Contextual Rewriting in SPASS

Christoph Weidenbach and Patrick Wischnewski

Max-Planck-Institut fiir Informatik,
Campus E 1.4, Saarbriicken, Germany,
{weidenb,wischnew}@mpi-inf.mpg.de

Abstract. Sophisticated reductions are an important means to achieve
progress in automated theorem proving. We consider the powerful re-
duction rule Conteztual Rewriting in the context of the superposition
calculus. If the rule is considered in its abstract, most general form, the
applicability of contextual rewriting is not decidable. We develop a de-
cidable instance of the general contextual rewriting rule and implement
it in SpAss. An experimental evaluation on the TPTP gives first insights
into the application potential of the rule instance.

1 Introduction

In the superposition context, first-order theorem proving with equality deals
with the problem of showing unsatisfiability of a (finite) set N of clauses. This
problem is well-known to be undecidable, in general. It is semi-decidable in the
sense that superposition is refutationally complete. The superposition calculus is
composed of inference and reduction rules. Inference rules generate new clauses
from N whereas reduction rules delete clauses from N or transform them into
simpler ones. If, in particular, powerful reduction rules are available, decidability
of certain subclasses of first-order logic can be shown and explored in practice [1-
4]. Hence, sophisticated reductions are an important means for progress in auto-
mated theorem proving. In this paper the reduction rule Conteztual Rewriting is
considered in the context of the superposition calculus [5]. Contextual rewriting
extends rewriting with unit equations to rewriting with full clauses containing
a positive orientable equation. In order to apply such a clause for rewriting, all
other literals of that clause have to be entailed by the context of the clause to
be rewritten and potentially further clauses from a given clause set. Hence, the
name contextual rewriting.
For a first, simplified example consider the two clauses

P(z) = f(x) =z S(g(a)),a b, P(b) = R(f(a))

where we write clauses in implication form [6]. Now in order to rewrite R(f(a))
in the second clause to R(a) using the equation f(z) =~ x of the first clause
with matcher 0 = {z + a}, we have to show that P(z)o holds in the context
of the second clause S(g(a)),a ~ b, P(b), i.e., = S(g(a)),a =~ b, P(b) — P(x)o.
This obviously holds, so we can replace S(g(a)),a =~ b, P(b) — R(f(a)) by

115

S(g(a)),a ~ b, P(b) - R(a) via a contextual rewriting application of P(x) —

More general, contextual rewriting is the following rule:

D=1 - A,s=~t C = (I = Ay)[ulso] =~ v]
Fl —>A17S%t
(Iy = Ag)[ulto] ~ v]

R

where (I'y, = As)[u[so] & v] expresses that u[so] & v is an atom occurring in Iy
or Ay and u contains the subterm so. Contextual rewriting reduces the subterm
so of u to to if, among others, the following conditions are satisfied

No Iy —» Aforal Ain Io

NoEA— Agforall Ain Ao
where N is the current clause set, C, D € N, and N¢ denotes the set of clauses
from N smaller than C' with respect to a reduction ordering <, total on ground
terms. Reduction rules are labeled with an R and are meant to replace the clauses
above the bar by the clauses below the bar. Both side conditions are undecidable,
in general. Therefore, in order to make the rule applicable in practice, it must
be instantiated such that eventually these two conditions become effective. This
is the topic of this paper.

For a more sophisticated, further motivating example, consider the follow-
ing clause set. It can be finitely saturated using contextual rewriting but not
solely with less sophisticated reduction mechanisms such as unit rewriting or
subsumption.

Let i, g, r, ¢ be functions, a, b be constants and x1, s, x3, x4, y; be variables
andlet r > ¢ > q > i > b > a > nil using the KBO with weight 1 for all function
symbols and variables.

1: — qnil)=b
2: i(x1) = b,q(yh) b — q(r(zi,11)) = b
3: i(z1) = b,q(yh) b — qlc(z1,1)) =a
4: i(z1) & byqyr) = bi(z3) b —

(w3, c(z1,91)) = c(z1,7(23,91))

5: i(x1) ~ byi(xs) = b,i(x2) 2 b,qly1) ®bb~a —
y1 ~ nil, q(c(zr, c(@2,7(23,91)))) = b

If we apply superposition right between clause 4 and clause 5 on the term
q(c(zr,e(za,m(x3,91)))) we obtain the clause
6:i(x1) = bi(xs) = b,i(xe) & byi(zg) = b,q(y1) = b, qlc(xs,y1)) b bxa —

c(xa,y1) = nil, glc(xy, c(za, c(xa,7(x3,91))))) = b

which is larger (both in the ordering and the number of symbols) than
clause 5. Applying superposition between clause 4 and clause 6 yields an even
larger clause. Repeating the superposition inference between clause 4 and these
clauses creates larger and larger clauses. Hence, the exhaustive application of
the superposition calculus does not terminate on this clause set. Furthermore,
none of the reductions which have been implemented so far in SPASS and in any

116

other system we are aware of, can reduce clause 5. However, with contextual
rewriting we can reduce clause 5 using clause 3 to

T:i(xy) = byi(xs) & bi(ze) ~ b,q(y1) R bbra— y & nil,a=b.
Clause 7 is a tautology and can be reduced to true. Then the set is saturated
since no further superposition inference is possible. In order to apply contextual
rewriting we have to verify the side conditions

Ne Ei(xy) = byi(xs) = byi(ze) b,q(y1) ®b,b~a—i(x) ~b

and
Ne Ei(zy) = b,i(zs) b,i(z2) ~b,qy1) ®b,b=~a—
q(c(z2, r(z3,91))) ~ b.
The first condition holds trivially and the latter follows from clause 3 and
clause 2.

In this work we presents an instance of contextual rewriting that reduces
the above clause set, is decidable and feasible for practical problem instances.
We tested our implementation on all problems of the TPTP library version
3.2.0 [7]. In Section 2 we develop a practically useful instance of contextual
rewriting called Approzimated Contextual Rewriting. Section 3 presents the im-
plementation of approximated contextual rewriting in SPASs. The final section
discusses experimental results.

2 Contextual Rewriting

We consider first-order logic with equality using notation from [6]. We write
clauses in the form I' - A where I' and A are multi-sets of atoms. The atoms
of I'" denote negative literals while the atoms of A denote the positive literals. A
substitution o is a mapping from the set of variables to the set of terms such that
xo # x for only finitely many variables z. The reduction rules, in particular the
contextual rewriting rule, are defined with respect to a well-founded reduction
ordering < on terms that is total on ground terms. This ordering is then lifted
to literals and clauses in the usual way [6]. A term s is called strictly mazimal
in I' = A if there is no different occurrence of a term in I" — A that is greater
or equal than s with respect to <.

Contextual rewriting is a sophisticated reduction rule originally introduced in
[5] that generalizes unit rewriting and non-unit rewriting [6]. It is an instance of
the standard redundancy notion of superposition. A clause C' is called redundant
in a clause set N if there exist clauses Cy,...,C, € N with C; < C for i €
{1,...,n}, written C; € N¢, such that Cy,...,C, |= C. The clause C is implied
by smaller clauses from N. This condition can actually be refined to grounding
substitutions: C' is redundant if for all grounding substitutions o for C' there
are ground instances Cjo; of clauses C; € N such that C;o; < Co, written
Cio; € N¢gy, and Cioq,...,Chop |= Co. Reduction rules are marked with an R
and their application replaces the clauses above the bar with the clauses below
the bar.

! Actually, the SATURATE system contained the first implementation of contextual
rewriting, but it never matured to be widely usable.

117

Definition 1 (Contextual Rewriting [5]). Let N be a clause set, C;D € N,
o be a substitution then the reductions

D=1 - A, s~t C =TIh,u[so]l = v— Ay

R F1%A17S%t
C" =y, ufto] v — Ay
R D=1I)— A,s~t C=1Iy— Ay, ulso] mv

Fl —)Al,S%t
C" =15 = Ay ufto] = v

where the following conditions are satisfied

so > to
C > Do
Ne =Ty — A for all Ain o
4. No = A— Ay forall A in Ao

Lo o~

are called contextual rewriting.

Due to condition 1-1 and condition 1-2 we have C"” < C and Do < C.
Then from condition 1-3 and condition 1-4 we obtain that there exist clauses
Ci,...,C, € Nocand C4,...,Cp,,C" Do |= C. Therefore, the clause C is redun-
dant in N U{C"} and can be eliminated. The rule is an instance of the abstract
superposition redundancy notion.

The side conditions 1-3 and 1-4 having both the form N¢ = I' - A are
undecidable, in general. There are two sources for the undecidability. First, there
are infinitely possible grounding substitutions ¢’ for the clause I' - A and C.
Second, for a given ¢’ there may be infinitely many § with C;0 < Co', C; € N.
Therefore, in the following in order to effectively decide the side conditions, we
will fix one ¢’ and restrict the number of considered substitutions § yielding a
decidable instance of contextual rewriting.

First, No = I' = A is equivalent to No U{3x.—(I" — A)} |= L. The existen-
tial quantifier can be eliminated by Skolemization yielding a Skolem substitution
7 that maps each variable out of @ to a new Skolem constant. Consequently, set-
ting o’ to 7 yields the instance N¢ | (I' = A)71, where (I"' = A)r is ground.
Still there may exist infinitely many § with C;0 < C'7, C; € N and C7 may still
contain variables.

Therefore, we restrict 6 to those grounding substitutions that map variables
to terms only occurring in C7 or Do7r where we additionally assume that 7
is also grounding for C and Do, i.e., it maps any variable occurring in C or
Do to an arbitrary fresh Skolem constant. Let N2°7 be the set of all ground in-
stances of clauses from N smaller than C't obtained by instantiation with ground
terms from Dor,C7. Then N7 is finite and NZ°T C Nc,. Consequently,
NE°™ = (I - A)7 is a sufficient ground approximation of No = 1" — A. Even

118

though this is a decidable approximation of the original problem the set Ngj_” is

exponentially larger than IV, in general. Therefore, we represent Ng;_" implicitly

by approximating NZ°7 |= (I' — A)7 by the application of a reduction calculus
(I' = A)T FRreq T. The reduction calculus F g4 is composed of a set of reduction
rules containing tautology reduction, forward subsumption, obvious reduction and
a particular instance of contextual rewriting called recursive contextual ground
rewriting defined below. Tautology reduction reduces syntactic and semantic
tautologies to true whereas forward subsumption reduces subsumed clauses to
true. Obvious reduction eliminates trivial literals [6].

The reduction calculus Fpg.q only needs to reduce ground clauses. There-
fore, the following definition introduces an instance of contextual rewriting only
working on ground clauses. Further, it adapts contextual rewriting such that it

implicitly considers clauses from Ngf_”.

Definition 2 (Recursive Contextual Ground Rewriting). If N is a clause
set, D € N, C' ground, o a substitution then the reduction

D=1y - A,s~t C' = Iy,ulso] mv— Ay

R
F1%A17S%t
Iy, ulte] v — Ay
R D=1 -5 A,s~t C'=Ty— As,u[so] = v

Fl—)Al,S%t
Iy — Agufto] = v

where the following conditions are satisfied

so is a strictly mazimal term in Do

u[so] v = so = to

vars(s) D vars(D)

(I'y > A) bFpgea T forall Ain o

(A= Ay) Fprea T forall Ain Ao

Srds Lo e~

is called recursive contextual ground rewriting.

Condition 2-1 and condition 2-2 ensure the ordering restrictions required
by contextual rewriting. Condition 2-3 implies that Do is ground. A clause D
meeting condition 2-1 and condition 2-3 is called strongly universally reductive.
Condition 2-4 and condition 2-5 recursively apply the reduction calculus.

The reduction calculus Fgqq is terminating since C' is reduced to a smaller
ground clause. As a consequence, also the reduction relation - geq is terminating.
The approximated contextual rewriting rule eventually becomes the below rule.

Definition 3 (Approximated Contextual Rewriting). Let N be a clause
set, C;D € N, o be a substitution then the reductions

119

D=1I1—A,s~t C =Ih,u[so] ~v— Ay
F1%A17S%t
C" =T, ufto] v — Ay

R

D=1I1—A,s~t C=1I— Ay ulso] & v
F1%A17S%t
C" =Ty = Ag,ufto] = v

R

where the following conditions are satisfied

so = to

C > Do

7 maps all variables from C, Do to fresh Skolem constants
(I'y = A)T FReq T for all A in o

(A= AT bFRea T for all A in Ao

CrAs oo~

are called approximated contextual rewriting.

Note that unit rewriting and non-unit rewriting [6] are also instances of the
approximated contextual rewriting rule. Note further that the conditions for the
approximated contextual rewriting rule are weaker compared to the recursive
contextual ground rewriting rule: the right premise needs not to be ground and
the equation s & t needs not to be maximal in the first premise. Approximated
contextual rewriting uses recursive contextual ground rewriting to effectively
decide the side conditions.

3 Implementation

The implementation of SPASs [6] focuses on a sophisticated reduction machinery.
This machinery completely interreduces all clauses as it performs forward reduc-
tion and backward reduction whenever a clause is newly generated or modified.
Forward reduction reduces the newly generated clause using the previously gen-
erated clauses and backward rewriting reduces the previously generated clauses
with the new one.

The integration of contextual rewriting into this machinery consists of two
steps. First, the search for appropriate contextual rewrite application candidates
is analogous to the case of unit rewriting and non-unit rewriting. In addition,
the side conditions of contextual rewriting have to be checked. Finding appro-
priate contextual rewrite application candidates can be solved by standard term
indexing [8]. This functionality has already been implemented into Spass via
substitution trees [6,9].

Second, validating the side conditions of contextual rewriting requires an
effective implementation of the reduction calculus Fg.q. First of all, it is too
costly to explicitly compute the Skolem substitution 7 for each clause I' —

120

RECURSIVEVALIDITYCHECK(CLAUSE C, CLAUSE SET N);

Rewritten=TRUE;

while Rewritten do

Rewritten=FALSE;

if ISEMPTY(C) then return FALSE;

if IsTautoLOGY(C) then return TRUE ;

if FORWARDSUBSUMPTION(C, N) then return TRUE;

if OBvVIOUSREDUCTION(C) then Rewritten=TRUE;

if RECURSIVECONTEXTUALGROUNDREWRITING(C, N) then
Rewritten=TRUE ;

© 00N O AN =

10 end
11 return FALSE

Algorithm 1: RECURSIVEVALIDITY CHECK

A which the reduction calculus considers for contextual rewriting. Applying
7 explicitly requires to allocate memory for the new constants and the new
clause and it requires additional computations to build the clause. Because of
the recursive structure of the reduction calculus this is not feasible. Therefore,
the idea is to simply treat variables as constants for this case. We adapt the
ordering modules (KBO, RPOS) such that they can treat variables as constants.
Since variables are not contained in the precedence we have to define an ordering
on them. In SPASS variables are represented by integers which implicitly gives
an ordering on variables. Whenever we consider variables to be constants we
assume them to have a lower precedence than any other symbol of the signature.
Comparisons between variables are performed on the bases of their integer value.
As a result, the implementation provides a method for applying 7 to a clause
I' - A without any computation or memory allocation.

The composition of the reduction calculus Fg.4 to an actual decision proce-
dure is depicted in Algorithm 1. The algorithm uses tautology deletion, forward
subsumption and obvious reductions from the reduction procedure of SPASS. The
procedures have to work with respect to the modified, above explained, order-
ings. Besides of this the implementation of these reductions remains unchanged.

Algorithm 1 expects as input a clause C' and a clause set N and reduces C
with respect to N in the main loop. ISEMPTY(C) checks whether the given clause
is the empty clause, IsTauTOLOGY(C) checks whether C'is either a syntactic or a
semantic tautology. FORWARDSUBSUMPTION(C, N) checks whether C is already
subsumed by clauses from N and OBVIOUSREDUCTION(C) removes duplicated
literals and trivial equations from a clause. Further details can be found in the
Sprass Handbook [10].

RECURSIVECONTEXTUALGROUNDREWRITING(C, N), depicted in Algorithm 2,
subsumes unit and non-unit rewriting and implements recursive contextual ground
rewriting. The variables occurring in C' are interpreted as constants in the above
explained sense. The call to generalspr (N, u') returns the set of generalizations
G from N of u' and the respective matcher o. Then the procedure computes for
each of the generalizations the literals and the clauses where they occur resulting

121

1 RECURSIVECONTEXTUALGROUNDREWRITING(CLAUSE Clulu] = v],
CLAUSE SET N);

2 G = generalspr(N,u');

3 foreach (s,0) € G do

4 Lits = LITERALSCONTAINING TERM(s);

5 foreach (s = t) € Lits do

6 D = LITERALOWNINGCLAUSE(s = t);

7 if (vars(s) D wvars(D) A

8 u[so] = v > so & to

9 so strictly mazimal term in Do A
10 VA € Ante(Do) RECURSIVEVALIDITYCHECK(I" — A) A
11 VA € Succ(Do) RECURSIVEVALIDITYCHECK (A — A)) then
12 | return Clufto] = v];
13 end
14 end
15 end

Algorithm 2: RECURSIVECONTEXTUALGROUNDREWRITING

in the contextual rewrite candidates. The candidate clauses are then checked for
the non-recursive side conditions of contextual rewriting. If these hold, RECUR-
SIVECONTEXTUALGROUNDREWRITING builds the subproblems and recursively
calls RECURSIVEVALIDITYCHECK.

The implementation of approximated contextual rewriting is analogous to the
implementation of recursive contextual ground rewriting. The difference is that
the input clause C is not interpreted as ground and the local side conditions
(line 7 - line 9) are changed with respect to the definition of approximated
contextual rewriting.

4 Results

4.1 Results on the TPTP

The TPTP 3.2.0 [7] is a library consisting of 8984 problems for automated
theorem proving systems. We compared the SPASS version 3.1 that is version
3.0 extended by some bug fixes, containing our implementation of contextual
rewriting to SPASS version 3.1 without contextual rewriting.

Table 1 depicts the results. We compare two runs of SPASs with a ref-
erence run. All runs were performed with SPASS options set to -RFRew=4
-RBRew=2 -RTaut=2 on Opteron nodes running at speed of 2.4 GHz equipped
with 4 GB RAM for each node. For the reference run we let SPASS run on the
TPTP with contextual rewriting turned off and a time limit of 300 seconds.
The first run of SPASS with contextual rewriting activated and a 300 seconds
time bound found 77 additional proofs and lost 151 proofs compared to the run
with contextual rewriting disabled. There were no significant differences among
the versions on satisfiable problems. The second run of SpAss with contextual

122

|Time|Won|Lost|Decelerati0n Coefﬁcient|Solved Open Problems|

300 77| 151 1.46 2
600 | 122| 133 1.62 5

Table 1. Forward contextual rewriting

rewriting and a 600 seconds time bound found 122 additional proofs and lost 133
proofs compared to the run with contextual rewriting disabled. Additionally, we
computed the average running time of the reference run and each of the other
two runs. We considered only those cases where both the reference run and the
respective test run terminated and the version with contextual rewriting took at
least 10 seconds. The running time slows down on the average at a coefficient of
1.46 for the 300 seconds run and at a coefficient of 1.62 for the 600 seconds run.

The problems where Spass with contextual rewriting found a proof and the
reference run did not were mostly problems with a high TPTP difficulty rating.
In the run with 300 seconds our instances even terminated on two problems with
rating 1.00 and with 600 seconds on five problems with rating 1.00 meaning
that no system has been able to solve these problems so far. The problems are
SWC308+1, SWC335+1, in the 300 seconds time bound and additionally in the
600 seconds time bound SWC329+1, SWC342+1, SWC345+1. All proofs were
checked by the Spass proof checker.

It was both a surprise to us that the contextual rewriting version did not
improve on satisfiable problems and that it lost so many unsatisfiable problems.
For the satisfiable problems this is simply due to the fact that the TPTP does
not contain suitable problems. For the unsatisfiable ones we inspected some in
detail and figured out that the actual proof found by the standard version got
lost through a contextual rewriting application. This is not a new phenomenon,
however, it is surprising that it occurs so often on the TPTP. We will further
dig into this hoping to find further insight.

4.2 Application to the Example from the Introduction

In this part we depict the application of approximated recursive contextual
rewriting on the introductory example in detail. Therewith, we show that super-
position together with our instance of contextual rewriting terminates on this
example. SPASS with contextual rewriting is able to saturate the clause set from
section 1 whereas SPASS without contextual rewriting is not. Recall that we can
reduce clause 5 with clause 3 using contextual rewriting if the side conditions
are fulfilled. The ground clauses

8 :i(x1) ~ b,i(z3) = bi(xs) #b,q(y1) ®b,bx~a—i(x)~b

9:i(x1) ~ b,i(x3) = b,i(x2) = b,q(y1) = b,b=~a— q(c(xa,r(z3,91))) = b
must be entailed by clauses from N¢. Clause 8 is a tautology whereas clause 9
can be rewritten with clause 3 to

10: i(x1) = b,i(x3) = b,i(x2) = b,q(y1) ®barb—>a~b

123

using contextual rewriting if in addition the clauses

11:9(z1) = b,i(x3) = b,i(z2) = b,q(y1) ®b,a~b—i(xz) =~ b

12:9(x1) & byi(xs) = b,i(z2) ~ b,q(y1) baxb— q(r(zs,y1)))) =~ b
are also entailed by clauses from N¢. Clause 11 is a syntactic tautology and
clause 12 is subsumed by clause 2.

5 Summary

In summary, contextual rewriting is costly but it helps solving difficult problems.
Our current implementation offers reasonable room for improvement. For exam-
ple, in SPASS, contextual rewriting is implemented independently from unit and
non-unit rewriting such that in case of non-applicability of the rule, the same
checks and indexing queries are repeated.

For subsumption nice filters are known to detect non-applicability. It would
be worthwhile to search for such filters for contextual rewriting. Eventually, we
need to better understand why we lost surprisingly many problems from the
TPTP. One possible answer could be that the standard SpASS heuristics for in-
ference selection don’t work well anymore with contextual rewriting. The SPASS
version described in this paper and used for the experiments can be obtained
from the Spass homepage (http://spass-prover.org/) following the proto-
type link.

References

1. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Computational Logic
and Proof Theory. Volume 713 of LNCS. (1993) 83 96

2. Hustadt, U., Schmidt, R.A., Georgieva, L.: A survey of decidable first-order frag-
ments and description logics. Journal of Relational Methods in Computer Science
1 (2004) 251 276

3. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in extensions of shallow
equational theories. In: Proceedings of RTA-98. Volume 1379 of LNCS., Springer
(1998) 76-90

4. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: LICS. (1999) 295 304

5. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3) (1994) 217-247

6. Weidenbach, C.: Combining superposition, sorts and splitting. In Robinson, A .|
Voronkov, A., eds.: Handbook of Automated Reasoning. Volume 2. Elsevier (2001)
1965 2012

7. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning 21(2) (1998) 177-203

8. Ramakrishnan, I.V.) Sekar, R.C., Voronkov, A.: Term indexing. In Robinson, J.A |
Voronkov, A.; eds.: Handbook of Automated Reasoning. Elsevier and MIT Press
(2001) 1853-1964

9. Graf, P.: Term Indexing. Volume 1053 of LNAI. Springer-Verlag (1995)

10. Weidenbach, C.; Schmidt, R., Keen, E.: Spass handbook version 3.0. Contained
in the documentation of SPASS Version 3.0 (2007)

124

