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t. Sophisti
ated redu
tions are an important means to a
hieveprogress in automated theorem proving. We 
onsider the powerful re-du
tion rule Contextual Rewriting in the 
ontext of the superposition
al
ulus. If the rule is 
onsidered in its abstra
t, most general form, theappli
ability of 
ontextual rewriting is not de
idable. We develop a de-
idable instan
e of the general 
ontextual rewriting rule and implementit in Spass. An experimental evaluation on the TPTP gives �rst insightsinto the appli
ation potential of the rule instan
e.1 Introdu
tionIn the superposition 
ontext, �rst-order theorem proving with equality dealswith the problem of showing unsatis�ability of a (�nite) set N of 
lauses. Thisproblem is well-known to be unde
idable, in general. It is semi-de
idable in thesense that superposition is refutationally 
omplete. The superposition 
al
ulus is
omposed of inferen
e and redu
tion rules. Inferen
e rules generate new 
lausesfrom N whereas redu
tion rules delete 
lauses from N or transform them intosimpler ones. If, in parti
ular, powerful redu
tion rules are available, de
idabilityof 
ertain sub
lasses of �rst-order logi
 
an be shown and explored in pra
ti
e [1{4℄. Hen
e, sophisti
ated redu
tions are an important means for progress in auto-mated theorem proving. In this paper the redu
tion rule Contextual Rewriting is
onsidered in the 
ontext of the superposition 
al
ulus [5℄. Contextual rewritingextends rewriting with unit equations to rewriting with full 
lauses 
ontaininga positive orientable equation. In order to apply su
h a 
lause for rewriting, allother literals of that 
lause have to be entailed by the 
ontext of the 
lause tobe rewritten and potentially further 
lauses from a given 
lause set. Hen
e, thename 
ontextual rewriting.For a �rst, simpli�ed example 
onsider the two 
lausesP (x)! f(x) � x S(g(a)); a � b; P (b)! R(f(a))where we write 
lauses in impli
ation form [6℄. Now in order to rewrite R(f(a))in the se
ond 
lause to R(a) using the equation f(x) � x of the �rst 
lausewith mat
her � = fx 7! ag, we have to show that P (x)� holds in the 
ontextof the se
ond 
lause S(g(a)); a � b; P (b), i.e., j= S(g(a)); a � b; P (b) ! P (x)�.This obviously holds, so we 
an repla
e S(g(a)); a � b; P (b) ! R(f(a)) by
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S(g(a)); a � b; P (b) ! R(a) via a 
ontextual rewriting appli
ation of P (x) !f(x) � x.More general, 
ontextual rewriting is the following rule:R D = �1 ! �1; s � t C = (�2 ! �2)[u[s�℄ � v℄�1 ! �1; s � t(�2 ! �2)[u[t�℄ � v℄where (�2 ! �2)[u[s�℄ � v℄ expresses that u[s�℄ � v is an atom o

urring in �2or �2 and u 
ontains the subterm s�. Contextual rewriting redu
es the subterms� of u to t� if, among others, the following 
onditions are satis�edNC j= �2 ! A for all A in �1�NC j= A! �2 for all A in �1�where N is the 
urrent 
lause set, C;D 2 N , and NC denotes the set of 
lausesfrom N smaller than C with respe
t to a redu
tion ordering �, total on groundterms. Redu
tion rules are labeled with anR and are meant to repla
e the 
lausesabove the bar by the 
lauses below the bar. Both side 
onditions are unde
idable,in general. Therefore, in order to make the rule appli
able in pra
ti
e, it mustbe instantiated su
h that eventually these two 
onditions be
ome e�e
tive. Thisis the topi
 of this paper.For a more sophisti
ated, further motivating example, 
onsider the follow-ing 
lause set. It 
an be �nitely saturated using 
ontextual rewriting but notsolely with less sophisti
ated redu
tion me
hanisms su
h as unit rewriting orsubsumption.Let i, q, r, 
 be fun
tions, a, b be 
onstants and x1, x2, x3, x4, y1 be variablesand let r � 
 � q � i � b � a � nil using the KBO with weight 1 for all fun
tionsymbols and variables.1: ! q(nil) � b2: i(x1) � b; q(y1) � b ! q(r(x1; y1)) � b3: i(x1) � b; q(y1) � b ! q(
(x1; y1)) � a4: i(x1) � b; q(y1) � b; i(x3) � b !r(x3; 
(x1; y1)) � 
(x1; r(x3; y1))5: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a !y1 � nil; q(
(x1; 
(x2; r(x3; y1)))) � bIf we apply superposition right between 
lause 4 and 
lause 5 on the termq(
(x1; 
(x2; r(x3; y1)))) we obtain the 
lause6: i(x1) � b; i(x3) � b; i(x2) � b; i(x4) � b; q(y1) � b; q(
(x4; y1)) � b; b � a !
(x4; y1) � nil; q(
(x1; 
(x2; 
(x4; r(x3; y1))))) � bwhi
h is larger (both in the ordering and the number of symbols) than
lause 5. Applying superposition between 
lause 4 and 
lause 6 yields an evenlarger 
lause. Repeating the superposition inferen
e between 
lause 4 and these
lauses 
reates larger and larger 
lauses. Hen
e, the exhaustive appli
ation ofthe superposition 
al
ulus does not terminate on this 
lause set. Furthermore,none of the redu
tions whi
h have been implemented so far in Spass and in any
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other system we are aware of, 
an redu
e 
lause 5.1 However, with 
ontextualrewriting we 
an redu
e 
lause 5 using 
lause 3 to7: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! y1 � nil; a � b.Clause 7 is a tautology and 
an be redu
ed to true. Then the set is saturatedsin
e no further superposition inferen
e is possible. In order to apply 
ontextualrewriting we have to verify the side 
onditionsNC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � band NC j= i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a!q(
(x2; r(x3; y1))) � b.The �rst 
ondition holds trivially and the latter follows from 
lause 3 and
lause 2.In this work we presents an instan
e of 
ontextual rewriting that redu
esthe above 
lause set, is de
idable and feasible for pra
ti
al problem instan
es.We tested our implementation on all problems of the TPTP library version3.2.0 [7℄. In Se
tion 2 we develop a pra
ti
ally useful instan
e of 
ontextualrewriting 
alled Approximated Contextual Rewriting. Se
tion 3 presents the im-plementation of approximated 
ontextual rewriting in Spass. The �nal se
tiondis
usses experimental results.2 Contextual RewritingWe 
onsider �rst-order logi
 with equality using notation from [6℄. We write
lauses in the form � ! � where � and � are multi-sets of atoms. The atomsof � denote negative literals while the atoms of � denote the positive literals. Asubstitution � is a mapping from the set of variables to the set of terms su
h thatx� 6= x for only �nitely many variables x. The redu
tion rules, in parti
ular the
ontextual rewriting rule, are de�ned with respe
t to a well-founded redu
tionordering � on terms that is total on ground terms. This ordering is then liftedto literals and 
lauses in the usual way [6℄. A term s is 
alled stri
tly maximalin � ! � if there is no di�erent o

urren
e of a term in � ! � that is greateror equal than s with respe
t to �.Contextual rewriting is a sophisti
ated redu
tion rule originally introdu
ed in[5℄ that generalizes unit rewriting and non-unit rewriting [6℄. It is an instan
e ofthe standard redundan
y notion of superposition. A 
lause C is 
alled redundantin a 
lause set N if there exist 
lauses C1; : : : ; Cn 2 N with Ci � C for i 2f1; : : : ; ng, written Ci 2 NC , su
h that C1; : : : ; Cn j= C. The 
lause C is impliedby smaller 
lauses from N . This 
ondition 
an a
tually be re�ned to groundingsubstitutions: C is redundant if for all grounding substitutions � for C thereare ground instan
es Ci�i of 
lauses Ci 2 N su
h that Ci�i � C�, writtenCi�i 2 NC�, and C1�1; : : : ; Cn�n j= C�. Redu
tion rules are marked with an Rand their appli
ation repla
es the 
lauses above the bar with the 
lauses belowthe bar.1 A
tually, the SATURATE system 
ontained the �rst implementation of 
ontextualrewriting, but it never matured to be widely usable.
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De�nition 1 (Contextual Rewriting [5℄). Let N be a 
lause set, C;D 2 N ,� be a substitution then the redu
tionsR D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� � t�2. C � D�3. NC j= �2 ! A for all A in �1�4. NC j= A! �2 for all A in �1�are 
alled 
ontextual rewriting.Due to 
ondition 1-1 and 
ondition 1-2 we have C 00 � C and D� � C.Then from 
ondition 1-3 and 
ondition 1-4 we obtain that there exist 
lausesC1; : : : ; Cn 2 NC and C1; : : : ; Cn; C 00; D� j= C. Therefore, the 
lause C is redun-dant in N [ fC 00g and 
an be eliminated. The rule is an instan
e of the abstra
tsuperposition redundan
y notion.The side 
onditions 1-3 and 1-4 having both the form NC j= � ! � areunde
idable, in general. There are two sour
es for the unde
idability. First, thereare in�nitely possible grounding substitutions �0 for the 
lause � ! � and C.Se
ond, for a given �0 there may be in�nitely many Æ with CiÆ � C�0, Ci 2 N .Therefore, in the following in order to e�e
tively de
ide the side 
onditions, wewill �x one �0 and restri
t the number of 
onsidered substitutions Æ yielding ade
idable instan
e of 
ontextual rewriting.First, NC j= � ! � is equivalent to NC[f9x::(� ! �)g j= ?. The existen-tial quanti�er 
an be eliminated by Skolemization yielding a Skolem substitution� that maps ea
h variable out of x to a new Skolem 
onstant. Consequently, set-ting �0 to � yields the instan
e NC j= (� ! �)� , where (� ! �)� is ground.Still there may exist in�nitely many Æ with CiÆ � C� , Ci 2 N and C� may still
ontain variables.Therefore, we restri
t Æ to those grounding substitutions that map variablesto terms only o

urring in C� or D�� where we additionally assume that �is also grounding for C and D�, i.e., it maps any variable o

urring in C orD� to an arbitrary fresh Skolem 
onstant. Let ND��C� be the set of all ground in-stan
es of 
lauses from N smaller than C� obtained by instantiation with groundterms from D��;C� . Then ND��C� is �nite and ND��C� � NC� . Consequently,ND��C� j= (� ! �)� is a suÆ
ient ground approximation of NC j= � ! �. Even
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though this is a de
idable approximation of the original problem the set ND��C� isexponentially larger than N , in general. Therefore, we representND��C� impli
itlyby approximating ND��C� j= (� ! �)� by the appli
ation of a redu
tion 
al
ulus(� ! �)� `Red >. The redu
tion 
al
ulus `Red is 
omposed of a set of redu
tionrules 
ontaining tautology redu
tion, forward subsumption, obvious redu
tion anda parti
ular instan
e of 
ontextual rewriting 
alled re
ursive 
ontextual groundrewriting de�ned below. Tautology redu
tion redu
es synta
ti
 and semanti
tautologies to true whereas forward subsumption redu
es subsumed 
lauses totrue. Obvious redu
tion eliminates trivial literals [6℄.The redu
tion 
al
ulus `Red only needs to redu
e ground 
lauses. There-fore, the following de�nition introdu
es an instan
e of 
ontextual rewriting onlyworking on ground 
lauses. Further, it adapts 
ontextual rewriting su
h that itimpli
itly 
onsiders 
lauses from ND��C� .De�nition 2 (Re
ursive Contextual Ground Rewriting). If N is a 
lauseset, D 2 N , C 0 ground, � a substitution then the redu
tionR D = �1 ! �1; s � t C 0 = �2; u[s�℄ � v ! �2�1 ! �1; s � t�2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C 0 = �2 ! �2; u[s�℄ � v�1 ! �1; s � t�2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� is a stri
tly maximal term in D�2. u[s�℄ � v � s� � t�3. vars(s) � vars(D)4. (�2 ! A) `Red > for all A in �1�5. (A! �2) `Red > for all A in �1�is 
alled re
ursive 
ontextual ground rewriting.Condition 2-1 and 
ondition 2-2 ensure the ordering restri
tions requiredby 
ontextual rewriting. Condition 2-3 implies that D� is ground. A 
lause Dmeeting 
ondition 2-1 and 
ondition 2-3 is 
alled strongly universally redu
tive.Condition 2-4 and 
ondition 2-5 re
ursively apply the redu
tion 
al
ulus.The redu
tion 
al
ulus `Red is terminating sin
e C 0 is redu
ed to a smallerground 
lause. As a 
onsequen
e, also the redu
tion relation `Red is terminating.The approximated 
ontextual rewriting rule eventually be
omes the below rule.De�nition 3 (Approximated Contextual Rewriting). Let N be a 
lauseset, C;D 2 N , � be a substitution then the redu
tions
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R D = �1 ! �1; s � t C = �2; u[s�℄ � v ! �2�1 ! �1; s � tC 00 = �2; u[t�℄ � v ! �2R D = �1 ! �1; s � t C = �2 ! �2; u[s�℄ � v�1 ! �1; s � tC 00 = �2 ! �2; u[t�℄ � vwhere the following 
onditions are satis�ed1. s� � t�2. C � D�3. � maps all variables from C;D� to fresh Skolem 
onstants4. (�2 ! A)� `Red > for all A in �1�5. (A! �2)� `Red > for all A in �1�are 
alled approximated 
ontextual rewriting.Note that unit rewriting and non-unit rewriting [6℄ are also instan
es of theapproximated 
ontextual rewriting rule. Note further that the 
onditions for theapproximated 
ontextual rewriting rule are weaker 
ompared to the re
ursive
ontextual ground rewriting rule: the right premise needs not to be ground andthe equation s � t needs not to be maximal in the �rst premise. Approximated
ontextual rewriting uses re
ursive 
ontextual ground rewriting to e�e
tivelyde
ide the side 
onditions.3 ImplementationThe implementation of Spass [6℄ fo
uses on a sophisti
ated redu
tion ma
hinery.This ma
hinery 
ompletely interredu
es all 
lauses as it performs forward redu
-tion and ba
kward redu
tion whenever a 
lause is newly generated or modi�ed.Forward redu
tion redu
es the newly generated 
lause using the previously gen-erated 
lauses and ba
kward rewriting redu
es the previously generated 
lauseswith the new one.The integration of 
ontextual rewriting into this ma
hinery 
onsists of twosteps. First, the sear
h for appropriate 
ontextual rewrite appli
ation 
andidatesis analogous to the 
ase of unit rewriting and non-unit rewriting. In addition,the side 
onditions of 
ontextual rewriting have to be 
he
ked. Finding appro-priate 
ontextual rewrite appli
ation 
andidates 
an be solved by standard termindexing [8℄. This fun
tionality has already been implemented into Spass viasubstitution trees [6, 9℄.Se
ond, validating the side 
onditions of 
ontextual rewriting requires ane�e
tive implementation of the redu
tion 
al
ulus `Red. First of all, it is too
ostly to expli
itly 
ompute the Skolem substitution � for ea
h 
lause � !
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Re
ursiveValidityChe
k(CLAUSE C, CLAUSE SET N);1 Rewritten=TRUE;2 while Rewritten do3 Rewritten=FALSE;4 if IsEmpty(C) then return FALSE ;5 if IsTautology(C) then return TRUE ;6 if ForwardSubsumption(C, N) then return TRUE ;7 if ObviousRedu
tion(C) then Rewritten=TRUE;8 if Re
ursiveContextualGroundRewriting(C, N) then9 Rewritten=TRUE ;end10 return FALSE11 Algorithm 1: Re
ursiveValidityChe
k� whi
h the redu
tion 
al
ulus 
onsiders for 
ontextual rewriting. Applying� expli
itly requires to allo
ate memory for the new 
onstants and the new
lause and it requires additional 
omputations to build the 
lause. Be
ause ofthe re
ursive stru
ture of the redu
tion 
al
ulus this is not feasible. Therefore,the idea is to simply treat variables as 
onstants for this 
ase. We adapt theordering modules (KBO, RPOS) su
h that they 
an treat variables as 
onstants.Sin
e variables are not 
ontained in the pre
eden
e we have to de�ne an orderingon them. In Spass variables are represented by integers whi
h impli
itly givesan ordering on variables. Whenever we 
onsider variables to be 
onstants weassume them to have a lower pre
eden
e than any other symbol of the signature.Comparisons between variables are performed on the bases of their integer value.As a result, the implementation provides a method for applying � to a 
lause� ! � without any 
omputation or memory allo
ation.The 
omposition of the redu
tion 
al
ulus `Red to an a
tual de
ision pro
e-dure is depi
ted in Algorithm 1. The algorithm uses tautology deletion, forwardsubsumption and obvious redu
tions from the redu
tion pro
edure of Spass. Thepro
edures have to work with respe
t to the modi�ed, above explained, order-ings. Besides of this the implementation of these redu
tions remains un
hanged.Algorithm 1 expe
ts as input a 
lause C and a 
lause set N and redu
es Cwith respe
t toN in the main loop. IsEmpty(C) 
he
ks whether the given 
lauseis the empty 
lause, IsTautology(C) 
he
ks whether C is either a synta
ti
 or asemanti
 tautology. ForwardSubsumption(C, N) 
he
ks whether C is alreadysubsumed by 
lauses from N and ObviousRedu
tion(C) removes dupli
atedliterals and trivial equations from a 
lause. Further details 
an be found in theSpass Handbook [10℄.Re
ursiveContextualGroundRewriting(C, N), depi
ted in Algorithm 2,subsumes unit and non-unit rewriting and implements re
ursive 
ontextual groundrewriting. The variables o

urring in C are interpreted as 
onstants in the aboveexplained sense. The 
all to generalSDT (N; u0) returns the set of generalizationsG from N of u0 and the respe
tive mat
her �. Then the pro
edure 
omputes forea
h of the generalizations the literals and the 
lauses where they o

ur resulting
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Re
ursiveContextualGroundRewriting(CLAUSE C[u[u0℄ � v℄,1 CLAUSE SET N);G = generalSDT (N; u0);2 forea
h (s; �) 2 G do3 Lits = LiteralsContainingTerm(s);4 forea
h (s � t) 2 Lits do5 D = LiteralOwningClause(s � t);6 if (vars(s) � vars(D) ^7 u[s�℄ � v � s� � t�8 s� stri
tly maximal term in D� ^9 8A 2 Ante(D�) Re
ursiveValidityChe
k(� ! A) ^10 8A 2 Su

(D�) Re
ursiveValidityChe
k(A! �) ) then11 return C[u[t�℄ � v℄;12 end13 end14 end15 Algorithm 2: Re
ursiveContextualGroundRewritingin the 
ontextual rewrite 
andidates. The 
andidate 
lauses are then 
he
ked forthe non-re
ursive side 
onditions of 
ontextual rewriting. If these hold, Re
ur-siveContextualGroundRewriting builds the subproblems and re
ursively
alls Re
ursiveValidityChe
k.The implementation of approximated 
ontextual rewriting is analogous to theimplementation of re
ursive 
ontextual ground rewriting. The di�eren
e is thatthe input 
lause C is not interpreted as ground and the lo
al side 
onditions(line 7 - line 9) are 
hanged with respe
t to the de�nition of approximated
ontextual rewriting.4 Results4.1 Results on the TPTPThe TPTP 3.2.0 [7℄ is a library 
onsisting of 8984 problems for automatedtheorem proving systems. We 
ompared the Spass version 3.1 that is version3.0 extended by some bug �xes, 
ontaining our implementation of 
ontextualrewriting to Spass version 3.1 without 
ontextual rewriting.Table 1 depi
ts the results. We 
ompare two runs of Spass with a ref-eren
e run. All runs were performed with Spass options set to -RFRew=4-RBRew=2 -RTaut=2 on Opteron nodes running at speed of 2.4 GHz equippedwith 4 GB RAM for ea
h node. For the referen
e run we let Spass run on theTPTP with 
ontextual rewriting turned o� and a time limit of 300 se
onds.The �rst run of Spass with 
ontextual rewriting a
tivated and a 300 se
ondstime bound found 77 additional proofs and lost 151 proofs 
ompared to the runwith 
ontextual rewriting disabled. There were no signi�
ant di�eren
es amongthe versions on satis�able problems. The se
ond run of Spass with 
ontextual
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Time Won Lost De
eleration CoeÆ
ient Solved Open Problems300 77 151 1.46 2600 122 133 1.62 5Table 1. Forward 
ontextual rewritingrewriting and a 600 se
onds time bound found 122 additional proofs and lost 133proofs 
ompared to the run with 
ontextual rewriting disabled. Additionally, we
omputed the average running time of the referen
e run and ea
h of the othertwo runs. We 
onsidered only those 
ases where both the referen
e run and therespe
tive test run terminated and the version with 
ontextual rewriting took atleast 10 se
onds. The running time slows down on the average at a 
oeÆ
ient of1.46 for the 300 se
onds run and at a 
oeÆ
ient of 1.62 for the 600 se
onds run.The problems where Spass with 
ontextual rewriting found a proof and thereferen
e run did not were mostly problems with a high TPTP diÆ
ulty rating.In the run with 300 se
onds our instan
es even terminated on two problems withrating 1:00 and with 600 se
onds on �ve problems with rating 1:00 meaningthat no system has been able to solve these problems so far. The problems areSWC308+1, SWC335+1, in the 300 se
onds time bound and additionally in the600 se
onds time bound SWC329+1, SWC342+1, SWC345+1. All proofs were
he
ked by the Spass proof 
he
ker.It was both a surprise to us that the 
ontextual rewriting version did notimprove on satis�able problems and that it lost so many unsatis�able problems.For the satis�able problems this is simply due to the fa
t that the TPTP doesnot 
ontain suitable problems. For the unsatis�able ones we inspe
ted some indetail and �gured out that the a
tual proof found by the standard version gotlost through a 
ontextual rewriting appli
ation. This is not a new phenomenon,however, it is surprising that it o

urs so often on the TPTP. We will furtherdig into this hoping to �nd further insight.4.2 Appli
ation to the Example from the Introdu
tionIn this part we depi
t the appli
ation of approximated re
ursive 
ontextualrewriting on the introdu
tory example in detail. Therewith, we show that super-position together with our instan
e of 
ontextual rewriting terminates on thisexample. Spass with 
ontextual rewriting is able to saturate the 
lause set fromse
tion 1 whereas Spass without 
ontextual rewriting is not. Re
all that we 
anredu
e 
lause 5 with 
lause 3 using 
ontextual rewriting if the side 
onditionsare ful�lled. The ground 
lauses8 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! i(x1) � b9 : i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; b � a! q(
(x2; r(x3; y1))) � bmust be entailed by 
lauses from NC . Clause 8 is a tautology whereas 
lause 9
an be rewritten with 
lause 3 to10: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! a � b
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using 
ontextual rewriting if in addition the 
lauses11: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! i(x2) � b12: i(x1) � b; i(x3) � b; i(x2) � b; q(y1) � b; a � b! q(r(x3; y1)))) � bare also entailed by 
lauses from NC . Clause 11 is a synta
ti
 tautology and
lause 12 is subsumed by 
lause 2.5 SummaryIn summary, 
ontextual rewriting is 
ostly but it helps solving diÆ
ult problems.Our 
urrent implementation o�ers reasonable room for improvement. For exam-ple, in Spass, 
ontextual rewriting is implemented independently from unit andnon-unit rewriting su
h that in 
ase of non-appli
ability of the rule, the same
he
ks and indexing queries are repeated.For subsumption ni
e �lters are known to dete
t non-appli
ability. It wouldbe worthwhile to sear
h for su
h �lters for 
ontextual rewriting. Eventually, weneed to better understand why we lost surprisingly many problems from theTPTP. One possible answer 
ould be that the standard Spass heuristi
s for in-feren
e sele
tion don't work well anymore with 
ontextual rewriting. The Spassversion des
ribed in this paper and used for the experiments 
an be obtainedfrom the Spass homepage (http://spass-prover.org/) following the proto-type link.Referen
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