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Abstract. Collaborative Programming is characterized by groups of
people issuing instructions to computer systems. Collaborative Program-
ming languages differ from traditional programming languages because
instruction sets can be incomplete and conflicting, and more of the bur-
den for efficient execution is placed on the computer system. This paper
introduces Collaborative Programming and through the discussion of two
practical examples argues that tools from logic and automated reason-
ing form a good foundation for Collaborative Programming technology
while at the same time illustrating the need for nonstandard automated
reasoning techniques.

1 Introduction

Collaborative Programming comprises all those settings where groups of people
issue instructions to computer systems. In contrast to traditional programming
languages, Collaborative Programming languages must make combining instruc-
tion sets from different parties straightforward and may allow users to express
incomplete and conflicting1 instruction sets. An incomplete instruction set may
only say what to do some of the time or what actions the system is forbidden
from performing. A conflicting instruction set may simultaneously instruct the
system to perform some action and forbid the system from performing that same
action. Technology that supports Collaborative Programming must be able to
combine independently authored instruction sets and be tolerant of incomplete-
ness and conflicts.

The notion of Collaborative Programming was developed as a pedagogical
device for explaining to researchers in traditional programming languages and
systems (e.g. networks, operating systems) the benefits and limitations of logical
languages and automated reasoning as compared to more traditional approaches.
The word “collaborative” was chosen to capture situations where statements
made by independent parties must be combined, a simple operation in logical
languages. The word “programming” was chosen to capture situations in which
the statements made by independent parties can be construed as instructions to
1 Here we use the word “conflicting” as opposed to “inconsistent” to differentiate the

informal notion of a disagreement and the proof and model theoretic notions of
consistency.
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a computer system, which is often the case when the statements are made in a
formal language. The concept of Collaborative Programming covers situations
that leverage the order-irrelevance and formal semantics of logical languages.

The connection between Collaborative Programming and logical languages
was forged because of the need and ability to combine instruction sets; however,
the connection runs deeper than that. In collaborative settings, it is very natural
for users to submit incomplete and conflicting instruction sets. Sometimes people
only have opinions on some issues; thus, for a language to reflect a user’s true
intentions, it must allow users to express incomplete instruction sets, a natural
feature of many logical languages. Likewise, when collaborating, people rarely
agree on everything; hence, a Collaborative Programming language must allow
users to express disagreements, another feature of logical languages. Thus, logical
languages are a natural foundation for Collaborative Programming languages,
which means that Collaborative Programming language implementations rely on
tools from automated reasoning.

Some of the most celebrated tools in automated reasoning, e.g. first-order
theorem provers, are designed to detect a particular kind of conflict: a logical
inconsistency. More precisely, they determine whether or not an inconsistency
exists. As we illustrate in this paper, Collaborative Programming applications
sometimes require knowing more than whether or not a conflict exists; they
must act based on the type of conflict that occurred. To meet this requirement,
theorem provers for Collaborative Programming applications must implement a
paraconsistent entailment relation [14]: one that coincides with classical entail-
ment for consistent theories but is more discerning for inconsistent theories.

Paraconsistent theorem provers must overcome an additional computational
burden as compared to traditional programming languages. Given a set of in-
structions issued in a logical language, a computer system must determine which
action to perform by analyzing those instructions, resolving conflicts, and filling
in gaps. Unlike traditional programming languages, where computing the next
action is guaranteed to be fast, computing the next action in a Collaborative
Programming setting might require significant computation, which is especially
worrisome for real-world applications where efficiency guarantees are important.
To alleviate such concerns, we advocate custom-designing a Collaborative Pro-
gramming language for each application so that it is expressive enough to be
useful but no less efficient than is tolerable.

When custom-designing a Collaborative Programming language based on
logic, one must choose which style of logic to use. In this paper we consider two
specific logics, FHL and datalog¬, that from the perspective of Collaborative
Programming represent two interesting language classes: classical logic and logic
programming. FHL is a decidable fragment of first-order logic that allows arbi-
trary quantification (syntactically). datalog¬ is a language for describing and
querying relational databases, perhaps the most successful application of logic
in computer science. These two languages were chosen because FHL provides
the opportunity to confront paraconsistency, while datalog¬ demonstrates that
classical logics are not the only option for Collaborative Programming.
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This paper examines Collaborative Programming languages for two practical
applications: logical spreadsheets (Section 3) and authorization languages (Sec-
tion 4). In each case, the strengths and weaknesses of FHL and datalog¬ are
examined, and in the end one is chosen as the foundation of the language; addi-
tionally, issues surrounding conflicts and incompleteness for the chosen language
are illustrated and resolved. Finally, we make some closing remarks (Section 5).

2 Preliminaries

The two languages studied in this paper, FHL and datalog¬, are well-known;
we use common conventions for their syntax and semantics. FHL, a classical
logic, is first-order logic with equality and the following three restrictions: no
function constants, a domain closure assumption (DCA), and a unique names
assumption (UNA). In this logic, the objects in the universe of every model are
exactly the object constants in the language. We call this logic Finite Herbrand
Logic (FHL) because the only models of interest are the finite Herbrand models.

The definitions for FHL’s syntax are the same as for function-free first-
order logic. The definitions for a model and for satisfaction are standard but are
simplified to take advantage of the UNA and DCA. A model in FHL is a set of
ground atoms from the language. A model satisfies all the ground atoms included
in the set. Satisfaction is defined as usual for the Boolean connectives applied to
ground sentences. Satisfaction of non-ground sentences reduces to satisfaction
of ground sentences. Free variables are implicitly universally quantified. ∀x.φ(x)
is satisfied exactly when φ(a) is satisfied for every object constant a. ∃x.φ(x) is
satisfied exactly when φ(a) is satisfied for some object a.

The other language of interest, datalog¬, is datalog with stratified nega-
tion. Again, the definitions for its syntax are standard, and we focus on seman-
tics. A model for datalog¬ is the same as that for FHL: a set of ground atoms;
however, in contrast to FHL where sentences may be satisfied by more than one
model, a set of datalog¬ sentences is always satisfied by exactly one model.
Without negation, that model is the smallest one (ordered by subset) that sat-
isfies the sentences under the FHL definition of satisfaction. With negation, the
stratified semantics [15] use minimality criteria to choose one model out of all
those that satisfy the sentences under the FHL definition.

A set of sentences is satisfiable (or consistent) when there is at least one model
that satisfies it. Logical entailment is defined as usual: ∆ |= φ if and only if every
model that satisfies ∆ also satisfies φ. Entailment for FHL is coNEXPTIME-
complete [5], and entailment for datalog¬ is NEXPTIME-complete, e.g. [16].

FHL and datalog¬ are similar because they are both Herbrand-based log-
ics. They are different in that FHL allows a sentence set to be satisfied by
multiple models, whereas a datalog¬ sentence set is always satisfied by exactly
one model. For the purposes of this paper, the most important consequence of
this distinction is that FHL can express true disjunction (entailing/satisfying a
disjunction without entailing/satisfying any disjunct) but datalog¬ cannot.
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3 Use Case: Logical Spreadsheets

One area of research, popular enough to support a dedicated workshop in 2005
and a DARPA funding opportunity (in the small business sector) in 2004 [9],
investigates the application of logic and automated reasoning to bring about
the next generation of spreadsheets for the personal computer. These logical
spreadsheets remove some of the limitations of traditional spreadsheets. Instead
of equations that specify how to compute the value of one cell given the values of
other cells, logical spreadsheeets accept arbitrary logical formulae, which allows
updates to propagate in any direction and cells to be constrained to obey many-
to-many relationships.

For example, using a logical spreadsheet one can require two cells to be as-
signed the same value; fill in the value of either cell, and the other one updates
automatically. In addition, it is possible to constrain one cell to contain a postal
code and another cell to contain a city. The postal code is not sufficient to com-
pute the city, nor is the city sufficient to compute the postal code. Nevertheless,
choosing a city restricts the possible postal codes, and vice versa.

Logical spreadsheets allow users to specify a set of constraints on the cells
in the spreadsheet and then provide visual cues to indicate which values do not
satisfy the constraints. Those visual cues include highlighting cells whose values
conflict with the constraints and showing a list of values for any given cell that
satisfy the constraints given the values of the other cells.

Particularly well-known examples of logical spreadsheets are the HTML forms
found on the web. When ordering merchandise from e-commerce web sites, a form
that asks for billing information often includes constraints on the combinations
of values that can be entered, e.g. the city and postal code must be compati-
ble. Often, web programmers use Javascript to check those constraints as the
user enters information. When a constraint violation occurs, an error message
appears somewhere on the page.

The difficulty with using Javascript to check constraints is that if the con-
straints change, the Javascript may require a substantial rewrite. Research into
logical spreadsheets has the potential benefit that a web programmer could write
down the necessary constraints for the web form elements in a logical language,
and the Javascript for checking those constraints would be generated automati-
cally. Small constraint changes that result in large Javascript changes would no
longer be problematic because those large changes would be auto-generated.

Different approaches to logical spreadsheets expose different languages for
users to express constraints. The language presented here is based on FHL and
follows the presentation in [8]. Cells in the spreadsheet correspond to monadic
predicates, and a (partial) cell assignment corresponds to a set of ground atoms.
Constraints on a spreadsheet are FHL sentences.

For example, to require two cells named cell1 and cell2 to contain the same
value, a user could enter the following sentence.

cell1(x) ⇔ cell2(x)
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Likewise, to force the postal cell and the city cell to contain compatible values,
one could write the implication

postal(x) ∧ city(y) ⇒ compatible(x, y),

where compatible is appropriately defined. Assigning cell city the value paris is
represented by the atom city(paris).

Conflicts in this language correspond to inconsistent FHL theories. This is
problematic because using the traditional notions of satisfaction and entailment,
there is no way to differentiate one conflict from another, which is vital infor-
mation for visually indicating which cells fail to satisfy the constraints.

For example, consider again the web form where two cells are required to
contain the same value, and a city cell and a postal code cell are required to
contain compatible values. The constraints are the two sentences shown above.
Assigning cell1 and cell2 different values causes an inconsistency, i.e. there are
no models that satisfy the constraints together with the assignments to cell1 and
cell2. This means that every sentence in the language is entailed. Compare this
conflict with a conflict that occurs because the city and postal code cells were
assigned incompatible values. Again, the theory is inconsistent, which means
there are no satisfying models, and all sentences are entailed. Neither satisfaction
nor entailment is sufficient for providing the user feedback as to which cells
conflict with each other.

Such problems are addressed by work on paraconsistent logics, e.g. [14]. A
paraconsistent logic is one in which an inconsistent theory does not entail all
logical sentences. The approach described in [8], called existential entailment
and denoted |=E , combines the traditional notions of satisfaction and entailment
in a simple way. In the case of consistent theories, traditional entailment and
existential entailment coincide, but in the case of inconsistent theories, existential
entailment isolates one conflict from another.

Intuitively, the problem with traditional entailment is that an inconsistent
premise set entails every sentence, even if that inconsistency has nothing to
do with the sentence in question. For example, the three premises below are
inconsistent, which means that both the sentences q(a) and ¬q(a) are entailed.

p(a)
¬p(a)
q(a)

(1)

However q(a) would be entailed even without the inconsistency, but ¬q(a) is
only entailed because of the inconsistency. Existential entailment differentiates
these two cases by requiring a satisfiable premise set for proving a conclusion.

Definition 1 (Existential Entailment [8]). A set of sentences ∆ existentially
entails a sentence φ (∆ |=E φ) if and only if there is some satisfiable ∆′ that is
a subset of ∆ such that ∆′ |= φ.

Existential entailment can be employed as follows to pinpoint those cells in a
spreadsheet that conflict with the constraints. Suppose that the constraints are
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satisfiable and named ∆ and that the assignments of values to cells is Γ . Recall
that assigning cell p to value a is represented as p(a). Cell value p(a) conflicts
with the constraints and other cell values whenever ∆ ∪ Γ existentially entails
the negation of p(a).

Definition 2 (Logical Spreadsheet Conflict). Cell p assigned to value a
conflicts with the spreadsheet constraints ∆ and the partial cell assignment Γ
exactly when ∆ ∪ Γ |=E ¬p(a).

We can view Example 1 from above as a set of constraints and cell values for
a spreadsheet with a cell p and a cell q. Cell p, having been assigned the value
a, should be highlighted as a conflict because ¬p(a) is existentially entailed (by
the singleton, satisfiable premise set {¬p(a)}). But, cell q assigned a should not
be highlighted as a conflict because ¬q(a) is not existentially entailed.

Using this definition of conflict, every time a user changes the value of a cell,
the logical spreadsheet must compute existential entailment. Moreover, one cell
assignment can cause other cells to violate constraints, meaning that multiple
existential entailment queries must be answered for each cell assignment change.
Thus, it is important that the computation of existential entailment runs effi-
ciently enough for the spreadsheet to provide real-time visual cues to the user.

Our current implementation focuses on the web form application of logical
spreadsheets. It converts a given set of constraints into conjunctive database
queries that when evaluated compute existential entailment. Those queries are
evaluated by the browser each time a cell value is changed using an in memory
database implemented in Javascript. Preliminary testing appears promising both
in ease of implementation and performance.

It is noteworthy that the choice to use FHL as the constraint language was
not made arbitrarily. When compared to datalog¬, FHL is better suited as
the foundation of the constraint language because it can express disjunction2,
whereas datalog¬ cannot. The importance of disjunction for logical spread-
sheets can be seen in two ways.

First, FHL semantics is closer in spirit to a natural formalization of logical
spreadsheets than is datalog¬. From a mathematical perspective, a logical
spreadsheet maps a set of constraints and a partial assignment of cells to the set
of all consistent extensions to that assignment. Similarly, FHL semantics maps
a set of logical sentences to the set of models that satisfy those sentences. Both
map the input to a set of alternatives. In contrast, datalog¬ semantics maps
a set of sentences to a single model—to a single alternative.

Second, one of the features logical spreadsheets support that traditional
spreadsheets do not, bidirectional update, is intimately tied to disjunction. A
simple implication such as cell1(a) ⇐ cell2(a) represents two possibilities: ei-
ther the premises are false or the conclusion is true. For bidirectional update
to be supported, falsifying the conclusion of the implication requires falsifying
the premise, and satisfying the premise requires satisfying the conclusion. These
2 Here we mean true disjunction: in FHL a theory can entail p ∨ q without entailing

either p or q.
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two equally plausible possibilities are represented succinctly by a disjunction:
cell1(a) ∨ ¬cell2(a).

Logical spreadsheets exemplify Collaborative Programming because the in-
structions issued by users can conflict, can be incomplete, and can come from
multiple sources. Collaboration comes about in a variety of ways. In the case
of web forms, the form developers contribute the constraints and the users con-
tribute data. In the case of a standalone application, constraints might originate
from different people, each with expertise in different areas of the problem. Even
if all of the constraints are created by a single individual, that individual might
be collaborating with herself if over time she adds new constraints to the system.
Collaboration breeds conflict, and because FHL, the constraint language, is a
classical logic, the traditional notion of entailment does not support the func-
tionality promised by the logical spreadsheet paradigm; hence, a paraconsistent
entailment relation must be used and implemented efficiently.

4 Use Case: Authorization languages

An active area of research in security centers around logical languages for ex-
pressing authorization policies. An authorization policy says, for example, which
users can access which resources in which ways, e.g. Alice has permission to write
myfile.txt. Such policies are often written by several individuals, each of whom
may want to operate independently of the others. The security systems that
enforce authorization policies require that every request be either allowed or de-
nied. There is no way to simultaneously allow and deny a request, and there is
no way to neither allow nor deny a request. Thus, while authorization policies
are defined in collaborative settings, neither conflicting nor incomplete policies
can be tolerated by security systems. Formally, an authorization policy maps
requests R to either allow or deny3.

R → {allow, deny}

Despite the fact that an authorization policy is developed for a system that
cannot tolerate conflicts or incompleteness, there is no reason to believe that the
people collaboratively defining such a policy will disagree less or know more than
people in another Collaborative Programming setting. Thus, an authorization
language should be able to express conflicts and incompleteness, less people en-
code instructions they do not intend, yet at the same time should hide conflicts
and incompleteness from the security system. Hiding conflicts and incomplete-
ness means that the language should include mechanisms for resolving conflicts
and incompleteness when they occur.

For conflicting authorization policies, where a request is both allowed and
denied, there are at least two options for resolving that conflict. Deny might

3 Depending on the setting, a request may contain a number of properties, e.g. the
user, the resource, the action to be performed on the resource. For simplicity and
generality, we treat a request as an opaque object.
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take precedence over allow, or vice versa. It is important that the form of conflict
resolution chosen is made known to users so that they can predict the results.

In FHL, it is natural to use a single distinguished predicate allow, and when-
ever an authorization request r is made, it is allowed if allow(r) is entailed and
denied if ¬allow(r) is entailed. Conflicts amount to inconsistent theories where
allow(r) and ¬allow(r) are both entailed. Conflict resolution is based on exis-
tential entailment as described in Section 3.

In datalog¬, a single predicate allow is insufficient for expressing conflicts.
The language guarantees that if allow(r) is entailed then ¬allow(r) is not en-
tailed. However, by using two distinguished predicates allow and deny, it is
possible to encode conflicts and incompleteness. For any authorization request
r, an authorization policy could entail allow(r), deny(r), both, or neither. Again,
conflicts can be resolved by giving preference to either allow or deny.

For incomplete authorization policies, where a request is neither allowed nor
denied, there are two separable cases. One form of incompleteness arises because
the policy says nothing about a particular request. Similar to the case of conflict
resolution, this form of incompleteness can be resolved by choosing either to allow
or to deny the request, as the policy makes no commitment whatsoever. The
other type of incompleteness, which is only possible in FHL-based languages,
occurs when a request appears as a disjunctive consequence of the authorization
policy. Resolving this type of incompleteness is more problematic than the first.

For example, consider an authorization policy with two FHL statements:

allow(r1) ∨ allow(r2)
¬allow(r1) ∨ ¬allow(r2).

Together the statements say that either r1 or r2 must be allowed, and the other
must be denied. Arguably, this policy is enforceable: simply make the choice. The
problem is that the user may not be able to predict the result. It is imaginable
that if the policy were written another way, the opposite choice might be made.

The resolution mechanism for disjunctive incompleteness requires making
choices between requests, which is qualitatively different than making a choice
between allow and deny. It is far easier to communicate a tie-breaking mechanism
about allow and deny than about requests; moreover, it is unnatural to treat
some requests differently than others when the authorization policy fails to do
so. Thus, authorization languages should not be able to express disjunction.

While there are fragments of FHL that are guaranteed to be nondisjunctive,
e.g. Horn clauses, datalog¬ has the benefit that it supports negation and lim-
ited recursion, which are difficult to support using nondisjunctive FHL. Thus,
datalog¬ is the better choice for authorization languages.

Formalizing and implementing the conflict and incompleteness resolution
mechanisms for a datalog¬-based language is straightforward. For example,
if the conflict resolution mechanism deems that deny should override allow (a
reasonable choice in the context of security), and policy completion allows all
unspecified requests, the semantics for the authorization language (|=′) would
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be defined as follows, where |= is the usual datalog¬ semantics.

∆ |=′ deny(r) iff ∆ |= deny(r)
∆ |=′ allow(r) iff ∆ 6|= deny(r)

This layered approach to language design has two benefits. The core of the
language (|=) is defined using traditional means and hence can leverage well-
known tools. Those tools can be used to analyze a policy according to |=, identify
conflicts, and inform the authors who contributed the conflicting statements; yet,
at the same time, a security system can use |=′ to make authorization decisions
using a policy without conflicts or incompleteness.

Thus, unlike FHL, which requires nonstandard automated reasoning tools for
handling conflicts, conflict resolution in datalog¬ can be built on top of well-
known techniques. This could explain the popularity of datalog¬ for authoriza-
tion languages in the security literature [7, 2, 12, 17, 3, 13, 1, 6]. The drawback is
that datalog¬ can only express conflicts in settings where all possible conflicts
are known ahead of time. Keywords must be introduced into the language and
built into the algorithms for processing that language.

5 Conclusion

Kowalski is famous for illustrating that logic can be used as a programming
language, the result of which was the Logic Programming paradigm [10]. Today,
the term “Logic Programming” has come to mean a particular type of logic
and automated reasoning, syntactically based on implication and semantically
concerned with negation as failure. Logic Programming today is consistent with
Kowalski’s original vision but is more narrowly defined than he intended.

Logic Programming (in Kowalski’s original intent) is the right choice for
industrial applications only in certain situations. The notion of Collaborative
Programming was developed to explain to non-experts what those situations are
and to reinvigorate Kowalski’s original idea. Other similarly motivated work in-
cludes Golog [11], which includes nondeterministic choice operators, and Partial
Programs [4], which enable programmers to express incomplete instruction sets.

Collaborative Programming differs from similar initiatives because of its com-
mitment to conflicts. Because instruction sets are issued by multiple people, and
people often disagree with one another, a Collaborative Programming language
must allow conflicts to be expressed, simply so that the language is capable
of capturing peoples’ true intentions. Consequently, automated reasoning tools
for processing instruction sets must be aware of and tolerate conflicts. In the
case of classical logic, this requires automated reasoning tools that implement a
paraconsistent entailment relation. In the case of logic programming languages,
it requires making ontological commitments within the language and employing
algorithms that adhere to those commitments. Each language class has strengths
and weaknesses, making the right choice for any particular Collaborative Pro-
gramming application dependent on the demands of that application.
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