
A Small Framework for Proof Checking

Hans de Nivelle and Piotr Witkowski

Institute of Computer Science, University of Wroc law, Poland
nivelle|pwit@ii.uni.wroc.pl

Abstract. We describe a framework with which first order theorem
provers can be used for checking formal proofs. The main aim of the
framework is to take as much advantage as possible from the strength of
first order theorem provers in the formalization of realistic formal proofs.
In order to obtain this, we restricted the use of higher order constructs
to a minimum. In particular, we refrained from λ notation in formulas
and from currying.
The first order prover can be freely chosen. All communication with the
theorem prover uses TPTP syntax.
The system is intended for teaching, for checking mathematical proofs or
correctness proofs of algorithms and also for improving the effectiveness
of theorem provers. In its current set up, the system is not intended for
building large libraries of checked mathematics.

1 Introduction

We describe a framework with which first order theorem provers can be used
for checking formal proofs. The main aim of the framework is to take as much
advantage as possible from the strength of first order theorem provers. In order
to obtain this, we try to stay as close as possible to first order logic. The only
higher order constructs in the logic are second order quantifications. Second order
quantification is strong enough to express induction axioms, and set theoretic
axioms.
We call the formulas that the framework uses weak untyped second order (WUSO)
formulas. They are formally defined in Section 1.1. The system stores formulas
in contexts. A context is essentially a stack of formulas. By specifying operators
that modify contexts, the natural deduction rules →-intro and ∀-intro can be
defined. The complementary rules →-elim and ∀-elim are obtained by explicitly
specifying instances and moduls ponens combinations when a formula is used.
These four rules together specify natural deduction for the (∀,→) fragment of
WUSO formulas.
All other reasoning is done by delegating reasoning tasks to a first order theorem
prover. The theorem prover can be freely chosen by the user. The user can specify
with which parameters the theorem prover has to be called, and how it can be
recognized when the prover has found a proof.
The main aim of this work is to obtain insight into the question how useful first
order theorem provers can be as assistant in the verification of realistic proofs,

56

and to obtain realistic test data for theorem provers. In addition, we intend to
use the system as a tool for teaching logic and verification.

There have been quite a few more attempts to connect first order provers to
interactive provers. (See for example [7], [2]) The main difference with these
approaches is that we try to adopt the calculus as much as possible towards
the theorem prover, instead of plugging the theorem prover into a calculus that
is already fixed. Most interactive theorem provers use a variant of higher order
logic (with currying) and a rich type system. The standard logic operators are
usually defined inside the logic. Translating such formulas into first order logic
is a nontrivial task, We hope that we can avoid most of the translation problems
by using a logic close to the logic of the theorem prover.

In the literature, a lot of attention has been given to the problem of translating
proofs found by a theorem prover back into the calculus of the interactive proof
assistant. (See [8], [1], [5], [6]) Using such a translation, it can be avoided that
the external theorem prover has to be trusted. In the present implementation, we
completely ignore this problem. We acknowledge that this problem is important,
but it is not the aspect that we want to study with the present system. We want
to study the problem of the effectiveness of first order theorem proving. Our
experience (from [1]) is that automated theorem provers are not as effective
in solving real life problems as one would hope. Discussions with developers of
interactive proof checkers confirm this experience. The problem is also mentioned
in [8]. It is our hope that, by taking first order theorem proving into account from
the beginning, a system can be obtained in which first order theorem proving
can be more effective.

Our approach to proof checking is closely related to Mizar [10], but more basic.
Mizar has a rich type system, while we don’t have a type system. Mizar internally
uses a very weak theorem prover, (somewhat described in [11]), which is able to
do some equality reasoning, and some propositional reasoning.

In [9] a proof checking system is described that is in structure somewhat similar
to our current system. Both systems use an external theorem prover for proof
checking. The main difference is that we want to use our system for checking
realistic proofs, while the system of [9] is intended for checking the outputs of
theorem provers. In our system, if one wants to increase reliability, one can use
multiple theorem provers and have each step checked by different provers.

1.1 Weak Untyped Second Order Logic

We define the fragment of weak second order logic used by our system. The
fragment is chosen as a compromise between expressibility on one hand, and
suitability for first order theorem proving on the other hand. In order to obtain
sufficient expressibility, some higher-order features are necessary. In order to
remain close to first order logic, we refrained from λ notation and currying in
formulas. At present, the fragment is untyped, but this can easily be changed
since there are no real obstacles for adding simple types to first order theorem
provers.

57

The fragment is a second order logic, because it is allowed to quantify over
functions and predicates that work on objects. We call the logic fragment weak

second order logic, because second order functions cannot be used as arguments
of other functions or predicates, and because λ notation is not allowed inside
formulas. Although the logic is untyped, we still insist that variables are declared.

Definition 1. A declaration has one of the following two forms:

– A function declaration FUNCTION f:n declares f as a function symbol of

arity n. In case n = 0, the function symbol is a constant.

– A predicate declaration PREDICATE p:n declares p as a predicate with arity

n.

We usually abbreviate FUNCTION f:n to FUNC f:n and PREDICATE p:n to

PRED p:n.

The logic is untyped, and there are no higher-order functions/predicates. The-
fore, it is sufficient to specify the arity of a symbol in order to declare it.

Definition 2. The set of weakly untyped second order (WUSO) formulas is

recursively defined as follows:

– A usual (first order) atom is a WUSO formula.

– ⊥ and ⊤ are WUSO formulas.

– If F is a WUSO formula, then ¬F is a WUSO formula.

– If F1 and F2 are WUSO formulas, then F1 ∧ F2, F1 ∨ F2, F1 → F2, and

F1 ↔ F2 are also WUSO formulas.

– If F is a WUSO formula, D1, . . . , Dn, n > 0, is a sequence of declarations,

then ∀D1, . . . , Dn F and ∃D1, . . . , Dn F are WUSO formulas.

Quantifications of form ∀∃ FUNC x1:0, . . . , xn:0 F are called first order. We

usually abbreviate first order quantifications to ∀∃ x1 · · ·xn F.

A WUSO formula is called schematic first order if it has form ∀D1, . . . , Dn F

or form F, and F contains only first order quantifications.

In addition to satisfying Definition 2, a formula must be well formed, which
means that all symbols occurring in it have to be declared.
Our fragment is a bit stronger than the logic used by Mizar [10], which uses
schematic first order formulas, but we will probably not make use of this fact in
applications. We now give some examples of WUSO formulas:

Example 1. The induction schema for natural numbers:

∀ PRED p:1 p(0) ∧ [∀ FUNC n:0 N(n) → P (n) → P (succ(n))]

→ ∀ FUNC m:0 N(m) → P (m).

The axiom of separation (Aussonderungsaxiom):

∀ PRED p:1 ∀ FUNC x:0 ∃ FUNC y:0

(∀ FUNC α:0 α ∈ y ↔ α ∈ x ∧ p(α)).

58

1.2 Contexts

The system collects all its assumptions, declarations and proven theorems in a
context.

Definition 3. A context Γ is a sequence of form Γ1, . . . , Γp, p ≥ 0. Each Γi

either has form Ci or form Li:Ci. Each Ci in turn must have one of the forms

listed below. Each Li, when it is present, is a label. We explain in Definition 4

under which conditions Ci can have a label. Here we list the possible forms of

the Ci.

– A declaration of form FUNC f:n or PRED p:n.

– A definition of form FUNC f := λx1 · · ·xn t, or of form

PRED p := λx1 · · ·xn F.

– An indirect function definition of form FUNC f := λx1 · · ·xn y F. The

other definitions are called direct.
– An assumption F.

– A proven formula F.

In the list, F denotes a WUSO formula, t a first order term.

Note that λ abstraction cannot be used in formulas, only in definitions and in
substitutions. Because abstraction is possible only on 0-arity function variables,
there is no need to include type information in an abstraction.
An indirect function definition defines an n-ary function through an (n + 1)-
ary predicate. In order to be accepted by the system, the user has to provide
proofs of ∀x1 · · ·xn∃y F (x1, . . . , xn, y) and of ∀x1 · · ·xn∀y1y2 F (x1, . . . , xn, y1)∧
F (x1, . . . , xn, y2) → y1 = y2.

Definition 4. Most of the elements Ci that can occur in a context have a mean-

ing that can be expressed by a formula. We call this formula the characteristic
formula of Ci. It is defined as follows:

– A declaration of form FUNC f:n or PRED p:n has no characteristic for-

mula.
– If Ci has form FUNC f := λx1 · · ·xn t, then the characteristic formula

equals

∀x1 · · ·xn f(x1, . . . , xn) = t[x1, . . . , xn].

The characteristic formula of PRED p := λx1 · · ·xn F equals

∀x1 · · ·xn p(x1, . . . , xn) ↔ F [x1, . . . , xn].

– The characteristic formula of an indirect function definition FUNC f :=
λx1 · · ·xn y F equals

∀x1 · · ·xn y f(x1, . . . , xn) = y ↔ F [x1, . . . , xn, y].

– The characteristic formula of a formula assumption F equals F.

– The characteristic formula of a proven formula F equals F.

A context element Ci can have a label exactly when it has a characteristic for-

mula. The purpose of the label is to assign a name to the characteristic formula.

59

1.3 Forward Reasoning

The calculus has three mechanisms for forward reasoning. These are instanti-
ation, modus ponens and first order reasoning. There is also a mechanism for
conditional reasoning, which will be discussed in the next section. The reason-
ing mechanisms (already without first order theorem proving) cover the usual
natural deduction rules for ∀ and → .

Instantiation is the following rule: From ∀x F derive F [x := t]. Modus ponens
is the rule: From A and A → B derive B. Instantiation and modus ponens are
handled together in references. References are used in first order reasoning steps
for referring back to formulas that have been proven before. In the references,
one can specify which instantiations have to be used, and how modus ponens
must be applied.
First-order reasoning is delegated to a first order theorem prover, which can be
chosen by the user. Every time a first order reasoning step has to be made, the
system prepares an input file in TPTP-syntax, starts the theorem prover, waits
for a result, and checks the outputfile for a characteristic string that indicates
that a proof was found. At this moment, we do not attempt to check the proof
that was found by the theorem prover. The system is designed such a way that
it is possible to run each goal on more than one theorem prover, in case one
wants to avoid trusting a single theorem prover.
For each first order reasoning step, the user has to indicate its result, and he
has to indicate from which premisses he expects the result to be provable. If
the proof succeeds, the new formula will be added to the context as a proven
formula. The user can assign a label to the formula. The general schema is given
in Section 2.1. Although it is a bit more work for the user, listing the premisses
avoids that the theorem prover has to be called with large input sets.
In order to prove a new formula using a context Γ, every characteristic formula of
an element of Γ can be used. In order to refer to the characteristic formulas, one
can make use of the labels. Additionally, indirect references of form ’3 formulas
after label X’ , ’2 formulas before label X’, ’the last formula’, or ’the second last
formula’ are allowed.

Definition 5. Given a context Γ, we recursively define the set of references and

the formulas that they refer to:

– A label L is a reference. In case Γ contains an element with label L, the

reference refers to the characteristic formula of L.

– An expression of form L + i or L − i is a reference. In case Γ contains an

element with label L, the reference refers to the i-th characteristic formula

after (or before) L. The references L+0 and L−0 refer to the same formula

as L.

– An expression of form −i is a reference. In this case −i refers to the i-th

characteristic formula from the end of Γ. The last characteristic formula in

Γ can be referred to by −1.

– If R is a reference, then RΘ is a reference. Θ must a be a substitution of

form

{ FUNC f1 := λx1t1, . . . , FUNC fm := λxmtm,

60

PRED p1 := λy

1
F1, . . . , PRED pn := λynFn }.

If R refers to a formula of form

∀ FUNC f1 · · · FUNC fm PRED p1 · · · PRED pn F,

(possibly after reshuffling top level ∀ quantifiers), then RΘ refers to FΘ.

– If R1 and R2 are references, then MP(R1, R2) is also a reference. If R1 refers

to a formula A, and R2 refers to a formula of form A → B, then MP(R1, R2)
refers to formula B.

The reader may think that MP is superfluous because it is a first order rule.
The reason that we added it separately is the fact that, although MP is a first
order rule, it can work on formulas that are not first order. When there is no
ambiguity, we will omit the type indicators FUNC and PRED in substitutions.

Example 2. In Example 1, the induction scheme can be instantiated by
{p := λx x + 0 = x}. The result is

0 + 0 = 0 ∧ [∀ FUNC n:0 N(n) → n + 0 = n → succ(n) + 0 = succ(n)] →

∀ FUNC m:0 N(m) → m + 0 = m.

The separation axiom can be instantiated by { p := λx interesting(x) }. The
result is

∀ FUNC x:0 ∃ FUNC y:0

∀ FUNC α:0 α ∈ y ↔ α ∈ x ∧ interesting(α).

It is also possible to instantiate with { p := λx ¬interesting(x), x := λ nat }.
The result is

∃ FUNC y:0 ∀ FUNC α:0 α ∈ y ↔ α ∈ nat ∧ ¬interesting(α).

(The last set y can be proven empty by a simple induction argument)

1.4 Conditional Reasoning

Conditional reasoning handles the introduction and dropping of assumptions,
and the introduction and dropping of eigenvariables. When an assumption A is
dropped, every formula F that was proven in the context of A, has to be replaced
by A → F. When an eigenvariable x is dropped, every formula F that is proven
in the context of x, has to be replaced by ∀x A.

In our system, conditional reasoning is handled by modifications on the context
Γ. Suppose that Γ has form Γ1, C, Γ2, and that we want to drop C. We specify
for each element in Γ2, how it will be modified. It is not always possible to define
a meaningful effect on each element of Γ2, but we try to be as general as possible.
When for some element of Γ2, no meaningful effect can be defined, it is forbidden
to drop C.

61

– If C is a declaration of form FUNC c:0, then Γ2 must consist of definitions
and proven formulas only. C is removed by the following procedure: As long
as C is not the last element of Γ2, the complete context can be written in the
form Γ1, C, D, ∆. We will exchange C with D. During the replacement, D is
modified, and possibly also ∆. The exchanges are repeated until C reaches
the end of Γ2. Then it can be removed without consequences.
Write Γ2 in the form C, D, ∆, and assume that D is a definition with form
FUNC f := λx1 · · ·xn t.

Then D is replaced by FUNC f

′ := λc x1 · · ·xn t, and ∆ is replaced by
∆{ f := λx1 · · ·xn f

′(c, x1, . . . , xn) }.
If D has form PRED p := λx1 · · ·xn F then it is treated analogeously. D

is replaced by PRED p

′ := λc x1 · · ·xn F, and ∆ is replaced by ∆{ p :=
λx1 · · ·xn p

′(c, x1, . . . , xn) }.
Indirect function definitions are dealt with in the same way. We omit the
details.
If D is a proven formula F, then it is replaced by ∀FUNC c:0 F, and ∆ is
not changed.

– If C is a declaration of form FUNC f:n with n 6= 0, or of form PRED p:n,

then Γ2 must consist only of proven formulas. Each proven formula F is
replaced by ∀ FUNC f:n F. (or by ∀ PRED p:n F)

– If C is a direct function definition of form FUNC f:n := λx1 · · ·xn t, then
Γ2 is replaced by Γ2 { f := λx1 · · ·xn t }.
Direct predicate definitions are substituted away in the same way.

– If C is an indirect function definition, it cannot be dropped, because we have
no way of substituting it away.

– If C is a formula assumption of form F, then Γ2 must consist of proven
formulas F1, . . . , Fn only. Each formula Fi is replaced by F → Fi.

We think that most of the modifications on Γ2 are more or less obvious, except for
the first case, where a 0-arity function variable is dropped. We give an example
of this situation:

Example 3. Consider the context

FUNC n:0,

PRED E := N(n) ∧ ∃ FUNC m:0 N(m) ∧ m + m = n,

PROVEN E → ∃ FUNC m:0 d(m) = n.

The propositional variable E means ’n is even’, N(n) denotes ’n is a natural
number’, and d denotes the doubling function λx x + x.

Suppose that we want to drop the first assumption FUNC n:0. Then the defini-
tion and the proven formula have to be modified. First, the definition PRED E :=
N(n)∧∃ FUNC m:0 N(m)∧m+m = n is replaced by PRED E

′ := λn N(n)∧
∃ FUNC m:0 N(m) ∧ m + m = n, and in the proven formula, the substitution
{ E := E

′(n) } is made.
After that, the formula E

′(n) → ∃ FUNC m:0 d(m) = n is replaced by
∀ FUNC n:0 E

′(n) → ∃ FUNC m:0 d(m) = n.

62

The resulting context is

PRED E

′ := λn N(n) ∧ ∃ FUNC m:0 N(m) ∧ m + m = n,

∀ FUNC n:0 E

′(n) → ∃ FUNC m:0 d(m) = n.

A practical implementation will try to reuse the identifier E, instead of replac-
ing E by E

′
. Note that if one would use the Curry-Howard isomorphism, the

two types of modifications, (adding a parameter to a definition, and adding a
universal quantifier to a proven formula) would be the same, because under the
Curry-Howard isomorphism, definitions and proofs of theorems are the same.

2 Proof Structure

The input to the system consists of a file containing the proof. The system is
a batch system. It reads the proof, checks the steps in it, and reports errors.
While reading the proof, the system maintains a context Γ, which is updated
after every proof step. We list some of the constructions that can occur in proofs.
The FROM-rule handles the forward reasoning by the external theorem prover.
Most of the other reasoning rules are straightforwardly based on the context
modifications that we defined in Section 1.4.

2.1 From

FROM is the rule for first order forward reasoning, it is analogeous to the by rule
of Mizar. It has form:

PROVE L:F FROM R1, . . . , Rn.

The R1, . . . , Rn must be references that refer to a first order formula. F must be
a first order formula. The system calls the external theorem prover which tries
to prove F from the formulas denoted by the first order references R1, . . . , Rn.

If it succeeds, F is added to the context as a proven formula. The label L is
optional. If a label is present, F will receive label L.

2.2 Permanent Predicate/Function Definitions

A function or predicate definition has one of the following three forms:

DEFINE FUNC D INDIRECTLY BY L : E

EXISTENCE R1, . . . , Rm UNIQUENESS S1, . . . , Sn.

DEFINE FUNC D BY L : E, or

DEFINE PRED D BY L : E.

63

D is the identifier being defined. L is a optional label, that will be used for the
characteristic formula. E is an expression of form λx1 · · ·xn y F, in which F is
a formula or a term, dependent on the type of the definition.

In case of an indirect definition, R1, . . . , Rm is a list of references from which the
theorem prover must be able to prove

∀x1 · · ·xn∃y F [x1, . . . , xn, y].

S1, . . . , Sn is a list of references from which the theorem prover must be able to
prove

∀x1 · · ·xn∀y1y2 F [x1, . . . , xn, y1] ∧ F [x1, . . . , xn, y2] → y1 = y2.

2.3 Local Assumptions

A local assumption block has form

ASSUME D1, . . . , Dn IN P1, . . . , Pm END .

Each Di has one of the following five forms:

1. PREDICATE p:n,

2. PREDICATE p := λx1 · · ·xn F,

3. FUNCTION f:n,

4. FUNCTION f := λx1 · · ·xn t,

5. FORMULA F, in which F is a WUSO formula.

The sequence P1, . . . , Pm must be a proof by itself. The system first adds the
assumptions D1, . . . , Dn to the context. After that, it reads the proof P1, . . . , Pm,

which can make further additions to the context. When reading of P1, . . . , Pm is
complete, the assumptions D1, . . . , Dn are dropped from the context in the order
Dn, Dn−1, . . . , D1. The additions, made by the proof P1, . . . , Pm, are modified
according to the rules of Section 1.4.

2.4 Permanent Assumptions

A permanent assumption block has form

ASSUME D1, . . . , Dn.

Each Di must have one of the following three forms:

1. PREDICATE p:n,

2. FUNCTION f:n,

3. FORMULA F.

64

3 Conclusions and Future Work

The system is only intended as a first attempt. Probably the most important
modification that has to be made, is to add a simple type system. Simple types
are very easy to implement in resolution or tableaux. Unfortunately, still none
of the existing theorem provers supports simple types. We will extend the next
version of Geo with simple types. We also plan to redo the verifications of [3]
and of [4] in our system.
The system can be obtained from the homepage of the second author. If the
system turns out succesful enough, and stabilizes, we will rewrite it with a trusted
code base.

References

1. Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated proof construction
in type theory using resolution. Journal of Automated Reasoning, 29(3-4):253–275,
December 2002.

2. Jean-François Couchot and Stéphane Lescuyer. Handling polymorphism in auto-
mated deduction. In Frank Pfenning, editor, Automated Deduction - CADE-21,
volume 4603 of LNAI, pages 263–278. Springer Verlag, 2007.

3. Hans de Nivelle and Ruzica Piskac. Verification of an off-line checker for priority-
queues. In Peter H. Schmitt, editor, Proceedings of the 3d IEEE International
Conference on Software Engineering and Formal Methods, pages 210–219, Koblenz,
September 2005. IEEE Computer Society Press.

4. Hans de Nivelle and various authors. Verification of the unification algorithm.
www.ii.uni.wroc.pl/~nivelle/teaching/interactive2007/index.html.

5. Joe Hurd. Integrating gandalf and hol. In Theorem Proving in Higher Order Logics,
volume 1690 of LNCS, pages 311–321. Springer Verlag, 1999.

6. Andreas Meier. TRAMP: Transformation of machine-found proofs into natural
deduction proofs at the assertion level. In D. McAllester, editor, Proceedings of
the 17th Conference on Automated Deduction (CADE–17), volume 1831 of LNAI,
pages 460–464, Pittsburgh, USA, 2000. Springer Verlag, Berlin, Germany.

7. Jia Meng and Larry Paulson. Translating higher-order problems to first-order
clauses. In Geoff Sutcliffe, Renate Schmidt, and Stephan Schulz, editors, ESCoR
(CEUR Workshop Proceedings), volume 192, pages 70–80, 2006.

8. Jia Meng, Claire Quigley, and Lawrence Paulson. Automation for interactive proof:
First prototype. Information and Computation, 204(10):1575–1596, 2006.

9. Geoff Sutcliffe. Semantic derivation verification: Techniques and implementation.
International Journal on Artificial Intelligence Tools, 15(6):1053–1070, 2006.

10. Freek Wiedijk. Writing a Mizar article in nine easy steps. can be obtained from
homepage of author.

11. Freek Wiedijk and Andrzej Trybulec. Checker. http://www.cs.ru.nl/~freek/ .

65

