answer 
ould be that the standard Spass heuristi
s for in-feren
e sele
tion don't work well anymore with 
ontextual rewriting. The Spassversion des
ribed in this paper and used for the experiments 
an be obtainedfrom the Spass homepage (http://spass-prover.org/) following the proto-type link.Referen
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