
Contextual Rewriting in SpassChristoph Weidenba
h and Patri
k Wis
hnewskiMax-Plan
k-Institut f�ur Informatik,Campus E 1.4, Saarbr�u
ken, Germany,{weidenb,wis
hnew}�mpi-inf.mpg.deAbstra
t. Sophisti
ated redu
tions are an important means to a
hieveprogress in automated theorem proving. We
onsider the powerful re-du
tion rule Contextual Rewriting in the
ontext of the superposition
al
ulus. If the rule is
onsidered in its abstra
t, most general form, theappli
ability of
ontextual rewriting is not de
idable. We develop a de-
idable instan
e of the general
ontextual rewriting rule and implementit in Spass. An experimental evaluation on the TPTP gives �rst insightsinto the appli
ation potential of the rule instan
e.1 Introdu
tionIn the superposition
ontext, �rst-order theorem proving with equality dealswith the problem of showing unsatis�ability of a (�nite) set N of
lauses. Thisproblem is well-known to be unde
idable, in general. It is semi-de
idable in thesense that superposition is refutationally
omplete. The superposition
al
ulus is
omposed of inferen
e and redu
tion rules. Inferen
e rules generate new
lausesfrom N whereas redu
tion rules delete
lauses from N or transform them intosimpler ones. If, in parti
ular, powerful redu
tion rules are available, de
idabilityof
ertain sub
lasses of �rst-order logi

an be shown and explored in pra
ti
e [1{4℄. Hen
e, sophisti
ated redu
tions are an important means for progress in auto-mated theorem proving. In this paper the redu
tion rule Contextual Rewriting is
onsidered in the
ontext of the superposition
al
ulus [5℄. Contextual rewritingextends rewriting with unit equations to rewriting with full
lauses
ontaininga positive orientable equation. In order to apply su
h a
lause for rewriting, allother literals of that
lause have to be entailed by the
ontext of the
lause tobe rewritten and potentially further
lauses from a given
lause set. Hen
e, thename
ontextual rewriting.For a �rst, simpli�ed example
onsider the two
lausesP (x)! f(x) � x S(g(a)); a � b; P (b)! R(f(a))where we write
lauses in impli
ation form [6℄. Now in order to rewrite R(f(a))in the se
ond
lause to R(a) using the equation f(x) � x of the �rst
lausewith mat
her � = fx 7! ag, we have to show that P (x)� holds in the
ontextof the se
ond
lause S(g(a)); a � b; P (b), i.e., j= S(g(a)); a � b; P (b) ! P (x)�.This obviously holds, so we
an repla
e S(g(a)); a � b; P (b) ! R(f(a)) by
115

S(g(a)); a � b; P (b) ! R(a) via a
ontextual rewriting appli
ation of P (x) !f(x) � x.More general,
ontextual rewriting is the following rule:R D = �1 ! �1; s � t C = (�2 ! �2)[u[s�℄ � v℄�1 ! �1; s � t(�2 ! �2)[u[t�℄ � v℄where (�2 ! �2)[u[s�℄ � v℄ expresses that u[s�℄ � v is an atom o

urring in �2or �2 and u
ontains the subterm s�. Contextual rewriting redu
es the subterms� of u to t� if, among others, the following
onditions are satis�edNC j= �2 ! A for all A in �1�NC j= A! �2 for all A in �1�where N is the
urrent
lause set, C;D 2 N , and NC denotes the set of
lausesfrom N smaller than C with respe
t to a redu
tion ordering �, total on groundterms. Redu
tion rules are labeled with anR and are meant to repla
e the
lausesabove the bar by the
lauses below the bar. Both side
onditions are unde
idable,in general. Therefore, in order to make the rule appli
able in pra
ti
e, it mustbe instantiated su
h that eventually these two
onditions be
ome e�e
tive. Thisis the topi
 of this paper.For a more sophisti
ated, further motivating example,
onsider the follow-ing
lause set. It
an be �nitely saturated using
ontextual rewriting but notsolely with less sophisti
ated redu
tion me
hanisms su
h as unit rewriting orsubsumption.Let i, q, r,
 be fun
tions, a, b be
onstants and x1, x2, x3, x4, y1 be variablesand let r �
 � q � i � b � a � nil using the KBO with weight 1 for all fun
tionsymbols and variables.1: ! q(nil) � b2: i(x1) � b; q(y1) � b ! q(r(x1; y1)) � b3: i(x1) � b; q(y1) � b ! q(
(x1; y1)) � a4: i(x1) � b; q(y1) � b; i(x3) � b !r(x3;
(x1; y1)) �
(x1; r(x3; y1))5: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a !y1 � nil; q(
(x1;
(x2; r(x3; y1)))) � bIf we apply superposition right between
lause 4 and
lause 5 on the termq(
(x1;
(x2; r(x3; y1)))) we obtain the
lause6: i(x1) � b; i(x3) � b; i(x2) � b; i(x4) � b; q(y1) � b; q(
(x4; y1)) � b; b � a !
(x4; y1) � nil; q(
(x1;
(x2;
(x4; r(x3; y1))))) � bwhi
h is larger (both in the ordering and the number of symbols) than
lause 5. Applying superposition between
lause 4 and
lause 6 yields an evenlarger
lause. Repeating the superposition inferen
e between
lause 4 and these
lauses
reates larger and larger
lauses. Hen
e, the exhaustive appli
ation ofthe superposition
al
ulus does not terminate on this
lause set. Furthermore,none of the redu
tions whi
h have been implemented so far in Spass and in any
116

other system we are aware of,
an redu
e
lause 5.1 However, with
ontextualrewriting we
an redu
e
lause 5 using
lause 3 to7: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! y1 � nil; a � b.Clause 7 is a tautology and
an be redu
ed to true. Then the set is saturatedsin
e no further superposition inferen
e is possible. In order to apply
ontextualrewriting we have to verify the side
onditionsNC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � band NC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a!q(
(x2; r(x3; y1))) � b.The �rst
ondition holds trivially and the latter follows from
lause 3 and
lause 2.In this work we presents an instan
e of
ontextual rewriting that redu
esthe above
lause set, is de
idable and feasible for pra
ti
al problem instan
es.We tested our implementation on all problems of the TPTP library version3.2.0 [7℄. In Se
tion 2 we develop a pra
ti
ally useful instan
e of
ontextualrewriting
alled Approximated Contextual Rewriting. Se
tion 3 presents the im-plementation of approximated
ontextual rewriting in Spass. The �nal se
tiondis
usses experimental results.2 Contextual RewritingWe
onsider �rst-order logi
 with equality using notation from [6℄. We write
lauses in the form � ! � where � and � are multi-sets of atoms. The atomsof � denote negative literals while the atoms of � denote the positive literals. Asubstitution � is a mapping from the set of variables to the set of terms su
h thatx� 6= x for only �nitely many variables x. The redu
tion rules, in parti
ular the
ontextual rewriting rule, are de�ned with respe
t to a well-founded redu
tionordering � on terms that is total on ground terms. This ordering is then liftedto literals and
lauses in the usual way [6℄. A term s is
alled stri
tly maximalin � ! � if there is no di�erent o

urren
e of a term in � ! � that is greateror equal than s with respe
t to �.Contextual rewriting is a sophisti
ated redu
tion rule originally introdu
ed in[5℄ that generalizes unit rewriting and non-unit rewriting [6℄. It is an instan
e ofthe standard redundan
y notion of superposition. A
lause C is
alled redundantin a
lause set N if there exist
lauses C1; : : : ; Cn 2 N with Ci � C for i 2f1; : : : ; ng, written Ci 2 NC , su
h that C1; : : : ; Cn j= C. The
lause C is impliedby smaller
lauses from N . This
ondition
an a
tually be re�ned to groundingsubstitutions: C is redundant if for all grounding substitutions � for C thereare ground instan
es Ci�i of
lauses Ci 2 N su
h that Ci�i � C�, writtenCi�i 2 NC�, and C1�1; : : : ; Cn�n j= C�. Redu
tion rules are marked with an Rand their appli
ation repla
es the
lauses above the bar with the
lauses belowthe bar.1 A
tually, the SATURATE system
ontained the �rst implementation of
ontextualrewriting, but it never matured to be widely usable.
117

De�nition 1 (Contextual Rewriting [5℄). Let N be a
lause set, C;D 2 N ,� be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following
onditions are satis�ed1. s� � t�2. C � D�3. NC j= �2 ! A for all A in �1�4. NC j= A! �2 for all A in �1�are
alled
ontextual rewriting.Due to
ondition 1-1 and
ondition 1-2 we have C 00 � C and D� � C.Then from
ondition 1-3 and
ondition 1-4 we obtain that there exist
lausesC1; : : : ; Cn 2 NC and C1; : : : ; Cn; C 00; D� j= C. Therefore, the
lause C is redun-dant in N [fC 00g and
an be eliminated. The rule is an instan
e of the abstra
tsuperposition redundan
y notion.The side
onditions 1-3 and 1-4 having both the form NC j= � ! � areunde
idable, in general. There are two sour
es for the unde
idability. First, thereare in�nitely possible grounding substitutions �0 for the
lause � ! � and C.Se
ond, for a given �0 there may be in�nitely many Æ with CiÆ � C�0, Ci 2 N .Therefore, in the following in order to e�e
tively de
ide the side
onditions, wewill �x one �0 and restri
t the number of
onsidered substitutions Æ yielding ade
idable instan
e of
ontextual rewriting.First, NC j= � ! � is equivalent to NC[f9x::(� ! �)g j= ?. The existen-tial quanti�er
an be eliminated by Skolemization yielding a Skolem substitution� that maps ea
h variable out of x to a new Skolem
onstant. Consequently, set-ting �0 to � yields the instan
e NC j= (� ! �)� , where (� ! �)� is ground.Still there may exist in�nitely many Æ with CiÆ � C� , Ci 2 N and C� may still
ontain variables.Therefore, we restri
t Æ to those grounding substitutions that map variablesto terms only o

urring in C� or D�� where we additionally assume that �is also grounding for C and D�, i.e., it maps any variable o

urring in C orD� to an arbitrary fresh Skolem
onstant. Let ND��C� be the set of all ground in-stan
es of
lauses from N smaller than C� obtained by instantiation with groundterms from D��;C� . Then ND��C� is �nite and ND��C� � NC� . Consequently,ND��C� j= (� ! �)� is a suÆ
ient ground approximation of NC j= � ! �. Even
118

though this is a de
idable approximation of the original problem the set ND��C� isexponentially larger than N , in general. Therefore, we representND��C� impli
itlyby approximating ND��C� j= (� ! �)� by the appli
ation of a redu
tion
al
ulus(� ! �)� `Red >. The redu
tion
al
ulus `Red is
omposed of a set of redu
tionrules
ontaining tautology redu
tion, forward subsumption, obvious redu
tion anda parti
ular instan
e of
ontextual rewriting
alled re
ursive
ontextual groundrewriting de�ned below. Tautology redu
tion redu
es synta
ti
 and semanti
tautologies to true whereas forward subsumption redu
es subsumed
lauses totrue. Obvious redu
tion eliminates trivial literals [6℄.The redu
tion
al
ulus `Red only needs to redu
e ground
lauses. There-fore, the following de�nition introdu
es an instan
e of
ontextual rewriting onlyworking on ground
lauses. Further, it adapts
ontextual rewriting su
h that itimpli
itly
onsiders
lauses from ND��C� .De�nition 2 (Re
ursive Contextual Ground Rewriting). If N is a
lauseset, D 2 N , C 0 ground, � a substitution then the redu
tionR D = �1 ! �1; s � t C 0 = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C 0 = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following
onditions are satis�ed1. s� is a stri
tly maximal term in D�2. u[s�℄ � v � s� � t�3. vars(s) � vars(D)4. (�2 ! A) `Red > for all A in �1�5. (A! �2) `Red > for all A in �1�is
alled re
ursive
ontextual ground rewriting.Condition 2-1 and
ondition 2-2 ensure the ordering restri
tions requiredby
ontextual rewriting. Condition 2-3 implies that D� is ground. A
lause Dmeeting
ondition 2-1 and
ondition 2-3 is
alled strongly universally redu
tive.Condition 2-4 and
ondition 2-5 re
ursively apply the redu
tion
al
ulus.The redu
tion
al
ulus `Red is terminating sin
e C 0 is redu
ed to a smallerground
lause. As a
onsequen
e, also the redu
tion relation `Red is terminating.The approximated
ontextual rewriting rule eventually be
omes the below rule.De�nition 3 (Approximated Contextual Rewriting). Let N be a
lauseset, C;D 2 N , � be a substitution then the redu
tions
119

R D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following
onditions are satis�ed1. s� � t�2. C � D�3. � maps all variables from C;D� to fresh Skolem
onstants4. (�2 ! A)� `Red > for all A in �1�5. (A! �2)� `Red > for all A in �1�are
alled approximated
ontextual rewriting.Note that unit rewriting and non-unit rewriting [6℄ are also instan
es of theapproximated
ontextual rewriting rule. Note further that the
onditions for theapproximated
ontextual rewriting rule are weaker
ompared to the re
ursive
ontextual ground rewriting rule: the right premise needs not to be ground andthe equation s � t needs not to be maximal in the �rst premise. Approximated
ontextual rewriting uses re
ursive
ontextual ground rewriting to e�e
tivelyde
ide the side
onditions.3 ImplementationThe implementation of Spass [6℄ fo
uses on a sophisti
ated redu
tion ma
hinery.This ma
hinery
ompletely interredu
es all
lauses as it performs forward redu
-tion and ba
kward redu
tion whenever a
lause is newly generated or modi�ed.Forward redu
tion redu
es the newly generated
lause using the previously gen-erated
lauses and ba
kward rewriting redu
es the previously generated
lauseswith the new one.The integration of
ontextual rewriting into this ma
hinery
onsists of twosteps. First, the sear
h for appropriate
ontextual rewrite appli
ation
andidatesis analogous to the
ase of unit rewriting and non-unit rewriting. In addition,the side
onditions of
ontextual rewriting have to be
he
ked. Finding appro-priate
ontextual rewrite appli
ation
andidates
an be solved by standard termindexing [8℄. This fun
tionality has already been implemented into Spass viasubstitution trees [6, 9℄.Se
ond, validating the side
onditions of
ontextual rewriting requires ane�e
tive implementation of the redu
tion
al
ulus `Red. First of all, it is too
ostly to expli
itly
ompute the Skolem substitution � for ea
h
lause � !
120

Re
ursiveValidityChe
k(CLAUSE C, CLAUSE SET N);1 Rewritten=TRUE;2 while Rewritten do3 Rewritten=FALSE;4 if IsEmpty(C) then return FALSE ;5 if IsTautology(C) then return TRUE ;6 if ForwardSubsumption(C, N) then return TRUE ;7 if ObviousRedu
tion(C) then Rewritten=TRUE;8 if Re
ursiveContextualGroundRewriting(C, N) then9 Rewritten=TRUE ;end10 return FALSE11 Algorithm 1: Re
ursiveValidityChe
k� whi
h the redu
tion
al
ulus
onsiders for
ontextual rewriting. Applying� expli
itly requires to allo
ate memory for the new
onstants and the new
lause and it requires additional
omputations to build the
lause. Be
ause ofthe re
ursive stru
ture of the redu
tion
al
ulus this is not feasible. Therefore,the idea is to simply treat variables as
onstants for this
ase. We adapt theordering modules (KBO, RPOS) su
h that they
an treat variables as
onstants.Sin
e variables are not
ontained in the pre
eden
e we have to de�ne an orderingon them. In Spass variables are represented by integers whi
h impli
itly givesan ordering on variables. Whenever we
onsider variables to be
onstants weassume them to have a lower pre
eden
e than any other symbol of the signature.Comparisons between variables are performed on the bases of their integer value.As a result, the implementation provides a method for applying � to a
lause� ! � without any
omputation or memory allo
ation.The
omposition of the redu
tion
al
ulus `Red to an a
tual de
ision pro
e-dure is depi
ted in Algorithm 1. The algorithm uses tautology deletion, forwardsubsumption and obvious redu
tions from the redu
tion pro
edure of Spass. Thepro
edures have to work with respe
t to the modi�ed, above explained, order-ings. Besides of this the implementation of these redu
tions remains un
hanged.Algorithm 1 expe
ts as input a
lause C and a
lause set N and redu
es Cwith respe
t toN in the main loop. IsEmpty(C)
he
ks whether the given
lauseis the empty
lause, IsTautology(C)
he
ks whether C is either a synta
ti
 or asemanti
 tautology. ForwardSubsumption(C, N)
he
ks whether C is alreadysubsumed by
lauses from N and ObviousRedu
tion(C) removes dupli
atedliterals and trivial equations from a
lause. Further details
an be found in theSpass Handbook [10℄.Re
ursiveContextualGroundRewriting(C, N), depi
ted in Algorithm 2,subsumes unit and non-unit rewriting and implements re
ursive
ontextual groundrewriting. The variables o

urring in C are interpreted as
onstants in the aboveexplained sense. The
all to generalSDT (N; u0) returns the set of generalizationsG from N of u0 and the respe
tive mat
her �. Then the pro
edure
omputes forea
h of the generalizations the literals and the
lauses where they o

ur resulting
121

Re
ursiveContextualGroundRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 forea
h (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 forea
h (s � t) 2 Lits do5 D = LiteralOwningClause(s � t);6 if (vars(s) � vars(D) ^7 u[s�℄ � v � s� � t�8 s� stri
tly maximal term in D� ^9 8A 2 Ante(D�) Re
ursiveValidityChe
k(� ! A) ^10 8A 2 Su

(D�) Re
ursiveValidityChe
k(A! �)) then11 return C[u[t�℄ � v℄;12 end13 end14 end15 Algorithm 2: Re
ursiveContextualGroundRewritingin the
ontextual rewrite
andidates. The
andidate
lauses are then
he
ked forthe non-re
ursive side
onditions of
ontextual rewriting. If these hold, Re
ur-siveContextualGroundRewriting builds the subproblems and re
ursively
alls Re
ursiveValidityChe
k.The implementation of approximated
ontextual rewriting is analogous to theimplementation of re
ursive
ontextual ground rewriting. The di�eren
e is thatthe input
lause C is not interpreted as ground and the lo
al side
onditions(line 7 - line 9) are
hanged with respe
t to the de�nition of approximated
ontextual rewriting.4 Results4.1 Results on the TPTPThe TPTP 3.2.0 [7℄ is a library
onsisting of 8984 problems for automatedtheorem proving systems. We
ompared the Spass version 3.1 that is version3.0 extended by some bug �xes,
ontaining our implementation of
ontextualrewriting to Spass version 3.1 without
ontextual rewriting.Table 1 depi
ts the results. We
ompare two runs of Spass with a ref-eren
e run. All runs were performed with Spass options set to -RFRew=4-RBRew=2 -RTaut=2 on Opteron nodes running at speed of 2.4 GHz equippedwith 4 GB RAM for ea
h node. For the referen
e run we let Spass run on theTPTP with
ontextual rewriting turned o� and a time limit of 300 se
onds.The �rst run of Spass with
ontextual rewriting a
tivated and a 300 se
ondstime bound found 77 additional proofs and lost 151 proofs
ompared to the runwith
ontextual rewriting disabled. There were no signi�
ant di�eren
es amongthe versions on satis�able problems. The se
ond run of Spass with
ontextual
122

Time Won Lost De
eleration CoeÆ
ient Solved Open Problems300 77 151 1.46 2600 122 133 1.62 5Table 1. Forward
ontextual rewritingrewriting and a 600 se
onds time bound found 122 additional proofs and lost 133proofs
ompared to the run with
ontextual rewriting disabled. Additionally, we
omputed the average running time of the referen
e run and ea
h of the othertwo runs. We
onsidered only those
ases where both the referen
e run and therespe
tive test run terminated and the version with
ontextual rewriting took atleast 10 se
onds. The running time slows down on the average at a
oeÆ
ient of1.46 for the 300 se
onds run and at a
oeÆ
ient of 1.62 for the 600 se
onds run.The problems where Spass with
ontextual rewriting found a proof and thereferen
e run did not were mostly problems with a high TPTP diÆ
ulty rating.In the run with 300 se
onds our instan
es even terminated on two problems withrating 1:00 and with 600 se
onds on �ve problems with rating 1:00 meaningthat no system has been able to solve these problems so far. The problems areSWC308+1, SWC335+1, in the 300 se
onds time bound and additionally in the600 se
onds time bound SWC329+1, SWC342+1, SWC345+1. All proofs were
he
ked by the Spass proof
he
ker.It was both a surprise to us that the
ontextual rewriting version did notimprove on satis�able problems and that it lost so many unsatis�able problems.For the satis�able problems this is simply due to the fa
t that the TPTP doesnot
ontain suitable problems. For the unsatis�able ones we inspe
ted some indetail and �gured out that the a
tual proof found by the standard version gotlost through a
ontextual rewriting appli
ation. This is not a new phenomenon,however, it is surprising that it o

urs so often on the TPTP. We will furtherdig into this hoping to �nd further insight.4.2 Appli
ation to the Example from the Introdu
tionIn this part we depi
t the appli
ation of approximated re
ursive
ontextualrewriting on the introdu
tory example in detail. Therewith, we show that super-position together with our instan
e of
ontextual rewriting terminates on thisexample. Spass with
ontextual rewriting is able to saturate the
lause set fromse
tion 1 whereas Spass without
ontextual rewriting is not. Re
all that we
anredu
e
lause 5 with
lause 3 using
ontextual rewriting if the side
onditionsare ful�lled. The ground
lauses8 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � b9 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! q(
(x2; r(x3; y1))) � bmust be entailed by
lauses from NC . Clause 8 is a tautology whereas
lause 9
an be rewritten with
lause 3 to10: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! a � b
123

using
ontextual rewriting if in addition the
lauses11: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! i(x2) � b12: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! q(r(x3; y1)))) � bare also entailed by
lauses from NC . Clause 11 is a synta
ti
 tautology and
lause 12 is subsumed by
lause 2.5 SummaryIn summary,
ontextual rewriting is
ostly but it helps solving diÆ
ult problems.Our
urrent implementation o�ers reasonable room for improvement. For exam-ple, in Spass,
ontextual rewriting is implemented independently from unit andnon-unit rewriting su
h that in
ase of non-appli
ability of the rule, the same
he
ks and indexing queries are repeated.For subsumption ni
e �lters are known to dete
t non-appli
ability. It wouldbe worthwhile to sear
h for su
h �lters for
ontextual rewriting. Eventually, weneed to better understand why we lost surprisingly many problems from theTPTP. One possible answer
ould be that the standard Spass heuristi
s for in-feren
e sele
tion don't work well anymore with
ontextual rewriting. The Spassversion des
ribed in this paper and used for the experiments
an be obtainedfrom the Spass homepage (http://spass-prover.org/) following the proto-type link.Referen
es1. Ba
hmair, L., Ganzinger, H., Waldmann, U.: Superposition with simpli�
ation asa de
ision pro
edure for the monadi

lass with equality. In: Computational Logi
and Proof Theory. Volume 713 of LNCS. (1993) 83{962. Hustadt, U., S
hmidt, R.A., Georgieva, L.: A survey of de
idable �rst-order frag-ments and des
ription logi
s. Journal of Relational Methods in Computer S
ien
e1 (2004) 251{2763. Ja
quemard, F., Meyer, C., Weidenba
h, C.: Uni�
ation in extensions of shallowequational theories. In: Pro
eedings of RTA-98. Volume 1379 of LNCS., Springer(1998) 76{904. Ganzinger, H., de Nivelle, H.: A superposition de
ision pro
edure for the guardedfragment with equality. In: LICS. (1999) 295{3045. Ba
hmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-le
tion and simpli�
ation. Journal of Logi
 and Computation 4(3) (1994) 217{2476. Weidenba
h, C.: Combining superposition, sorts and splitting. In Robinson, A.,Voronkov, A., eds.: Handbook of Automated Reasoning. Volume 2. Elsevier (2001)1965{20127. Sut
li�e, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-nal of Automated Reasoning 21(2) (1998) 177{2038. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In Robinson, J.A.,Voronkov, A., eds.: Handbook of Automated Reasoning. Elsevier and MIT Press(2001) 1853{19649. Graf, P.: Term Indexing. Volume 1053 of LNAI. Springer-Verlag (1995)10. Weidenba
h, C., S
hmidt, R., Keen, E.: Spass handbook version 3.0. Containedin the do
umentation of SPASS Version 3.0 (2007)
124

