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ABSTRACT

Specific distance measures have been proposed in order to
identify video sequences that are very similar over time but
not identical (e.g. repeated takes). One such measure is based
on the Longest Common Subsequence (LCSS) algorithm, a
variant of the string edit distance. After building a match-
ing matrix back-tracking is performed to identify the longest
common subsequence. The modification for video sequence
matching is that all sufficiently long subsequences that have
gaps below a certain threshold need to be found. This in-
creases the effort for back-tracking from linear to quadratic
in the average case. In this paper we propose to eliminate
the back-tracking step and integrate finding of the matching
subsequences into the matrix creation with only linear effort.

1. INTRODUCTION

A collection of video material often has a high degree of re-
dundancy, not only due to the reuse of identical video seg-
ments, but also because there are segments that show nearly
identical content. Examples are several takes of a scene in
rushes material or an event recorded from several very simi-
larly positioned cameras, which is a typical case in news cov-
ered by different broadcasters. These video segments do not
only share similar static properties (e.g. color distribution in
a frame), but are also similar over time (e.g. camera motion,
movement of actors and objects). But they are not identi-
cal: objects are at slightly different positions and the tem-
poral alignment of the segment may vary, i.e. there may be
omissions and insertions.

A measure based on the Longest Common Subsequence
(LCSS) algorithm for the distance between two feature se-
quencesA andB of videos has been proposed in [1]. The
LCSS algorithm is a variant of the string edit distance, sup-
porting gaps in the match. The authors of [2] apply the LCSS
algorithm to matching trajectories in 2D space and introduce
the following thresholds: a real numberε that defines the
matching threshold between the non-discrete elements of the
sequences and an integerδ that defines the maximum offset in

the positions to be matched. In order to adapt the LCSS algo-
rithm to matching video segments the following modifications
are made. As each element of the sequence is a multidimen-
sional feature vector, a vectorθsim = (ε1, . . . , εK) is defined,
that contains the matching thresholds for allK features. Sim-
ilarly a vectorW = (w1, . . . , wK) representing the relative
weights (

∑
k wk = 1) of the features is introduced. The off-

setδ introduced in [2] is not relevant for this problem, as the
matching subsequences can be anywhere in the parts. Instead
the maximum gap sizeγ of the subsequence is introduced as
constraint.

2. THE BACK-TRACKING STEP

In many dynamic programming algorithms, including the orig-
inal LCSS algorithm (cf. [3]), am × n matrix (wherem and
n denote the lengths of sequencesA andB respectively) is
built from matching the elements of the input sequencesA
and B in a first step, taking timeO(nm). An example of
such a matrix is shown in Figure 1. In the original LCSS al-
gorithm back-tracking of the longest sequence is performed,
starting at the lower right corner of the matrix and following a
possible sequence to the upper left corner in timeO(m + n).
In our algorithm such a sequence might have gaps> γ thus
we need to find alternative sequences that might have smaller
gaps. Thus we (i) have to follow all equally long paths (i.e.
if at any cell in the matrix going up or left yields and equally
long result we have to try both) and (ii) we have to try all suf-
ficiently long sequences (i.e. follow all sequences that end in
a value≥ θlen in the bottom row or right column).

The consequence of (i) is that a back-tracking step takes
in the worst caseO((m + n) log(m + n)), as we have to fol-
low two possible paths at every cell in the matrix. This worst
case happens when the distance between two similar station-
ary sequences is determined and each element ofA matches
each element ofB. The consequence of (ii) is that back-
tracking has to be done form + n sequences. In practical
cases of course not all sequences have a length≥ θlen. How-
ever, asθlen � m ≈ n for longer sequences, the number
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Fig. 1. Simplified example of the matching matrix (“c table”)
of LCSS matching (adopted from [3]). The values of the one
dimensional feature sequences (shown at the top and on the
left) are matched with thresholdsθsim = 0.5 andθlen = 3.
The LCSS algorithm yields the sequence shown with empha-
sized border as the longest match. However, if we require a
maximum gapγ ≤ 1, this sequence is not a valid result, as
there is a gap of two between the first two matching elements.
Instead the sequences shown in gray are considered, which
are results of the same length that additionally satisfy the gap
constraint.

of sequences for which back-tracking has to be performed is
only reduced by a small constant factor (typically around 5).
Thus the total effort for the back-tracking step in our algo-
rithm is in the average caseO((m + n)2) and in the worst
caseO((m + n)2log(m + n)).

In addition we might get partly overlapping matches that
need to be post-processed, adding an additional effort ofO(k2)
for the (usually small) numberk of matches.

3. BUILDING THE RESULT SEQUENCE DURING
MATCHING

For our problem we are not interested in the exact alignment
of the two sequences, but only in matching subsequences that
have gaps≤ γ. We can thus eliminate the costly back-tracking
step during the construction of the matching matrix as fol-
lows. This matrix is built starting in the upper left corner, ei-
ther line-by-line or column-by-column (depending on whether
we matchA to B or B to A). We assume without loss of
generality (the distance is symmetric) that we are working
column-by-column. We keep a list of matching subsequences
found so far. For every linei we store the column index of
the last matchjlast found on this line and the matching sub-
sequence this match belongs to.

Every time we encounter a matching element, we check
whether it continues one of the matching subsequences. If
this is the case, the city block distanceL1(·) between the

new match at(i, j) and any of the previous matches must
be≤ (γ + 2)1. Thus we find the closest match in the list
of matches per line. We only have to check the distances
L1((i, j), (ilast, jlast)) for ∀ilast ∈ [i − (γ + 1), i], i.e. this
check can be done in constant time (withγ being typically
very small). The new matching element is added to the clos-
est matching subsequence and the list entries are updated.
These checks and updates are done for every matching ele-
ment. In the average case we can assume that each element of
A matches none or one fromB, yieldingmin(m,n) matches
and an effort for the checks ofO(min(m,n)). In the worst
case described above, where each element ofA matches every
element ofB the effort isO(mn).

As the identified matching subsequences could be too short
(length≤ θlen) we need to post-process the list of matching
subsequences and remove the short ones, requiring an effort
of O(k).

4. CONCLUSION

When applying the LCSS algorithm to matching video se-
quences the maximum length of gaps needs to be constrained.
The solution of the algorithm is thus not the single longest
common subsequence but all sufficiently long subsequence
with gaps shorter then a threshold. This modification increases
the effort for the back-tracking step.

In this paper we propose to eliminate the back-tracking
step but find the matching subsequences while creating the
matching matrix. This requiresO(min(m,n)) in the average
case instead ofO((m + n)2) for the back-tracking. In the
worst case the effort increases toO(mn), but still less than
O((m + n)2log(m + n)) for back-tracking in the worst case.
In addition the effort for post-processing thek matching sub-
sequences is reduced fromO(k2) to O(k).
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1The value 2 comes from the fact that subsequent matches are connected
diagonally, which corresponds to aL1 distance of 2.


