
Contextual Rewriting in SpassChristoph Weidenbah and Patrik WishnewskiMax-Plank-Institut f�ur Informatik,Campus E 1.4, Saarbr�uken, Germany,{weidenb,wishnew}�mpi-inf.mpg.deAbstrat. Sophistiated redutions are an important means to ahieveprogress in automated theorem proving. We onsider the powerful re-dution rule Contextual Rewriting in the ontext of the superpositionalulus. If the rule is onsidered in its abstrat, most general form, theappliability of ontextual rewriting is not deidable. We develop a de-idable instane of the general ontextual rewriting rule and implementit in Spass. An experimental evaluation on the TPTP gives �rst insightsinto the appliation potential of the rule instane.1 IntrodutionIn the superposition ontext, �rst-order theorem proving with equality dealswith the problem of showing unsatis�ability of a (�nite) set N of lauses. Thisproblem is well-known to be undeidable, in general. It is semi-deidable in thesense that superposition is refutationally omplete. The superposition alulus isomposed of inferene and redution rules. Inferene rules generate new lausesfrom N whereas redution rules delete lauses from N or transform them intosimpler ones. If, in partiular, powerful redution rules are available, deidabilityof ertain sublasses of �rst-order logi an be shown and explored in pratie [1{4℄. Hene, sophistiated redutions are an important means for progress in auto-mated theorem proving. In this paper the redution rule Contextual Rewriting isonsidered in the ontext of the superposition alulus [5℄. Contextual rewritingextends rewriting with unit equations to rewriting with full lauses ontaininga positive orientable equation. In order to apply suh a lause for rewriting, allother literals of that lause have to be entailed by the ontext of the lause tobe rewritten and potentially further lauses from a given lause set. Hene, thename ontextual rewriting.For a �rst, simpli�ed example onsider the two lausesP (x)! f(x) � x S(g(a)); a � b; P (b)! R(f(a))where we write lauses in impliation form [6℄. Now in order to rewrite R(f(a))in the seond lause to R(a) using the equation f(x) � x of the �rst lausewith mather � = fx 7! ag, we have to show that P (x)� holds in the ontextof the seond lause S(g(a)); a � b; P (b), i.e., j= S(g(a)); a � b; P (b) ! P (x)�.This obviously holds, so we an replae S(g(a)); a � b; P (b) ! R(f(a)) by
115

S(g(a)); a � b; P (b) ! R(a) via a ontextual rewriting appliation of P (x) !f(x) � x.More general, ontextual rewriting is the following rule:R D = �1 ! �1; s � t C = (�2 ! �2)[u[s�℄ � v℄�1 ! �1; s � t(�2 ! �2)[u[t�℄ � v℄where (�2 ! �2)[u[s�℄ � v℄ expresses that u[s�℄ � v is an atom ourring in �2or �2 and u ontains the subterm s�. Contextual rewriting redues the subterms� of u to t� if, among others, the following onditions are satis�edNC j= �2 ! A for all A in �1�NC j= A! �2 for all A in �1�where N is the urrent lause set, C;D 2 N , and NC denotes the set of lausesfrom N smaller than C with respet to a redution ordering �, total on groundterms. Redution rules are labeled with anR and are meant to replae the lausesabove the bar by the lauses below the bar. Both side onditions are undeidable,in general. Therefore, in order to make the rule appliable in pratie, it mustbe instantiated suh that eventually these two onditions beome e�etive. Thisis the topi of this paper.For a more sophistiated, further motivating example, onsider the follow-ing lause set. It an be �nitely saturated using ontextual rewriting but notsolely with less sophistiated redution mehanisms suh as unit rewriting orsubsumption.Let i, q, r, be funtions, a, b be onstants and x1, x2, x3, x4, y1 be variablesand let r � � q � i � b � a � nil using the KBO with weight 1 for all funtionsymbols and variables.1: ! q(nil) � b2: i(x1) � b; q(y1) � b ! q(r(x1; y1)) � b3: i(x1) � b; q(y1) � b ! q((x1; y1)) � a4: i(x1) � b; q(y1) � b; i(x3) � b !r(x3; (x1; y1)) � (x1; r(x3; y1))5: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a !y1 � nil; q((x1; (x2; r(x3; y1)))) � bIf we apply superposition right between lause 4 and lause 5 on the termq((x1; (x2; r(x3; y1)))) we obtain the lause6: i(x1) � b; i(x3) � b; i(x2) � b; i(x4) � b; q(y1) � b; q((x4; y1)) � b; b � a !(x4; y1) � nil; q((x1; (x2; (x4; r(x3; y1))))) � bwhih is larger (both in the ordering and the number of symbols) thanlause 5. Applying superposition between lause 4 and lause 6 yields an evenlarger lause. Repeating the superposition inferene between lause 4 and theselauses reates larger and larger lauses. Hene, the exhaustive appliation ofthe superposition alulus does not terminate on this lause set. Furthermore,none of the redutions whih have been implemented so far in Spass and in any
116

other system we are aware of, an redue lause 5.1 However, with ontextualrewriting we an redue lause 5 using lause 3 to7: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! y1 � nil; a � b.Clause 7 is a tautology and an be redued to true. Then the set is saturatedsine no further superposition inferene is possible. In order to apply ontextualrewriting we have to verify the side onditionsNC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � band NC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a!q((x2; r(x3; y1))) � b.The �rst ondition holds trivially and the latter follows from lause 3 andlause 2.In this work we presents an instane of ontextual rewriting that reduesthe above lause set, is deidable and feasible for pratial problem instanes.We tested our implementation on all problems of the TPTP library version3.2.0 [7℄. In Setion 2 we develop a pratially useful instane of ontextualrewriting alled Approximated Contextual Rewriting. Setion 3 presents the im-plementation of approximated ontextual rewriting in Spass. The �nal setiondisusses experimental results.2 Contextual RewritingWe onsider �rst-order logi with equality using notation from [6℄. We writelauses in the form � ! � where � and � are multi-sets of atoms. The atomsof � denote negative literals while the atoms of � denote the positive literals. Asubstitution � is a mapping from the set of variables to the set of terms suh thatx� 6= x for only �nitely many variables x. The redution rules, in partiular theontextual rewriting rule, are de�ned with respet to a well-founded redutionordering � on terms that is total on ground terms. This ordering is then liftedto literals and lauses in the usual way [6℄. A term s is alled stritly maximalin � ! � if there is no di�erent ourrene of a term in � ! � that is greateror equal than s with respet to �.Contextual rewriting is a sophistiated redution rule originally introdued in[5℄ that generalizes unit rewriting and non-unit rewriting [6℄. It is an instane ofthe standard redundany notion of superposition. A lause C is alled redundantin a lause set N if there exist lauses C1; : : : ; Cn 2 N with Ci � C for i 2f1; : : : ; ng, written Ci 2 NC , suh that C1; : : : ; Cn j= C. The lause C is impliedby smaller lauses from N . This ondition an atually be re�ned to groundingsubstitutions: C is redundant if for all grounding substitutions � for C thereare ground instanes Ci�i of lauses Ci 2 N suh that Ci�i � C�, writtenCi�i 2 NC�, and C1�1; : : : ; Cn�n j= C�. Redution rules are marked with an Rand their appliation replaes the lauses above the bar with the lauses belowthe bar.1 Atually, the SATURATE system ontained the �rst implementation of ontextualrewriting, but it never matured to be widely usable.
117

De�nition 1 (Contextual Rewriting [5℄). Let N be a lause set, C;D 2 N ,� be a substitution then the redutionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following onditions are satis�ed1. s� � t�2. C � D�3. NC j= �2 ! A for all A in �1�4. NC j= A! �2 for all A in �1�are alled ontextual rewriting.Due to ondition 1-1 and ondition 1-2 we have C 00 � C and D� � C.Then from ondition 1-3 and ondition 1-4 we obtain that there exist lausesC1; : : : ; Cn 2 NC and C1; : : : ; Cn; C 00; D� j= C. Therefore, the lause C is redun-dant in N [fC 00g and an be eliminated. The rule is an instane of the abstratsuperposition redundany notion.The side onditions 1-3 and 1-4 having both the form NC j= � ! � areundeidable, in general. There are two soures for the undeidability. First, thereare in�nitely possible grounding substitutions �0 for the lause � ! � and C.Seond, for a given �0 there may be in�nitely many Æ with CiÆ � C�0, Ci 2 N .Therefore, in the following in order to e�etively deide the side onditions, wewill �x one �0 and restrit the number of onsidered substitutions Æ yielding adeidable instane of ontextual rewriting.First, NC j= � ! � is equivalent to NC[f9x::(� ! �)g j= ?. The existen-tial quanti�er an be eliminated by Skolemization yielding a Skolem substitution� that maps eah variable out of x to a new Skolem onstant. Consequently, set-ting �0 to � yields the instane NC j= (� ! �)� , where (� ! �)� is ground.Still there may exist in�nitely many Æ with CiÆ � C� , Ci 2 N and C� may stillontain variables.Therefore, we restrit Æ to those grounding substitutions that map variablesto terms only ourring in C� or D�� where we additionally assume that �is also grounding for C and D�, i.e., it maps any variable ourring in C orD� to an arbitrary fresh Skolem onstant. Let ND��C� be the set of all ground in-stanes of lauses from N smaller than C� obtained by instantiation with groundterms from D��;C� . Then ND��C� is �nite and ND��C� � NC� . Consequently,ND��C� j= (� ! �)� is a suÆient ground approximation of NC j= � ! �. Even
118

though this is a deidable approximation of the original problem the set ND��C� isexponentially larger than N , in general. Therefore, we representND��C� impliitlyby approximating ND��C� j= (� ! �)� by the appliation of a redution alulus(� ! �)� `Red >. The redution alulus `Red is omposed of a set of redutionrules ontaining tautology redution, forward subsumption, obvious redution anda partiular instane of ontextual rewriting alled reursive ontextual groundrewriting de�ned below. Tautology redution redues syntati and semantitautologies to true whereas forward subsumption redues subsumed lauses totrue. Obvious redution eliminates trivial literals [6℄.The redution alulus `Red only needs to redue ground lauses. There-fore, the following de�nition introdues an instane of ontextual rewriting onlyworking on ground lauses. Further, it adapts ontextual rewriting suh that itimpliitly onsiders lauses from ND��C� .De�nition 2 (Reursive Contextual Ground Rewriting). If N is a lauseset, D 2 N , C 0 ground, � a substitution then the redutionR D = �1 ! �1; s � t C 0 = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C 0 = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following onditions are satis�ed1. s� is a stritly maximal term in D�2. u[s�℄ � v � s� � t�3. vars(s) � vars(D)4. (�2 ! A) `Red > for all A in �1�5. (A! �2) `Red > for all A in �1�is alled reursive ontextual ground rewriting.Condition 2-1 and ondition 2-2 ensure the ordering restritions requiredby ontextual rewriting. Condition 2-3 implies that D� is ground. A lause Dmeeting ondition 2-1 and ondition 2-3 is alled strongly universally redutive.Condition 2-4 and ondition 2-5 reursively apply the redution alulus.The redution alulus `Red is terminating sine C 0 is redued to a smallerground lause. As a onsequene, also the redution relation `Red is terminating.The approximated ontextual rewriting rule eventually beomes the below rule.De�nition 3 (Approximated Contextual Rewriting). Let N be a lauseset, C;D 2 N , � be a substitution then the redutions
119

R D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following onditions are satis�ed1. s� � t�2. C � D�3. � maps all variables from C;D� to fresh Skolem onstants4. (�2 ! A)� `Red > for all A in �1�5. (A! �2)� `Red > for all A in �1�are alled approximated ontextual rewriting.Note that unit rewriting and non-unit rewriting [6℄ are also instanes of theapproximated ontextual rewriting rule. Note further that the onditions for theapproximated ontextual rewriting rule are weaker ompared to the reursiveontextual ground rewriting rule: the right premise needs not to be ground andthe equation s � t needs not to be maximal in the �rst premise. Approximatedontextual rewriting uses reursive ontextual ground rewriting to e�etivelydeide the side onditions.3 ImplementationThe implementation of Spass [6℄ fouses on a sophistiated redution mahinery.This mahinery ompletely interredues all lauses as it performs forward redu-tion and bakward redution whenever a lause is newly generated or modi�ed.Forward redution redues the newly generated lause using the previously gen-erated lauses and bakward rewriting redues the previously generated lauseswith the new one.The integration of ontextual rewriting into this mahinery onsists of twosteps. First, the searh for appropriate ontextual rewrite appliation andidatesis analogous to the ase of unit rewriting and non-unit rewriting. In addition,the side onditions of ontextual rewriting have to be heked. Finding appro-priate ontextual rewrite appliation andidates an be solved by standard termindexing [8℄. This funtionality has already been implemented into Spass viasubstitution trees [6, 9℄.Seond, validating the side onditions of ontextual rewriting requires ane�etive implementation of the redution alulus `Red. First of all, it is tooostly to expliitly ompute the Skolem substitution � for eah lause � !
120

ReursiveValidityChek(CLAUSE C, CLAUSE SET N);1 Rewritten=TRUE;2 while Rewritten do3 Rewritten=FALSE;4 if IsEmpty(C) then return FALSE ;5 if IsTautology(C) then return TRUE ;6 if ForwardSubsumption(C, N) then return TRUE ;7 if ObviousRedution(C) then Rewritten=TRUE;8 if ReursiveContextualGroundRewriting(C, N) then9 Rewritten=TRUE ;end10 return FALSE11 Algorithm 1: ReursiveValidityChek� whih the redution alulus onsiders for ontextual rewriting. Applying� expliitly requires to alloate memory for the new onstants and the newlause and it requires additional omputations to build the lause. Beause ofthe reursive struture of the redution alulus this is not feasible. Therefore,the idea is to simply treat variables as onstants for this ase. We adapt theordering modules (KBO, RPOS) suh that they an treat variables as onstants.Sine variables are not ontained in the preedene we have to de�ne an orderingon them. In Spass variables are represented by integers whih impliitly givesan ordering on variables. Whenever we onsider variables to be onstants weassume them to have a lower preedene than any other symbol of the signature.Comparisons between variables are performed on the bases of their integer value.As a result, the implementation provides a method for applying � to a lause� ! � without any omputation or memory alloation.The omposition of the redution alulus `Red to an atual deision proe-dure is depited in Algorithm 1. The algorithm uses tautology deletion, forwardsubsumption and obvious redutions from the redution proedure of Spass. Theproedures have to work with respet to the modi�ed, above explained, order-ings. Besides of this the implementation of these redutions remains unhanged.Algorithm 1 expets as input a lause C and a lause set N and redues Cwith respet toN in the main loop. IsEmpty(C) heks whether the given lauseis the empty lause, IsTautology(C) heks whether C is either a syntati or asemanti tautology. ForwardSubsumption(C, N) heks whether C is alreadysubsumed by lauses from N and ObviousRedution(C) removes dupliatedliterals and trivial equations from a lause. Further details an be found in theSpass Handbook [10℄.ReursiveContextualGroundRewriting(C, N), depited in Algorithm 2,subsumes unit and non-unit rewriting and implements reursive ontextual groundrewriting. The variables ourring in C are interpreted as onstants in the aboveexplained sense. The all to generalSDT (N; u0) returns the set of generalizationsG from N of u0 and the respetive mather �. Then the proedure omputes foreah of the generalizations the literals and the lauses where they our resulting
121

ReursiveContextualGroundRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 foreah (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 foreah (s � t) 2 Lits do5 D = LiteralOwningClause(s � t);6 if (vars(s) � vars(D) ^7 u[s�℄ � v � s� � t�8 s� stritly maximal term in D� ^9 8A 2 Ante(D�) ReursiveValidityChek(� ! A) ^10 8A 2 Su(D�) ReursiveValidityChek(A! �)) then11 return C[u[t�℄ � v℄;12 end13 end14 end15 Algorithm 2: ReursiveContextualGroundRewritingin the ontextual rewrite andidates. The andidate lauses are then heked forthe non-reursive side onditions of ontextual rewriting. If these hold, Reur-siveContextualGroundRewriting builds the subproblems and reursivelyalls ReursiveValidityChek.The implementation of approximated ontextual rewriting is analogous to theimplementation of reursive ontextual ground rewriting. The di�erene is thatthe input lause C is not interpreted as ground and the loal side onditions(line 7 - line 9) are hanged with respet to the de�nition of approximatedontextual rewriting.4 Results4.1 Results on the TPTPThe TPTP 3.2.0 [7℄ is a library onsisting of 8984 problems for automatedtheorem proving systems. We ompared the Spass version 3.1 that is version3.0 extended by some bug �xes, ontaining our implementation of ontextualrewriting to Spass version 3.1 without ontextual rewriting.Table 1 depits the results. We ompare two runs of Spass with a ref-erene run. All runs were performed with Spass options set to -RFRew=4-RBRew=2 -RTaut=2 on Opteron nodes running at speed of 2.4 GHz equippedwith 4 GB RAM for eah node. For the referene run we let Spass run on theTPTP with ontextual rewriting turned o� and a time limit of 300 seonds.The �rst run of Spass with ontextual rewriting ativated and a 300 seondstime bound found 77 additional proofs and lost 151 proofs ompared to the runwith ontextual rewriting disabled. There were no signi�ant di�erenes amongthe versions on satis�able problems. The seond run of Spass with ontextual
122

Time Won Lost Deeleration CoeÆient Solved Open Problems300 77 151 1.46 2600 122 133 1.62 5Table 1. Forward ontextual rewritingrewriting and a 600 seonds time bound found 122 additional proofs and lost 133proofs ompared to the run with ontextual rewriting disabled. Additionally, weomputed the average running time of the referene run and eah of the othertwo runs. We onsidered only those ases where both the referene run and therespetive test run terminated and the version with ontextual rewriting took atleast 10 seonds. The running time slows down on the average at a oeÆient of1.46 for the 300 seonds run and at a oeÆient of 1.62 for the 600 seonds run.The problems where Spass with ontextual rewriting found a proof and thereferene run did not were mostly problems with a high TPTP diÆulty rating.In the run with 300 seonds our instanes even terminated on two problems withrating 1:00 and with 600 seonds on �ve problems with rating 1:00 meaningthat no system has been able to solve these problems so far. The problems areSWC308+1, SWC335+1, in the 300 seonds time bound and additionally in the600 seonds time bound SWC329+1, SWC342+1, SWC345+1. All proofs wereheked by the Spass proof heker.It was both a surprise to us that the ontextual rewriting version did notimprove on satis�able problems and that it lost so many unsatis�able problems.For the satis�able problems this is simply due to the fat that the TPTP doesnot ontain suitable problems. For the unsatis�able ones we inspeted some indetail and �gured out that the atual proof found by the standard version gotlost through a ontextual rewriting appliation. This is not a new phenomenon,however, it is surprising that it ours so often on the TPTP. We will furtherdig into this hoping to �nd further insight.4.2 Appliation to the Example from the IntrodutionIn this part we depit the appliation of approximated reursive ontextualrewriting on the introdutory example in detail. Therewith, we show that super-position together with our instane of ontextual rewriting terminates on thisexample. Spass with ontextual rewriting is able to saturate the lause set fromsetion 1 whereas Spass without ontextual rewriting is not. Reall that we anredue lause 5 with lause 3 using ontextual rewriting if the side onditionsare ful�lled. The ground lauses8 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � b9 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! q((x2; r(x3; y1))) � bmust be entailed by lauses from NC . Clause 8 is a tautology whereas lause 9an be rewritten with lause 3 to10: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! a � b
123

using ontextual rewriting if in addition the lauses11: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! i(x2) � b12: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! q(r(x3; y1)))) � bare also entailed by lauses from NC . Clause 11 is a syntati tautology andlause 12 is subsumed by lause 2.5 SummaryIn summary, ontextual rewriting is ostly but it helps solving diÆult problems.Our urrent implementation o�ers reasonable room for improvement. For exam-ple, in Spass, ontextual rewriting is implemented independently from unit andnon-unit rewriting suh that in ase of non-appliability of the rule, the sameheks and indexing queries are repeated.For subsumption nie �lters are known to detet non-appliability. It wouldbe worthwhile to searh for suh �lters for ontextual rewriting. Eventually, weneed to better understand why we lost surprisingly many problems from theTPTP. One possible answer ould be that the standard Spass heuristis for in-ferene seletion don't work well anymore with ontextual rewriting. The Spassversion desribed in this paper and used for the experiments an be obtainedfrom the Spass homepage (http://spass-prover.org/) following the proto-type link.Referenes1. Bahmair, L., Ganzinger, H., Waldmann, U.: Superposition with simpli�ation asa deision proedure for the monadi lass with equality. In: Computational Logiand Proof Theory. Volume 713 of LNCS. (1993) 83{962. Hustadt, U., Shmidt, R.A., Georgieva, L.: A survey of deidable �rst-order frag-ments and desription logis. Journal of Relational Methods in Computer Siene1 (2004) 251{2763. Jaquemard, F., Meyer, C., Weidenbah, C.: Uni�ation in extensions of shallowequational theories. In: Proeedings of RTA-98. Volume 1379 of LNCS., Springer(1998) 76{904. Ganzinger, H., de Nivelle, H.: A superposition deision proedure for the guardedfragment with equality. In: LICS. (1999) 295{3045. Bahmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-letion and simpli�ation. Journal of Logi and Computation 4(3) (1994) 217{2476. Weidenbah, C.: Combining superposition, sorts and splitting. In Robinson, A.,Voronkov, A., eds.: Handbook of Automated Reasoning. Volume 2. Elsevier (2001)1965{20127. Sutli�e, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-nal of Automated Reasoning 21(2) (1998) 177{2038. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In Robinson, J.A.,Voronkov, A., eds.: Handbook of Automated Reasoning. Elsevier and MIT Press(2001) 1853{19649. Graf, P.: Term Indexing. Volume 1053 of LNAI. Springer-Verlag (1995)10. Weidenbah, C., Shmidt, R., Keen, E.: Spass handbook version 3.0. Containedin the doumentation of SPASS Version 3.0 (2007)
124

