Constraint Modelling: A Challenge for First
Order Automated Reasoning
(extended abstract)

John Slaney

NICTA and the Australian National University

Abstract. The process of modelling a problem in a form suitable for
solution by constraint satisfaction or operations research techniques, as
opposed to the process of solving it once formulated, requires a signifi-
cant amount of reasoning. Contemporary modelling languages separate
the first order description or “model” from its grounding instantiation
or “data”. Properties of the model independent of the data may thus be
established by first order reasoning. In this talk, I survey the opportuni-
ties arising from this new application direction for automated deduction,
and note some of the formidable obstacles in the way of a practically
useful implementation.

1 Constraint Programming

A constraint satisfaction problem (CSP) is normally described in the following
terms: given a finite set of decision variables v, ..., v, with associated domains
Dy, ...,D,, and a relation C(vy,...v,) betwen the variables, a state is an as-
signment to each variable v; of a value d; from D;. A state is a solution to the
CSP iff C(dy,...,d;) holds. In practice, C' is the conjunction of a number of
constraints each of which relates a small number of variables. It is common to
seek not just any solution, but an optimal one in the sense that it minimises the
value of a specified objective function.

Mathematical programming is the special case in which the domains are
numerical (integers or real numbers) and the constraints are equalities or in-
equalities between functions (usually polynomial, nearly always linear, in fact)
of these. The techniques usable for numbers are so different from those for the
general case, however, that CP and MP are often seen as contrasting or even
opposing approaches.

Logically, C is a theory in a language in which the v; are proper names
(“constants” in the usual terminology of logic). A state is an interpretation of
the language over a domain (or several domains, if the language is many-sorted)
corresponding to the domains of the variables, and a solution is an interpretation
that satisfies C'. On this view, CSP reasoning is the dual of theorem proving: it
is seeking to establish possibility (satisfiability) rather than necessity (unsatisfi-
ability of the negation).

11



Techniques used to solve CSPs range from the purely logical, such as SAT
solving, through finite domain (FD) reasoning which similarly consists of a back-
tracking search over assignments, using a range of propagators appropriate to
different constraints to force some notion of local consistency after each assign-
ment, to mixed integer programming using a variety of numerical optimisation
algorithms. Hybrid solution methods, in which different solvers are applied to
sub-problems, include SMT (satisfiability modulo theories), column generation,
large neighbourhood search and many more or less ad hoc solver combinations
for specific purposes. The whole area has been researched intensively over the
last half century, generating an extensive literature from the automated reason-
ing, artificial intelligence and operations research communities. The reader is
referred to Dechter’s overview [3] for an introduction to the field.

Constraint programming is an approach to designing software for CSPs,
whereby a library of solvers is used in the same maner as libraries of mathe-
matical function computations. The search is controlled by a program written
in some high-level language (sometimes a logic programming language, but in
modern systems often C++ or something similar) and specific solvers may be
used to evaluate particular predicates or perform propagation steps, or may be
passed the entire problem after some preprocessing. CP platforms vary in the
degree to which they automate control of the propagation queue and the like, or
leave it in the hands of the programmer. The constraint programming paradigm
gives a great deal of flexibility, allowing techniques to be tailored to problems,
while at the same time accessing the power and efficiency of high-performance
CSP solvers.

1.1 Separating Modelling from Solving

Engineering a constraint program for a given problem is traditionally a two-phase
process. First the problem must be modelled. This is a matter of determining
what are the decision variables, what are their domains of possible values and
what constraints they must satisfy. Then a program must be written to evaluate
the model by using some solver or combinaton of solvers to search for solutions.
Most of the CP and OR literature concerns the second phase, assuming that
“the problem” resulting from the modelling phase is given.

In recent years, there has been a growing realisation of the importance of
modelling as part of the overall process, so modern CP or MP platforms feature
a carefully designed modelling language such as ILOG’s OPL [7] or AMPL from
Bell Labs [5]. Contemporary work on modelling languages such as ESRA [4],
ESSENCE |[6] and Zinc [8] aims to provide a rich representation tool, with prim-
itives for manipulating sets, arrays, records and suchlike data structures and
with the full expressive power of (at least) first order quantification. It also aims
to make the problem representation independent of the solver(s) so that one and
the same conceptual model can be mapped to a form suitable for solution by
mixed integer programming, by SAT solving or by local search.

In the present report, the modelling language used will be Zinc, which is
part of the G12 platform currently under development by NICTA (Australia).

12



My involvement is in designing and implementing the user environment for G12,
which will incorporate theorem proving technology along with much else. The
current theorem proving research is joint work with Peter Baumgartner.!

1.2 The G12 Platform

The G12 constraint programming platform provides a series of languages and
associated tools. At the base is Mercury [10,2] , a logic programming language
with adaptations for contraint logic programming with a propagation queue
architecture (http://www.cs.mu.oz.au/research/mercury/). Below that are
the solvers, which include commercial ones like CPLEX, third party open source
ones like MiniSAT and many of our own. The API for incorporating solvers is
quite straihtforward. On the top level is the modelling language Zinc, of which
more below. Between Mercury and Zinc (remember your periodic table) is Cad-
mium, a very declarative programming language based on term rewriting, which
is designed for mapping one syntax to another and is used in G12 mainly to con-
vert Zinc specifications into simpler ones. For instance, they may be flattened
by unrolling quantifiers, or clausified, or expressed as linear programs or as SAT
problems.

G12 clearly separates the conceptual model, written in Zinc, from the design
model intended to be realised as a Mercury program. It also draws a distinction
between the model, which is a first order description of the generic problem,
and the data which are the facts serving to ground the model in a particular
instance. The commonly used distinction between facts and rules or “integrity
constraints” in deductive databases is somewhat similar.

G12 programs can be related to Zinc models in a spectrum of ways. It is
possible to write a constraint program to solve the problem, treating the Zinc
specification just as a guide, as is often done in conventional CP. The program
can throw the entire problem onto one solver such as CPLEX, or onto MiniSAT
as Paradox does, or can mix solvers in arbitrarily fine-grained ways to produce
hybrids tailored to individual problems. Alternatively, the program can take the
Zinc specification and data as input, in which case we think of it as a way of
evaluating the model over the data. It is even possible to avoid writing any
program, leaving the G12 system itself with its default mappings to do the
evaluation and writing only in Zinc. This last represents the closest approach
yet to the Holy Grail of high-level programming: one does not program at all;
one tells the computer what the problem is, and it replies with the solution.

! We have benefitted greatly from being in a team that has included Michael Norrish,
Rajeev Gore, Jeremy Dawson, Jia Meng, Anbulagan and Jinbo Huang, and from the
presence in the same laboratory of an Al team including Phil Kilby, Jussi Rintanen,
Sylvie Thiébaux and others. The G12 project involves well over 20 researchers, in-
cluding Peter Stuckey, Kim Marriott, Mark Wallace, Toby Walsh, Michael Maher,
Andrew Verden and Abdul Sattar. The details of our indebtedness to these people
and their colleagues are too intricate to be spelt out here.

13



Zinc Zinc is a typed (mostly) first order language. It has as basic types int,
float and bool, and user-defined finite enumerated types. To these are applied
the set-of, array-of, tuple, record and subrange type constructors. These
may be nested, with some restrictions mainly to avoid such things as infinite
arrays and explicitly higher order types (functions with functional arguments).
The type string is present, but is only used for formatting output. It also allows
a certain amount of functional programming, which is not of present interest.
It provides facilities for declaring decision variables of most types and constants
(parameters) of all types. Standard mathematical functions such as + and sqrt
are built in. Constraints may be written using the expected comparators such as
= and < or user-defined predicates to form atoms, and the usual boolean connec-
tives and quantifiers (over finite domains) to build up compounds. Assignments
are special constraints whereby parameters are given their values. The values of
decision variables are not normally fixed in the Zinc specification, but have to
be found by some sort of search.
For details, see http://users.rsise.anu.edu.au/~jks/zinc-spec.pdf.

Analysing models It is normal to place the Zinc model in one file, and the
data (parameters, assignments and perhaps some enumerations) in another. The
model tends to stay the same as the data vary. For example, without changing
any definitions or general specifications, a new schedule can be designed for
each day as fresh information about orders, jobs, customers and prices becomes
available.

The user support tools provided by the G12 development environment should
facilitate debugging and other reasoning about models independently of any
data. However, since the solvers cannot evaluate a model until at least the do-
mains are specified, it is unclear how this can be done. Some static visualisation
of the problem, such as views of the Zinc-level constraint graph, can help a little,
but to go much further we need a different sort of reasoning.

2 Deductive Tasks

There is no good reason to expect a theorem prover to be used as one of the
solvers for the purposes of a constraint programming platform such as G12.
Apart from the fact that typical constraint satisfaction problems are trivially
satisfiable—the main issue is optimality, not the existence of solutions—the rea-
soning required amounts to propagation of constraints over finite domains rather
than to chaining together complex inferences. For this purpose SAT solvers
and the like are useful, but traditional first order provers are not. However,
for analysing the models before they have been grounded by data, first order
deduction is the only option. The following tasks are all capable of automation:

1. Proof that the model is inconsistent.
Inconsistency can indicate a bug, or merely a problem overconstrained by
too many requirements. It can arise in “what if” reasoning, where the pro-
grammer has added speculative conditions to the basic description or it can

14



arise where partial problem descriptions from different sources have been
combined without ensuring that their background assumptions mesh. Often,
inconsistency does not afflict the pure model, but arises only after part of
the data has been added, so detecting it can require a certain amount of
grounded reasoning as well as first order unification-driven inference.

A traditional debugging move, also useful in the other cases of inconsistency,
is to find and present a [near] minimal inconsistent core: that is, a minimally
inconsistent subset of the constraints. The problem of “axiom pinpointing”
in reasoning about large databases is similar, except that in the constraint
programming case the number of possible axioms tends to be comparatively
small and the proofs of inconsistency comparatively long. The advantage
of finding a first order proof of inconsistency, rather than merely analysing
nogoods from a backtracking search, is that there is some hope of presenting
the proof to a programmer, thus answering the question of why the particular
subset of constraints is inconsistent.

. Proof of symmetry.

The detection and removal of symmetries is of enormous importance to fi-
nite domain search. Where there exist isomorphic solutions, there exist also
isomorphic subtrees of the search tree. Moreover, there can be thousands
or millions of solutions isomorphic to a given one, meaning that almost all
of the search is a waste of time and can be eliminated if the symmetries
are detected early enough. A standard technique is to introduce “symmetry
breakers”, which are extra constraints imposing conditions satisfied by some
but not all (preferably exactly one) of the solutions in a symmetry class.
Symmetry breakers prevent entry to subtrees of the search tree isomorphic
to the canonical one.

It may be evident to the constraint programmer that some transformation
gives rise to a symmetry. Rotating or reflecting the board in the N Queens
problem would be an example. However, other cases may be less obvious,
especially where there are side constraints that could interfere with symme-
try. Moreover, it may be unclear whether the intuitively obvious symmetry
has been properly encoded or whether in fact every possible solution can be
transformed into one which satisfies all of the imposed symmetry breakers.
It is therefore important to be able to show that a given transformation
defined over the state space of the problem does actually preserve the con-
straints, and therefore that it transforms solutions into solutions. Since sym-
metry breakers may be part of the model rather than part of the data, we
may wish to prove such a property independently of details such as domain
sizes. There is an example in the next section.

. Redundancy tests.

A redundant constraint is one that is a logical consequence of the rest. It
is common to add redundant constraints to a problem specification, usually
in order to increase the effect of propagation at each node of the search
tree. Sometimes, however, redundancy may be unintentional: this may indi-
cate a bug—perhaps an intended symmetry-breaker which in fact changes
nothing—or just a clumsy encoding. Some constraints which are not redun-

15



dant in the model may, of course, become redundant when the data are
added.

Where redundant constraints are detected, either during analysis of the
model or during preprocessing of the problem including data, this might use-
fully be reported to the constraint programmer who can then decide whether
such redundancy is intentional, whether it matters or not, and whether the
model should be adjusted in the light of this information. It may also be
useful to report irredundancy where a supposedly redundant constraint has
been added: the programmer might usefully be able to request a redundancy
proof in such a case.

. Functional dependency.

The analogue at the level of functions of redundancy at the level of propo-
sitions is dependency in the sense that the values of certain functions may
completely determine the value of another for all possible arguments. As in
the case of constraint redundancy, functional dependence may be intentional
or accidental, and either way it ay be useful to the constraint programmer
to know whether a function is dependent or not.

Consider graph colouring as an example. It is obvious that in general (that
is, independently of the graph in question) the extensions of all but one of
the colours are sufficient to fix the extension of the final one, but that this
is not true of any proper subset of the “all but one”. In the presence of side
constraints, however, and especially of symmetry breakers, this may not be
obvious at all. In such cases, theorem proving is the appropriate technology.

. Equivalence of models.

It is very common in constraint programming that different approaches to a
given problem may result in very different encodings, expressing constraints
in different forms and even using different signatures and different types. The
problem of deciding whether two models are equivalent, even in the weak
sense that solutions exist for the same values of some parameters such as
domain sizes, is in general hard. Indeed, in the worst case, it is undecidable.
However, hardness in that sense is nothing new for theorem proving, so there
is reason to hope that equivalence can often enough be established by the
means commonly used in automated reasoning about axiomatisations.

. Simplification

A special case of redundancy, which in turn is a special case of model equiv-
alence, occurs in circumstances where the full strength of a constraint is not
required. A common example is that of a biconditional (<) where in fact
one half of it (=) would be sufficient. Naive translation between problem
formulations can easily lead to unnecessarily complicated constraints such as
2 < sup(S) which is naturally rendered as Jy € S((Vz € S.z < y) Az < y),
while the simpler Jy € S.x < y would do just as well. Formal proofs of the
correctness of simplifications can usefully be offered to the programmer at
the model analysis stage.

16



int: N;

array[1..N] of var int: q;

constraint forall (x in 1..N, y in 1..x-1) (qlx] !'= qlyD);
constraint forall (x in 1..N, y in 1..x-1) (qlx]l+x !'= qlyl+y);
constraint forall (x in 1..N, y in 1..x-1) (qlx]l-x !'= qlyl-y);
solve satisfy;

Fig. 1. Zinc model for the N Queens problem

2.1 Preliminary experiments

Our experiments are very much work in progress, so we are in a position only
to report preliminary findings rather than the final word. Here are comments on
just two toy examples, more to give a flavour than to present systematic results.

Proving symmetry We consider the N Queens problem, a staple of CSP
reasoning. IV queens are to be placed on an a chessboard of size N x N in such
a way that no queen attacks any other along any row, column or diagonal. The
model is given in Figure 1 and the data consists of one line giving the value of N
(e.g. ‘N = 8;’). Suppose that as a result of inspection of this problem for small
values of N it is conjectured? that the transformation s[z] = ¢[n + 1 — 2] is a
symmetry. We wish to prove this for all values of N. That is, we need a first
order proof that the constraints with s substituted for ¢ follow from the model as
given and the definition of s. Intuitively, the result is obvious, as it corresponds
to the operation of reflecting the board, but intuitive obviousness is not proof
and we wish to see what a standard theorem prover makes of it.

The prover we took off the shelf for this experiment was Prover9 by McCune
[9]. Clearly a certain amount of numerical reasoning is required, for which ad-
ditional axioms must be supplied. The full theory of the integers is not needed:
algebraic properties of addition and subtraction, along with numerical order,
seem to be sufficient. All of this is captured in the theory of totally ordered
abelian groups, which is quite convenient for first order reasoning in the style of
Prover9. We tried two encodings: one in terms of the order relation < and the
other an equational version in terms of the lattice operations max and min.

The first three goals:

1<zAhz<n)=1<s(x

I<zAz<n)=s(x)<n

s(2) = s(y) = 2 =y
are quite easy for Prover9 when s(x) is defined as ¢(n 4+ 1 — x). By contrast, the
other two

I<zArz<n)A1<yAy<n)=s(z)+x#sy)+y

I<zArz<n)A1<yAy<n)=s(x)—xz#s(y) —y
are not provable inside a time limit of 30 minutes, even with numerous helpful
lemmas and weight specifications to deflect useless subformulae like ¢(g(x)) and

2 In fact, there is experimental software to come up with such conjectures automati-
cally.

17



q(n). It makes little difference to these results whether the abelian l-group axioms
are presented in terms of the order relation or as equations.

To push the investigation one more step, we also considered the transforma-
tion obtained by setting s to ¢—'. This is also a symmetry, corresponding to
reflection of the board about a diagonal, or rotation through 90° followed by
reflection as above. This time, it was necessary to add an axiom to the Queens
problem definition, as the all-different constraint on ¢ is not inherited by s.
The reason is that for all we can say in the first order vocabulary, N might
be infinite—e.g. it could be any infinite number in a nonstandard model of the
integers—and in that case a function from {1...N} to {1... N} could be injec-
tive without being surjective.

The immediate fix is to add surjectivity of the ‘q’ function to the problem
definition, after which in the relational formulation Prover9 can easily deduce
the three small goals and the first of the two diagonal conditions. The second is
beyond it, until we add the redundant axiom

T1—Y1 =22 —Y2=>T1—T2=Y1 — Y2
With this, it finds a proof in a second or so. In the equational formulation, no
proofs are found in reasonable time.

The more general issue, however, is that many CSP encodings make implicit
use of the fact that domains are finite, as a result of which it may be impossible
to deduce important properties by first-order reasoning without fixing bounds
on parameters. If theorem proving is to be a useful tool in G12, ways will have
to be found to circumvent such difficulties, issuing warnings if necessary.

Another message from the experiments is that a lot of arithmetical reasoning
tricks and transformations will have to be identified and coded into the system.
The above transformation of equalities between differences (and its counterparts
for inequalities) illustrates this.

An encouraging feature is that a considerable amount of the reasoning turns
only on algebraic properties of the number systems, and so may be amenable to
treatment by standard first order provers.

Proving redundancy A toy example of redundant constraints is found in the
following logic puzzle [1]:

On June 1st, five couples will celebrate their wedding anniversaries. Their
surnames are Johnstone, Parker, Watson, Graves and Shearer. The husbands’
given names are Russell, Douglas, Charles, Peter and Everett. The wives’ given
names are Elaine, Joyce, Marcia, Elizabeth and Mildred.
1. Joyce has not been married as long as Charles or the Parkers, but longer
than Douglas and the Johnstones.
2. Elizabeth has been married twice as long as the Watsons, but only half as
long as Russell.
3. The Shearers have been married ten years longer than Peter and ten years
less than Marcia.
4. Douglas and Mildred have been married for 25 years less than the Graves
who, having been married for 30 years, are the couple who have been
married the longest.

18



5. Neither Elaine nor the Johnstones have been married the shortest amount
of time.
6. Everett has been married for 25 years

Who is married to whom, and how long have they been married?

Parts of clue 1, that Joyce has been married longer than Douglas and also longer
than the Johnstones, are deducible from the other clues. Half of clue 5, that
Elaine has not been married the shortest amount of time, is also redundant. The
argument is not very difficult: a little arithmetical reasoning establishes that the
five numbers of years married are 5, 10, 20, 25 and 30 (three of them are 30, 5
and 25, and the five contain a sequence of the form z, 2z, 4z). Mildred has been
married for 5 years (clue 4) from which it quickly follows that both Elaine and
Joyce have been married for longer than Mildred and therefore than Douglas.
That Joyce has been married for longer than the Johnstones is a slightly more
obscure consequence of the other clues, but a finite domain constraint solver has
no difficulty with it.

Presenting the problem of deriving any of these redundancies to Prover9 is
not easy. The small amount of arithmetic involved is enough to require a painful
amount of axiomatisation, and even when the addition table for the natural
numbers up to 30 is completely spelt out, making use of that to derive simple
facts such as those above is beyond the abilities of the prover. Even given an
extra clause stating that the five numbers involved are 5, 10, 20, 25 and 30, in
ten thousand iterations of the given clause loop it gets nowhere near deducing
that Joyce has been married for longer than Douglas.

If the fact that the numbers of years are all in the set {5, 10, 15, 20, 25,30} is
given as an axiom, and extra arguments are given to all function and relation
symbols to prevent unification across sorts, then of course the redundancy proofs
become easy for the prover. However, it is unreasonable to expect that so much
help will be forthcoming in general. Even requiring just a little of the numerical
reasoning to be carried out by the prover takes the problem out of range.

Part of the difficulty is due to the lack of numerical reasoning, but as before,
forcing the problem statement into a single-sorted logic causes dramatic inef-
ficiency. It is also worth noting that the proofs of redundancy are long (some
hundreds of lines) and involve nearly all of the assumptions, indicating that ax-
iom pinpointing is likely to be useless for explaining overconstrainedness at least
in some range of cases.

2.2 Conclusions

While, as noted, the investigation is still preliminary, some conclusions can al-
ready be drawn. Notably, work is required on expanding the capacities of con-
ventional automatic theorem provers:

1. Numerical reasoning, both discrete and continuous, is essential. The the-

orems involved are not deep—showing that a simple transformation like
reversing the order 1...N is a homomorphism on a model or restricting

19



attention to numbers divisible by 5—but are not easy for standard theorem
proving technology either. Theorem provers will not succeed in analysing
constraint models until this hurdle is cleared.

. Other features of the rich representation language also call for specialised

reasoning. Notably, the vocabulary of set theory is pervasive in CSP models,
but normal theorem provers have difficulties with the most elementary of
set properties. Some first order reasoning technology akin to SMT, whereby
specialist modules return information about sets, arrays, tuples, numbers,
etc. which a resolution-based theorem prover can use, is strongly indicated.
Theory resolution is the obvious starting point, but is it enough?

. Many-sorted logic is absolutely required. There are theorem provers able to

exploit sorts, but most do not—a telling point is that TPTP still does not
incorporate sorts in its notation or its problems.

. Constraint models sometimes depend on the finiteness of parameters. Sim-

ple facts about them may be unprovable without additional constraints to
capture the effects of this, as illustrated by the case of the symmetries of the
N Queens problem. This is not a challenge for theorem provers as such but
rather for the process of preparing constraint models for first order reasoning.

. In some cases, proofs need to be presented to human programmers who are

not working in the vocabulary of theorem proving, who are not logicians, and
who are not interested in working out the details of complicated pramodula-
tion inferences. Despite some efforts, the state of the art in proof presentation
remains lamentable. This must be addressed somehow.

Despite the above challenges, and perhaps in a sense because of them, con-

straint model analysis offers an exciting range of potential roles for automated
deduction. Constrait-based reasoning has far wider application than most can-
vassed uses of theorem provers, such as software verification, and certainly con-
nects with practical concerns much more readily than most of [automated] pure
mathematics. Reasoning about constraint models without their data is a niche
that only first (or higher) order deductive systems can fill. Those of us who
are concerned to find practical applications for automated reasoning should be
working to help them fill it.

References

1.

2.

Anonymous. Anniversaries: Logic puzzle.
http://wuw.genealogyworldwide.com/genealogy_fun.php.

Ralph Becket, Maria Garcia de la Banda, Kim Marriott, Zoltan Somogyi, Peter
Stuckey, and Mark Wallace. Adding constraint solving to Mercury. In Proceed-
ings of the Eighth International Symposium on Practical Aspects of Declarative
languages. Springer Verlag, 2006.

. Rina Dechter and David Cohen. Constraint Processing. Morgan Kaufmann, 2003.
. P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational language for

modelling combinatorial problems. In Logic Based Program Synthesis and Trans-
formation: 13th International Symposium, LOPSTR’03, Revised Selected Papers
(LNCS 3018), pages 214-232. Springer-Verlag, 2004.

20



. Robert Fourer, David Gay, , and Brian Kernighan. AMPL: A Modeling Language

for Mathematical Programming. Duxbury Press, 2002. http://www.ampl.com/.

. A.M. Frisch, M. Grum, C. Jefferson, B. Martinez Herndndez, and I. Miguel. The

design of essence: A constraint language for specifying combinatorial problems.
In Proceedings of the International Joint Conference on Artificial Intelligence (1J-
CAI), pages 80-87, 2007.

. Pascal Van Hentenryck. The OPL optimization programming language. MIT Press,

Cambridge, MA, 1999.

. Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia

de la Banda, and Mark Wallace. The design of the Zinc modelling language.
Constraints, Special Issue on Abstraction and Automation in Constraint Modelling,
13(3), 2008.

. William McCune. Prover9 and mace4. http://www.cs.unm.edu/ mccune/mace4/.
10.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an
efficient purely declarative logic programming language. In  Proceed-
ings of the FEighteenth Australasian Computer Science Conference, 1995.
http://www.cs.mu.oz.au/research/mercury/information/papers.html.

21



