
Generation of Language-Specific Transformation
Rules based on Metamodels

Konrad Voigt

SAP Research CEC Dresden, Chemnitzerstr. 48, 01187 Dresden, Germany
konrad.voigt@sap.com

Abstract. Model Transformations are the core of Model Driven De-
velopment. They are used in many areas (e.g. to bridge different levels
of abstractions, synchronize inter-model commonalities or realize model
evolution) and supported by well-established standards such as Query,
View and Transformation (QVT). Nowadays, transformations have to be
defined manually which is an error-prone, complex, and time-consuming
task. In this paper we address the problem of manual definition and
describe an existing approach for an automatic mapping of metamodels
and generation of rules for transformation languages. We target the use
of the generated rules in order to provide guidance and support during
the definition process. However, this novel approach lacks of usability,
completeness and quality. Therefore, we identify the need for improving
this approach and outline how automatic mapping concepts apply to the
area of Service Engineering in context of the Internet of Services (IoS).

Key words: Model transformation, model matching, transformation
generation.

1 Research Problem

The Internet of Services (IoS) envisions a common network infrastructure con-
necting people, goods and services. Therefore, the IoS combines approaches such
as Service Description Framework, Service Level Agreement, Service Oriented
Architecture (SOA), etc. The main concept in SOA is an interaction of loosely
coupled building blocks; so-called Services. Baida et al. [2] define among other
things an e-Service consisting of a business model, a business process, and a
technical process. Consequently, we see the description of a Service as a set of
different models with different levels of abstraction.

These different models have to be handled and integrated. One approach for
this problem is to use a Model Driven Architecture (MDA) approach to provide
standards for model definition and handling. We propose to use MDA concepts to
define a services models. Each model is concerned with a specific dimension of a
Service such as: description, workflow, data, user interface, and rules. We choose
these dimensions based on the Zachman-Framework [11] adapting them to an
SOA-environment. We also use the separation of each dimension into four levels
of abstraction. The resulting concept can be seen as a matrix where a column

2

represents a specific dimension and each row represents a level of abstraction.
Figure 1 depicts this matrix whereas each cell has a specific model assigned to
it. This matrix allows to follow a divide-and-conquer approach and provides a
structured view on the models describing a Service since each model is represented
in one cell.

Fig. 1. The Structure of Models of the Inter-Enterprise Service Engineering (ISE)
Framework

Mindmap

UML
Component

tba

WSDL

Scope Model

Business Model

Logical Model

Technical Model

Mindmap

UML
Activity

BPMN

BPEL

Description Workflow

Mindmap

UML
Class

UML
Ontology Profile

OWL

Data

Mindmap

UML
Use Case

Diamodl

CAP

User-Interface

Mindmap

OCL

tba

SWRL

Rules

The resulting framework is composed of twenty models which requests for
model transformations. Inter-model commonalities as well as the representations
of artifacts on different levels of abstraction have to be considered. An example
is the models of the workflow column. In our approach we propose to describe
processes in simplified (e.g. without the modeling of data flow) UML-Activity
diagrams, then to refine them in a BPMN diagram and finally further to enrich
them within BPEL. Each of these representations contains the same artifacts on
different levels of abstraction; in order to implement the mapping between the
different levels a model-to-model transformation is needed. Another example is
the need for synchronization between data artifacts defined in the data column,
data structure defined for user interaction (user-interface column) and data
artifacts defined in BPMN for modeling a data flow. Again a model-to-model
transformation is needed to implement the mapping between the model elements
mentioned.

Following the MDA-Guide [9] a model-to-model transformation is defined as:
”the process of converting one model to another model of the same system”. We
will refer to model transformations as model-to-model transformations. The area
of model transformation has seen significant development during the last years.
Czarnecki and Helsen investigated and classified in 2003 different languages for
model transformations in a feature-based approach [4]. In 2005 the OMG released
the specification of Query, View and Transformation (QVT) [10] as a standard
for metamodel- and rule-based model transformation.

3

Nowadays, many implementations of QVT-engines allow model transforma-
tion via an interpretation of a transformation rule model. Furthermore suitable
tools have been developed supporting the definition of model transformations
with well-known concepts like: context-sensitive content assists, error-detection
and highlighting, and debugging capabilities. Nevertheless, like in the area of
software engineering [3], models inherit a certain complexity from their problem
space which also applies to model transformations. Therefore, a transformation
definition is a complex and challenging task. Imagine the mapping of metamodels
like UML, BPMN or XML-Schema with forty and more elements, along with five
and more attributes per element. This leads to more than forty transformation
rules (considering at least a one-to-one mapping of all elements). This is an
error-prone, time-consuming and challenging task requiring expertise in the area
of model transformation. To cope with this complexity the need for guidance and
support arises.

2 Related Work

Fabro and Valduriez [6] are the only ones tackling this problem by proposing a
semi-automatic matching of metamodels resulting in a so-called Weaving Model.
This model represents the mapping between two models by linking corresponding
model elements. Their iterative matching approach uses different matching
techniques like linguistic and structural similarity which they combine with
heuristics. Their approach results in a huge number of generated ATL-rules
compared to manual rule definition. In one case their strategy generates 250 lines
of textual ATL-rules; compared to four rules specified manually. This amount
of rules shows the complexity of further manual refinement. They admit that
their approach does not cover the complete mapping and outline the need for
improving the generated transformation model and rules.

Besides them other approaches exists like in the areas of data and schema
integration [1][5][8]. Especially the COMA++ approach seems promising for an
adaption in the area of model transformation. COMA++ defines a combined
matcher framework based on heuristics and matcher like instance-based and reuse-
oriented. Lopes et al. mention in their proposal of a transformation language
[7] the future work of applying concepts of schema matching to the area of
model transformation. We intend to follow this proposal using the results of the
COMA++ research.

3 Work Plan

Starting from the work of Fabro and Valduriez we intend to pursue a twofold
approach:

1. An improvement of the generated rules by quantity and quality and re-
search on a meaningful application to the process of model transformation
development.

4

2. A development of a tool providing support and guidance for the process of
transformation development.

We propose, as a first step, research on a classification of model transformations
scenarios. We start our classification by proposing two categories of scenarios:
(1) a feature-driven one and (2) a set/similarity-based one. The feature-driven
classification aims at developing a hierarchy of typical model transformation like
bridging levels of abstraction, in-place transformation for updating a model or
perfective model evolution transformation. The second one provides a notion
for the comparison of metamodels to be transformed based on their elements.
Interpreting all elements of one metamodel as a set a distance function has to be
defined comparing the metamodel element sets regarding their overlap.

Following these possible classifications, we intend to identify transformation
use cases within a special domain denoted by the different classes. Improved
matching concepts with respect to the identified classes can be applied following
the classification. In order to improve the matching concepts we plan to adapt the
schema (ontology) matching concepts given by COMA++. We want to adapt the
matchers algorithm and reuse the given concepts. We expect effort regarding the
adaption of the different matchers, because of the differences between the model
transformation and schema matching. Furthermore we propose to include user-
interaction like a clustering of models to be transformed, and learning algorithms
based on user decision regarding the reuse of existing rule definition.

The resulting generic mapping model contains the correspondences between
model elements according to the mapping. This model serves as a base for a model
transformation into executable transformation models and rules. By combining
schema matching and model transformation we expect fewer rules to be generated
with a higher quality regarding the usability.

Finally we combine the results providing assistance for model transformation
engineering by defining transformation rules proposals based on user interaction.
We don’t intend to replace the manual definition of transformation rules; instead
we want to support and guide the rule-definition process to enable a structured,
reuse-oriented and flawless transformation definition.

Acknowledgments

This work is done in context of a doctoral work at the chair of Software Technology
of Prof. Uwe Aßmann at the Technical University of Dresden. The project was
funded by means of the German Federal Ministry of Economy and Technology
under the promotional reference ’01MQ07012’. The author takes the responsibility
for the contents.

References

1. David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema
and ontology matching with COMA++. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 906–908,
New York, NY, USA, 2005. ACM.

5

2. Ziv Baida, Jaap Gordijn, and Borys Omelayenko. A shared service terminology
for online service provisioning. ICEC ’04: Proceedings of the 6th international
conference on Electronic commerce, pages 1–10, 2004.

3. Fred Brooks. No silver bullet. IEEE Computer, 20(4), 1987.
4. Krzysztof Czarnecki and Simon Helson. Classification of model transformation

approaches. In OOPSLA’03 Workshop on Generative Techniques in the Context of
Model-Driven Architecture, 2003.

5. Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, and Pedro Domingos.
iMAP: discovering complex semantic matches between database schemas. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 383–394, New York, NY, USA, 2004. ACM.

6. Marcos Didonet Del Fabro and Patrick Valduriez. Semi-automatic model integration
using matching transformations and weaving models. SAC ’07: Proceedings of the
2007 ACM symposium on Applied computing, pages 963–970, 2007.

7. Denivaldo Lopes, Slimane Hammoudi, Jean Bzivin, and Frdric Jouault. Gener-
ating transformation definition from mapping specification: Application to web
service platform. In Advanced Information Systems Engineering: 17th International
Conference, CAiSE 2005, 2005.

8. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In The VLDB Journal, pages 49–58, 2001.

9. OMG. Model Driven Architecture Guide, Version 1.0.1. Object Management Group,
June 2003. omg/03-06-01.

10. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
Object Management Group, 2005. ptc/05-11-01.

11. John A. Zachman. A framework for information systems architecture. IBM Syst.
J., 26(3):276–292, 1987.

