
Niels Lohmann, Karsten Wolf (Hrsg.)

Algorithmen und Werkzeuge für Petrinetze

15ter Workshop, AWPN 2008
Rostock, 26.-27. September 2008

Proceedings

Preprints CS-03-08



Herausgeber:

Niels Lohmann, Karsten Wolf
Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{niels.lohmann, karsten.wolf}@informatik.uni-rostock.de

ISSN 0944-5900 (Preprint CS-03-08 Universität Rostock)
ISSN 1613-0073 (CEUR Workshop Proceedings)
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Vorwort

Seit 1994 bietet der Workshop Algorithmen und Werkzeuge für Petrinetze ein ge-
meinsames Forum für Entwickler und Anwender petrinetzbasierter Technologie.
Außerdem bildet er dank des traditionell geringen finanziellen Aufwands für die
Teilnahme und der deutschsprachigen Ausrichtung eine Möglichkeit für Nach-
wuchswissenschaftler, Erfahrungen bei einer wissenschaftlichen Veranstaltung zu
sammeln.

Im Jahr 2008 findet der Workshop in seiner ten Ausgabe erstmals in
Rostock statt. Veranstalter ist wie immer die Fachgruppe Petrinetze und ver-
wandte Systemmodelle der Gesellschaft für Informatik.

Es gab 16 eingereichte Beiträge, die alle nach kurzer Prüfung durch die Or-
ganisatoren in das Programm aufgenommen wurden. Ein Begutachtungsprozess
fand dagegen, wie auch in den vergangenen Jahren, nicht statt. Wir hoffen, dass
die Vorträge eine gelungene Grundlage für rege Diskussionen bieten.

Die Organisatoren danken der Fakultät für Informatik und Elektrotechnik
der Universität Rostock für die finanzielle Untersützung der Ausrichtung.

August 2008 Niels Lohmann
Karsten Wolf



Steering Committee

Jörg Desel (Stellvertreter) Katholische Universität Eichstätt-Ingolstadt
Ekkart Kindler Technical University of Denmark
Kurt Lautenbach Universität Koblenz-Landau
Robert Lorenz Universität Augsburg
Daniel Moldt Universität Hamburg
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Oclets – scenario-based modeling with Petri nets

Dirk Fahland!

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany,

fahland@informatik.hu-berlin.de

Abstract. Scenario-based specifications are used for modeling highly-
complex, distributed systems in terms of partial runs (scenarios) the
system shall have. But it is difficult to derive an implementing, oper-
ational model from a given set of scenarios, especially if concepts like
anti-scenarios which must not occur are used. In this paper, we present
a novel model for scenario-based specifications with Petri nets including
anti-scenarios; we provide an operational semantics for our model.

1 Operational semantics for scenario-based specifications

The paradigm of scenarios is widely accepted in protocol specifications using
message-sequence charts (MSCs); behavior of highly-complex distributed sys-
tems is decomposed into reasonably sized artifacts called scenarios. Some classes
of MSC specifications can be transformed into Petri nets [7], but usually an
implementation has to be checked against an MSC specification. Life-sequence
charts (LSCs) [5] extend the MSC paradigm by adding behavioral precondi-
tions, anti-scenarios, and annotations to scenarios and single actions for enforc-
ing their occurrence in the system. LSCs have a trace-based semantics (a set of
charts accepts or rejects an execution trace) but, to our knowledge, there exists
no complete operational semantics for the entire LSC language. Like for MSCs,
subclasses of LSCs can be transformed into automata [4].

In this paper, we present an extension of Petri nets that with the key concepts
of LSCs. Our model has operational semantics: For every set of scenarios, we can
compute the branching process that implements the specification, extending the
formal approach of [1]. Due to the very nature of Petri nets, we also introduce
the notion of a local resource to LSC-style scenario-based specifications. Com-
pared to other approaches for scenario-based specifications with Petri nets [6],
we contribute the anti-scenario which explicitly forbids certain behavior in the
system. In [3], we explained how our approach can be used for modeling adaptive
processes in disaster management.

We will first sketch the key concepts of our approach in Sect. 2. We then
explain our ideas related to a formal semantics for our model in Sect. 3 which we
close with an outlook on future work. We assume the reader to be familiar with
Petri nets and their branching time semantics in terms of branching processes;
Esparza et al give a good introduction to these concepts in [2].
! The author’s work is funded by the DFG-Graduiertenkolleg 1324 “METRIK”.
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2 Oclets - scenario-based specifications with Petri nets

A scenario specifies a possible course of (future) actions and the therein in-
volved resources in the context of a larger system. Whether a scenario suits a
given situation can be subject to further conditions. In our case, we conceive
and formalize a scenario as a partial, partially ordered run (a labeled causal net)
with a behavioral precondition. We define a system model as a set of scenarios de-
scribing sequentially connected, concurrent, mutually exclusive, and overlapping
behavior. The system behavior shall be computed by composing its scenarios.

We formalize scenarios in our Petri net class of oclets. Let Names = Actions !
Resources denote a set of labels.

Definition 1 (Oclet). An oclet o = 〈P, T, F, !, pre, type〉 is a labeled, safe,
elementary causal net 〈P, T, F, !〉 that labels places with resources and transitions
with actions; o has a non-empty, precondition pre ⊆ (P ∪T ), that is causally
closed (∀x ∈ pre :: •x ⊆ pre), and a type ∈ {normal , anti}. The set (P ∪T ) \ pre
is the contribution of o.

A normal oclet describes a partial run that may occur in the system. An anti-
oclet describes a partial run that may not be completed in the system; therefore
an anti-oclet contributes exactly one place or transition (that must not occur).
Figure 1 shows some (technical) example oclets. The system {o1, . . . , o5} shall
yield the behavior that is formalized in the occurrence net β5. The behavior
of a set of oclets is constructed by repeatedly composing the oclets with a la-
beled occurrence net. An ‘initial’ occurrence net β0 represents the initial state;
composing βi with an oclet o yields an occurrence net βi+1.

Roughly, a normal oclet o is composed with a labeled occurrence net β, β⊕ o
by building the union of the nets, and merging two transitions (places) if they
are labeled equally and have equally labeled predecessors. This is only allowed
if o’s precondition is found in β; all nodes of o’s precondition are merged with
nodes of β. To compose an anti-oclet o with β, β) o, first compose o like for
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Fig. 1. Some example oclets o1, . . . , o6 and three labeled occurrence nets β0, β3, β5.
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normal oclets, then remove the contribution of o and all successor nodes. Anti-
oclets have priority: a node that was removed by an anti-oclet o− is not added
again by some other oclet o+ as it is immediately removed by o− again.

Consider the example of Fig. 1 with the initial occurrence net β0 being a
single place labeled a. Composing β0 with oclet o1, yields β1 := β0⊕ o1 which
is isomorphic to o1. β2 := β1⊕ o2 adds the post-place c to transition U and
transition V with post-place d. In β3 := β2⊕ o3, transition W is added in conflict
to V; see Fig. 1.

To compute β4 := β3⊕ o4, o4 has to be added twice because there are two
(conflicting) places d. Composing β4 with anti-oclet o5 removes f and successors
Y and g from the branch that depends on W; the resulting occurrence net β5 :=
β4" o5 is depicted in Fig. 1. Alternatively, composing with anti-oclet o6 removes
Y and successor g, but leaves f. The runs of β5 are the runs of {o1, . . . , o5}, the
runs of β6 are the runs of {o1, . . . , o4, o6}.

This informally sketched approach for scenario-based system specifications
succeeds only if we can prove its formal consistency and show that branching
processes (or rather a certain kind of labeled occurrence nets) are closed under
our composition operations ⊕ and ".

3 Formalizing oclets with canonically named nodes

Our oclet composition requires to ask frequently which nodes of an oclet o and
an occurrence net β describe identical actions or resources, and, hence, must
be merged. Formalizing this identity, and operations on labeled nets becomes
tedious because two isomorphic nets may have disjoint, or overlapping sets of
nodes. Identity can only be defined by relating labels of nodes to labels of neigh-
boring nodes; this leads to graph isomorphism problems. Esparza and Heljanko
use a formalization called canonically named nodes for formalizing branching
processes of (safe) Petri nets [1]. In this section, we briefly sketch their key ideas
and explain how we extend canonically named nodes for our model.

Canonically named nodes determine their identity by their labels and their
predecessor: two nodes are identical if and only if they have identical labels
and identical predecessors. The following formalization captures this canonical
identity : The set C of canonically named nodes (C-nodes) is defined inductively
as the least set that contains 〈a, ∅〉 for every a ∈ Names and if x1, . . . , xn ∈ C
and a ∈ Names then 〈a, {x1, . . . , xn}〉 ∈ C.

C-nodes can be used as the base set of transitions and places of labeled Petri
nets. A node 〈act , X〉 ∈ C, act ∈ Actions is a C-transition with label act , a node
〈res, X〉 ∈ C, res ∈ Resources is a C-place with label res. We use C-nodes to
formalize a specific class of labeled Petri nets.

Definition 2 (C-net). A labeled Petri net NC = 〈P, T, F, "〉 is a C-net iff P ⊆ C
are C-places, T ⊆ C are C-transitions, and for each x := 〈a,X〉 ∈ P ∪T holds:

1. if x is a C-place, then X is a set of C-transitions,
2. if x is a C-transition, then X is a set of C-places,
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3. X ⊆ P ∪T is the preset of x: y ∈ X iff (y, x) ∈ F , and
4. a is the label of x: !(〈a,X〉) = a.

In a C-net exist no two distinct, equally labeled nodes 〈a,X〉, 〈a, Y 〉 with the
same preset X = Y , this establishes the canonical identity of C-nodes which
we described above. This is a trivial mathematical consequence, but it has an
interesting interpretation in branching processes: any two different actions (tran-
sitions) or resources (places) either have a different name, or a different causale.
Esparza and Heljanko have shown that for this reason, C-net structures are a
good candidate to formalize branching processes (BP) of (safe) net systems [1],
where the nodes of a net are labels to the nodes of the branching process.

Our oclet approach has a similar aim: construct branching-time artifacts that
describe the behavior of a system. The difference is that we do not construct
our artifacts from a net structure, but from oclets. Our construction does not
only extend a branching process by adding a single transition (and its post-
places) whenever the transition is enabled as in classical branching processes.
The precondition of an oclet can be arbitrarily complex, and added nodes may
have to be merged with the net. This means our formalization has to consider
the causal structure of a labeled occurrence net and of an oclet together. To this
end, we extend the C-node approach of [1] as follows.

Operations on C-nets and sets of C-nodes The structure of a C-net NC =
〈P, T, F, !〉 is completely encoded in its nodes, the information in its arcs F is
redundant. Thus, the nodes XC

N =df P ∪T of a C-net NC are sufficient to recon-
struct F and, hence, NC . Because any two isomorphic C-nets are identical, each
(normal) Petri net N has a unique, isomorphic C-net NC which is completely
encoded in XC

N .
This greatly simplifies our composition operation: the union of two sets

of C-nodes ‘merges’ canonically identical nodes by their identity. If we con-
sider the sets XC

o1
and XC

o2
of C-nodes of o1 and o2 in Fig. 1, the composition

βC2 := (βC0 ⊕ oC1 )⊕ oC2 can be rephrased as the union XC
β2

= XC
β0
∪XC

o1
∪XC

o2
. For

instance, 〈a, ∅〉 and 〈U, {〈a, ∅〉}〉 occur both in oC1 and oC2 . But this approach does
not work for o3; oC3 contains 〈c, ∅〉, while βC2 contains 〈c, {〈U, {〈a, ∅〉}〉}〉.

Our proposed solution is to introduce variables into nodes with empty pre-
set, e.g. 〈c, v〉 such that the minimal nodes of an oclet which constitute the
begin of a scenario can be assigned to other ‘compatible’ nodes ‘further down’
the occurrence net during the composition.

Let Var denote an (infinite) set of variables. The set A of canonically named
abstract nodes (A-nodes) differs to C in its induction base: For every a ∈ Names
and every v ∈ Var , 〈a, v〉 is an A-node, and if x1, . . . , xn ∈ A and a ∈ Names
then 〈a, {x1, . . . , xn}〉 ∈ A. Correspondingly, the class of A-nets can be defined;
the variable takes the role of the empty pre-set, that is, a node 〈a, v〉 of an A-net
NA has no predecessor in NA. Wlog. for all 〈a1, v1〉, 〈a2, v2〉 ∈ XA

N holds that
v1 = v2 implies a1 = a2.

With this convention in mind, we transfer the pre-set notation •(.) from C-
nodes (or Petri nets) to A-nodes; we set •〈a, v〉 =df v. This canonically lifts
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all other notions like causal relation ≤, conflict !, and concurrency || from
Petri nets and C-nodes to A-nodes. As a consequence, any two distinct nodes
〈a1, v1〉, 〈a2, v2〉, v1, v2 ∈ Var are concurrent.

We introduce variables as place-holders for the pre-set of a C-node. Thus an
assignment α maps each variable v to a (possibly empty) set α(v) of C-nodes,
α : Var → 2C . If xA ∈ A, then xA [α] denotes the C-node that is obtained from
xA by simultaneously replacing every occurrence of each variable v ∈ Var with
α(v). This notion canonically lifts to sets XA ⊆ A.

There is an important technical detail, that we have to consider: Let N be
a safe, causal, labeled, elementary Petri net and let XA

N be the corresponding
set of A-nodes of N . An assignment α is feasible on XA

N iff for any two distinct
minimal nodes 〈a1, v1〉, 〈a2, v2〉 ∈ XA

N holds: 〈a1, α(v1)〉 || 〈a2, α(v2)〉. A feasible
assignment guarantees that two concurrent nodes (like b and d of o4 in Fig. 1)
remain concurrent under the assignment.

We may now formalize our oclet composition operations.

Definition 3 (Enabling assignment). Let βC be a labeled C-occurrence net,
let oA be an A-oclet with precondition preA. An α is enabling for oA in βC iff α
is feasible and preA [α] ⊆ XC

β . Let enabled(oA, βC) denote the set of all enabling
assignments for oA in βC.

Wlog. the set enabled(oA, βC) contains no two assignments α that differ only on
variables which do not occur in oA.

As an example consider o1 and β0 of Fig. 1: preAo1
= {〈a, v1〉}, XC

β0
= {〈a, ∅〉}.

The assignment that maps v1 to ∅ is enabling for o1 in β0. Oclet o4 has two
qualitatively different enabling assignments in β3.

A further notion which we need for the composition is the causal past (x) of
a C-node x with (x) =df {y ∈ C | y ≤ x}; this notion also lifts to sets of C-nodes.

Definition 4 (Oclet composition). Let βC be a labeled C-occurrence net. Let
oA be an A-oclet with enabled(oA, βC) = {α1, . . . , αk}.

If oA is a normal oclet, then the composition of βC with oA yields the C-net
βC2 =df βC ⊕ oA with XC

β2
=df XC

β ∪(XA
o [α1]∪ . . .∪XA

o [αk]).
If oA is an anti-oclet with contribution {yo} = XA

o \ preAo , then the com-
position of βC with oA yields the C-net βC2 =df βC , oA with XC

β2
=df {x ∈

XC
β |(x)∩(yo [α1]∪ . . .∪ yo [αk]) = ∅}.

Consider oA1 and βC0 of our example; XA
o1

= {pA1 , tA1 , pA2 } with pA1 = 〈a, v1〉,
tA1 = 〈U, {pA1 }〉, pA2 = 〈b, {tA1 }〉. The enabling assignment {α} = enabled(oA1 , βC0 )
yields XA

o1
[α] = {pC1 , tC1 , pC2} with pC1 = 〈a, ∅〉 etc. Thus the composition βC0 ⊕ oA1

yields exactly XA
o1

[α], merging the two places labeled a.
The composition with an anti-oclet is formally more involved, but straight

forward: All nodes of βC5 in Fig. 1 including the greyly shaded ones constitute
βC4 where oA5 has one enabling assignment {α} = enabled(oA5 , βC4 ) mapping the
variables of 〈b, v1〉 and 〈W, v2〉 of oA5 to {〈U, {pCa }〉} and {〈c, {tCU}〉} of βC4 , re-
spectively. The contributed node of oA5 is yo5 = 〈f, {tAX }〉; α maps yo5 to the
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right-most node 〈f, {tCX,2}〉 = yo5 [α] of βC4 . All nodes of βC4 which have this node
in their causal past are to be removed, i.e. 〈f, {tCX,2}〉 itself and all nodes reachable
from it via the flow-relation. This results in βC5 .

With this formalization one can show that labeled C-occurrence nets are
closed under composition with ⊕ and $. From the set theoretic definitions of
$ follows that (β$ o1)$ o2 = (β$ o2)$ o1 for any C-occurrence net β and any
two A-anti-oclets o1 and o2. (β⊕ o1)⊕ o2 = (β⊕ o2)⊕ o1 for normal oclets o1, o2

holds only if o2 does not introduce new enabling assignments for o1. The behavior
of a set of oclets is defined as its C-unfolding :

Definition 5 (C-unfolding). Let O be a set of oclets with {o1, . . . , ok} and
{ok+1, . . . , ol} being the normal oclets and the anti-oclets of O, respectively. Let
β0 be a C-occurrence net. The fixed point of the sequence 〈β0, β1, β2, . . .〉 with
βi+1 =df (βi ⊕ o1 ⊕ . . .⊕ ok)$ ok+1 $ . . .$ ol is the C-unfolding of O.

Summary and Future Work. Definition 5 concludes the presentation of our basic
model for scenario-based specifications with Petri nets. The presented expressive
means allow specifying complex behavior in terms of partial runs which may or
must not occur.

The basic model has already been implemented in the Graphical Runtime
EnvironmenT for Adaptive systems (GRETA). Next, we will introduce further
LSC features like hot and cold annotations for specifying which actions must
occur and which states are legal final states. Further, we plan to introduce the
notion of an interface to specify system composition, and system interaction.
Finally, the question which Petri net has the same behavior as a given set of
oclets shall be addressed.
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EWFN - A Petri Net Dialect for
Tuplespace-based Workflow Enactment

Daniel Martin, Daniel Wutke, and Frank Leymann
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University of Stuttgart

Universitätsstrasse 38, 70569 Stuttgart, Germany
{martin,wutke,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract Petri nets are a formalism for describing systems where inter-
actions between active components – so-called transitions – are modeled
as exchanges of tokens over passive places. Whether a transition may fire
is solely dependent on the availability of tokens in its incoming places;
similarly a transition forwards control to subsequent transitions by storing
tokens in their respective input places. This interaction model of strong
decoupling through local actions and local effects makes distributed sys-
tems modeled via Petri nets highly extensible. In this paper, we present
the syntax and semantics of a model that leverages the extensibility
provided by Petri nets for representing BPEL processes in a way that
enables their distributed and decentralized execution using tuplespace
middleware. Said middleware implements the proposed Petri net dialect
and therefore allows for direct, distributed execution of the modeled
processes.

Key words: Petri nets, Tuplespaces, Workflow

1 Introduction

Petri nets were originally designed as a model for arbitrary extensible computer
architectures i.e. machines that consist of many individual modules, each of them
responsible for a particular task of the overall system. Adding a new module has
no impact on the existing ones, their performance characteristics for instance do
not change at all. Three underlying design principles [1] facilitate this behavior: (i)
there is no central point of control, especially, there is no central clock. Moreover,
synchronizing clocks between modules is considered bad design and should be
avoided in any case. (ii) Each action is triggered locally, and has only local effect;
i.e. enabling of a transition only depends on its input places, firing of a transition
only effects its output places. There is no way to access the global state of the
system. (iii) Petri nets are inherently asynchronous in nature, communication
solely happens over local interfaces in a peer to peer like manner.

This work is supported by the EU funded project TripCom (FP6-027324)
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These principles build the foundation for our model, that is naturally based
on Petri nets. In their spirit, we define a set of individual components and the
communication between them. The communication middleware that facilitates
component interaction during execution of the model is based on tuplespaces,
since (i) they closely resemble the design properties of petri nets in terms of loose
coupling and asynchronous communication [2] and (ii) each element of a Petri
net can be directly mapped to an entity in a tuplespace based system (either a
component, a tuple or a tuplespace).

Tuplespace technology has its origin in the Linda coordination language,
defined in [3] as a parallel programming extension for programming languages for
the purpose of separating coordination logic from program logic, i.e. the actual
application code. The Linda concept is built on the notion of a tuplespace, a
piece of memory that is shared among all interacting parties. A user interacts
with the tuplespace by storing and retrieving tuples (i.e. an ordered list of typed
fields) via a simple interface: tuples can be (i) stored (using the write operation),
(ii) retrieved destructively (take) and (iii) non-destructively (read). Tuples are
retrieved using a template mechanism, e.g. by providing values of a subset of the
typed fields of the tuple to be read, similar to query by example [4] (“associative
addressing”). Using tuplespace-based coordination, execution of a component’s
computational logic is triggered when tuples matching the templates registered
by the respective component are present in the tuple space. Thus, the templates
a component uses to consume tuples and the tuples it produces represent its
coordination logic.

In this paper, we define a variant of Petri nets, called Executable Workflow
Networks (EWFN), specifically designed to represent BPEL workflows and being
executed “natively” on an extended, Linda-like tuplespace system. The basis
for our model are colored, non-hierarchical Petri nets (CPN) [5] and Boolean
networks [6]. We present an extension of the model presented in [7], building
upon the syntax and concentrate on the description of the semantics.

2 Syntax

Definition 1 (EWFN). An EWFN is a directed, bipartite graph

EWFN = (Σ, P, T, F, X, A,M0, Lw)

Σ = {CF,DATA× N,DATA× N× String, . . . , ε} denotes the set of tokens
(tuples). Note that Σ comprises two different categories of tokens: (i) control
flow tokens CF = (“CF”× S × N× N× N) with S = {“POS”, “NEG”, “FAIL”}
denoting either “positive”, negative (a.k.a dead path, a special form of “negative”
control flow necessary for dead path elimination in WS-BPEL) or control flow
initiated by a failure, and (ii) data tokens representing BPEL variables and
process meta-data. The three integer fields represent processID, instanceID and
scopeID in order to be able to distinguish between process models, process
instances and scopes that were initiated by event-handlers. Data tokens consist of
the generic data tuple (denoted as DATA = (“DATA”× N× N)) concatenated
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with variable definitions (in tuple form) from the respective process. We represent
arbitrary structured data by serializing its tree-based representation (e.g. in
the form of an XML-DOM [8]) into nested tuples. Furthermore, Σ contains the
“empty” tuple ε used to denote that actually no tuple is produced.

Note that like most other formalizations of Petri nets, our description is
based on multi-sets, we therefore define the operators +, −, etc. to be defined on
multi-sets as well.

P is a finite set of places and T a finite set of transitions such that P ∩T = ∅.
F ⊆ (T × P ) ∪ (P × T ×R), with R = {read, take} is a set of arcs known as

flow relation. The set F is subject to the constraint that no arc may connect two
places or two transitions. The arc types correspond to classical Linda operations
[3]: write (a.k.a out) arcs go from transitions to places (i.e. are member of the
set (T × P )), whereas read (a.k.a rd) and take (a.k.a in) arcs go from places to
transitions, with arc inscription R denoting the type of arc. Take arcs are known
from classical Petri nets (i.e. they destructively consume tokens from places).
Read arcs (a.k.a test arcs) [9] in contrast allow a transition to non-destructively
read a token from a place.

X is a set of templates in tuple form, that may either contain a wildcard (#)
or a concrete value as element.

A : (P×T×R) → X is a function that assigns templates to incoming arcs of a
transition such that ∀(p, t, r) ∈ F ∩ (P ×T ×R) : A((p, t, r)) ∈ X. Sometimes, we
use A without the last parameter, as a shortcut to access the template assigned
to an arc pointing to a transition. In these cases, it is not important whether the
template is used in a read or a take operation.

M0 : P → ΣMS is an initialization function that assigns a multi-set over Σ
to places such that ∀p ∈ P : M0(p) ∈ ΣMS This function initializes the network
by assigning a multi-set of colored tokens to each place. It is also allowed that
the expression is missing, i.e. a place is initialized with the empty color multi-set.

Lw : (T × P ) → Σ is the Linda write function that determines the token
to be written by each outgoing arc of a transition. Writing an empty tuple (ε)
means that no tuple is written at all.

Definition 2 (tuple element). A tuple element TE is a tuple (p, tu), p ∈ P ,
tu ∈ Σ

Definition 3 (marking). A marking M ∈ TEMS is a multi-set (denoted as
MS) over tuple elements. Each place may contain one or more equal tuple elements,
thus the marking is defined as a multi-set. Note that we may also use M as a
function such that ∀p ∈ P : M(p) ∈ ΣMS

Definition 4 (Lr). Linda read operations (destructive and non-destructive) are
formalized as a function Lr : X × ΣMS → Σ. According to Linda’s semantics
[3], only one tuple is returned regardless the number of matching tuples. It is not
determined which tuple of the set of matching tuples is returned: Lr(te, tuMS) =
tu ∈ tuMS |tu ≈ te.
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≈ is a binary relation over the sets Σ and X, specifying if a template matches
a tuple: ≈ ⊆ Σ ×X.

(tu, te) ∈ ≈ iff |tu| = |te| ∧ (∀n ∈ 1.. |te| : πn(te) = πn(tu) ∨ πn(te) = #)

πi(t) returns a projection to the ith component of a tuple tu, |tu| denotes the
size of a tuples, i.e. the number of elements it contains.

A template therefore is a tuple that has either a wildcard (denoted by the #
character) or a concrete value on each position. A template matches a tuple iff
(i) both have the same number of elements and (ii) each concrete value in the
tuple equals the value on the same position in the template, or (iii) the template
has a wildcard on this position.

Definition 5 (strongly connected). An EWFN is called strongly connected
[10] iff for every pair of nodes (places and transitions) x and y there is a firing
sequence leading from x to y.

Similar to WF-nets [10], an EWFN has two special kinds of transitions: ta
and to. There is no arc pointing to ta, i.e. •ta = ∅, similarly, to has no outgoing
arcs, i.e. to• = ∅. If we add a place p! to the EWFN to connect transition to with
ta (i.e. •p! = {to} and t!• = {ta}), then the resulting net is strongly connected.
Transitions of type ta do not have a precondition, i.e. are formally allowed to fire
any time. We use such transitions to create process instances (i.e. create a CF
tuple with new instance id) in our model. Similarly, to does not have outgoing
transitions, this transition only consumes tokens from the EWFN and is used to
log process instance termination.

3 Semantics

A transition t ∈ T that executes a destructive read operation (a.k.a take) changes
marking M1 to M2 as follows:

∀p ∈ •t : M2(p) = M1(p)− Lr(A((p, t, “take”)), M1(p))

A transition t ∈ T that executes a non-destructive read operation in contrast,
does not have any effect on the marking:

∀p ∈ •t : M2(p) = M1(p)

The set of places that have arcs pointing to transition t is denoted as •t =
{p|pFt}, the set of transitions that have arcs pointing to place p is denoted as
•p = {t|tFp}, with F being the flow relation. t• and p• are defined accordingly.

Definition 6 (enabled). A transition t ∈ T is called enabled in marking M iff

∀p ∈ •t : Lr(A((p, t)), M(p)) *= ∅
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It is important to notice that the templates of read operations may overlap,
i.e. if two different transitions destructively read from the same place with
templates that (partially) match the same tuple, a conflict is created. According
to Linda semantics [3], this conflict is resolved non-deterministically. Clearly,
non-deterministic decisions are not suitable for workflow definitions. That is why
we extend the enablement rule of a transition in EWFNs to be “conflict free”
enabled. If there are transitions in an EWFN that cause conflicts, the EWFN is
not valid.

Definition 7 (conflict-free enabled). A transition t ∈ T is called conflict-free
enabled in marking M iff

t is enabled ∧
∀t′ ∈ (•t) • \ {t} : t′ is not enabled ∨
∀p ∈ •t ∩ •t′ : Lr(A((p, t)), M(p)) &= Lr(A((p, t′)), M(p)) ∨
(∀p ∈ •t ∩ •t′ : Lr(A((p, t)), M(p)) = Lr(A((p, t′)), M(p)) ∧

(p, t, “read”) ∈ F ∧ (p, t′, “read”) ∈ F )

Intuitively, a transition t is conflict free enabled if all other transitions t′

that share an input place with this transition are not enabled, they do not read
the same tuple or they read the same tuple but all issue non-destructive read
operations only on the place in question. Since we describe executable workflows,
conflict situations where the actual decision is not-determined and ultimately
lead to “confusion” [1] are not desired in our model.

The property of conflict-freeness however is defined on enablement of a
transition, i.e. it can only be checked during runtime. The following, alternative
definition defines conflict-freeness of a transition based on the templates of the
read operations it issues, thus allows to check for conflict-freeness of an EWFN
on the syntactical level, i.e. check an EWFN after transformation from BPEL.

Definition 8 (conflict-free transition). A transition t ∈ T is called conflict-
free iff

∀p ∈ •t ∀t′ ∈ p • \ {t} : A((p, t)) ∩A((p, t′)) = ∅ ∨
((p, t, “read”) ∈ F ∧ (p, t′, “read”) ∈ F )

A transition t is conflict-free iff the intersection of templates of the read
operations from different transitions reading from shared places with t is empty,
or every transition in question issues only non-destructive read operations. For
the reasons mentioned before, we enforce all transitions in an EWFN to be
conflict free.

Definition 9 (satisfied). A template te ∈ X is called satisfied on multi-set
tuMS iff Lr(te, tuMS) &= ∅. This can also be written as function Sat : X×ΣMS →
B.

Sat(te, tuMS) =
{

true, if Lr(te, tuMS) &= ∅
false, otherwise
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Definition 10 (fire). A transition t ∈ T that is enabled in marking M1 may
fire and change marking M1 to M2 as follows:

∀p ∈ •t ∪ t• : M2(p) = M1(p)−
∑

pn∈•t

Lr(A((pn, t)), M1(pn)) +
∑

pn∈t•
Lw(t, pn)

Note that in this definition, the operators +, − and
∑

are defined on multi-sets,
removing and adding tuples from the multi-set respectively.

We extend the template matching from Definition 4 to be able to understand
join variables as fields in a template tuple. Join variables allow to express a
restriction on the enablement of a transition such that it is only enabled if every
template of its read/take operations that use a join variable is satisfied and the
tuple elements on the position of the join variable are equal for each join variable.
Note that for the matching itself a join variable is treated as wildcard (!).

Consider the join of two threads of control flow of the same workflow instance
and process model, identified by the ids iid and pid respectively:

te1 = (“CF”, ?pid, ?iid)
te2 = (“CF”, ?pid, ?iid)

The transition using two separate take operations with te1 and te2 as templates
is only enabled if there are tuples available in both incoming places that have
equal values on their second and third position.

Definition 11 (join matching). A transition t ∈ T that uses join variables in
its template operations is enabled in marking M iff

∀p ∈ •t : Lr(A((p, t))[?∗/!], M(p)) &= ∅ ∧
∀p1, p2 ∈ •t ∃n ∈ N : πn(A((p1, t))) is join variable ∧
πn(A((p2, t))) is join variable ∧
πn(A((p1, t))) = πn(A((p2, t))) ∧

πn(Lr(A((p1, t)), M(p1))) = πn(Lr(A((p2, t)), M(p2)))

The treatment of join variables for the actual matching is expressed as [?∗/!],
meaning that every variable that starts with a ? is replaced by a wildcard (!).

For space reasons, we omit the usual definitions for firing sequence, reachability,
liveness, boundedness, safeness well structuredness and well-formedness [10] for
EWFNs.

4 Conclusion and Future Work

In this paper, we presented a tuplespace-based Petri net dialect that is natively
executable on a tuplespace system, i.e. each element of the Petri net has an
equivalent element or operation on a tuplespace. An EWFN therefore is a kind of
“byte code” for tuplespace-based applications; they can be designed using EWFNs
and then directly transformed to a running application.
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The main idea behind the development of EWFNs however is their use
in decentralized workflow enactment. We are working on a BPEL engine that
transforms BPEL files to EWFNs and then executes them based on tuplespaces.
Each tuplespace can reside on a different machine in the network, thus the engine
and even the execution of a single process instance may be arbitrarily distributed.
The key enabler for this architecture are Petri nets and their inherent properties
such as: no central point of control, local actions, local effects, asynchronous
interaction.
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Zusammenfassung Wir stellen ein abstraktes Modell zur Informationsübertra-
gung per Dialog vor. Dieses Modell erweitert das Grundmodell eines Kommuni-
kationssystems von Shannon um die Möglichkeit der Nachfrage innerhalb einer
Informationsübertragung. Für die Modellierung von Information und Informati-
onsbestandteilen führen wir Merkmal-Werte-Relationen ein. Die Steuerung des
Informationsflusses repräsentieren wir durch ein farbiges Petrinetz. Hierbei kon-
zentrieren wir uns auf einen Mensch-Maschine-Dialog und die Modellierung der
Funktionalität der Maschine. Eine zukünftige industrielle Anwendung liegt im
Bereich von Dialogsystemen zur Sprachverarbeitung.

1 Einleitung

Abbildung 1. Dialogische Umset-
zung des Shannonschen Kommuni-
kationsmodell von 1948 (Fig. 1 in
[3])

Mit der Erfindung des Telefons begann langsam
das Bedürfnis zu wachsen, den Prozess der Über-
tragung von Nachrichten und Information genau-
er zu verstehen. Ein Meilenstein auf diesem Weg
war Shannon’s 1948 erschienene Arbeit “A Ma-
thematical Theory of Communication” [3], in der
insbesondere ein mathematisches Modell für den
Umgang mit Störungen des Sender-Empfänger-
Kanals vorgestellt wurde. In vielen realen Situa-
tionen ist der Kanal zwar Störungen unterworfen,
funktioniert aber im Prinzip in beiden Richtungen so gut, dass eine wesentlich siche-
rere Informationsübertragung per Frage-Antwort-Dialog möglich ist (Abb. 1). Das Ziel
dieser Arbeit ist einen Beitrag zur mathematischen Modellierung der dialogischen Ver-
mittlung von Information zu leisten. Um die Zuverlässigkeit unseres mathematischen
Modells zu gewährleisten, ist es unsere Absicht, das Dialogmodell schließlich so genau
zu beschreiben, dass eine technische Realisierung möglich ist und zu Dialogsystemen
führt, die den zur Zeit üblichen Sprachdialogsystemen, wie sie etwa bei Hotlines oder
zur Durchführung telefonischer Überweisungen eingesetzt werden, weit überlegen sind.

Hierbei gehen wir top-down vor und behandeln in dieser Arbeit zwei grundlegende
Aspekte:

1. Die Modellierung von Information und Informationsbestandteilen durch Merkmal-
Werte-Relationen, und



16

2. die Steuerung des Informationsflusses durch ein farbiges Petrinetz.

Der erste Aspekt erlaubt es, bei der Repräsentation von Information mögliche Ka-
nalstörungen und Mißverständnisse angemessen zu berücksichtigen, und geht damit
über das verbreitete Modell semantic slots [1] hinaus. Die im zweiten Aspekt angespro-
chene Dialogsteuerung durch ein Petrinetz bildet einen vernünftigen formalen Rahmen,
in den prinzipiell alle bekannten Dialogstrategien integriert werden können.

2 Systemmodellierung

In diesem Abschnitt wird ein abstraktes Modell zur Informationsübertragung per Dia-
log vorgestellt. Da es möglich ist, dass übertragene Information nicht genau verstanden
wird, kann mit einer Nachfrage reagiert werden. Dabei wird eine Erwartung darüber ge-
neriert, was der Dialogpartner inhaltlich auf die Nachfrage antworten könnte. Zur Mo-
dellierung von Informationsbestandteilen führen wir sog. Merkmal-Werte-Relationen
(MWRen) ein. Um einerseits die Erwartung an den Inhalt übertragener Information
und andererseits die Sicherheit mit der Information verstanden wurde ausdrücken zu
können, können MWRen gewichtet werden. Zur Modellierung des Informationsflusses
im Dialog verwenden wir ein farbiges Petrinetz. Im Vergleich zu (bisher überwiegend
verwendeten) Automaten hat das Petrinetz Vorteile in Mächtigkeit, Kompaktheit, Les-
barkeit, Wartbarkeit und Erweiterbarkeit.

Es handelt sich um einen bisher noch vollständig abstrakten Entwurf als ersten
Schritt einer Top-Down-Modellierung. Wir interpretieren dabei die Transitionen als
abstrakte Funktionen. Dazu definieren wir formal, was die Eingabe- und Ausgabepa-
rameter dieser Funktionen sind (diese werden als farbige Marken in den Stellen model-
liert), interpretieren die Ein- und Ausgabewerte der Funktionen und beschreiben deren
grundsätzliche funktionale Abhängigkeit. Die Implementierung derselben, z.B. durch
Transitionsverfeinerung, ist Gegenstand weiterer Forschungsarbeiten.

Im folgenden Abschnitt werden die grundlegenden Notationen eingeführt. Im An-
schluss daran definieren und beschreiben wir den Begriff der Merkmal-Werte-Relation,
der für die Systembeschreibung im dritten Abschnitt von zentraler Bedeutung sein wird.

2.1 Grundlegende Notationen

Wir beginnen mit einigen grundlegenden mathematischen Notationen. Mit N bezeich-
nen wir die Menge der nicht-negativen ganzen Zahlen, mit R die Menge der reellen
Zahlen und mit R+ die Menge der nicht-negativen reellen Zahlen. Ein Wahrschein-
lichkeitsmaß π auf einer endlichen Menge A ist eine Abbildung π : A → [0, 1] mit∑

a∈A π(a) = 1. Für eine endliche Menge A bezeichnet A+ wie üblich die Menge al-
ler Worte über A. Eine Multi-Menge über einer Menge A ist eine Funktion m : A→ N.
Für ein a ∈ A bezeichnet m(a) die Anzahl von a’s in m. Für eine binäre Relation
R ⊆ A×A über einer Menge A ist R+ der transitive Abschluss von R. Eine binäre Re-
lation R über A heißt linkstotal, falls für jedes a ∈ A ein b ∈ A existiert mit (a, b) ∈ R.
Ein gerichteter Graph G ist ein Paar G = (A,→), wobei A eine endliche Menge von
Knoten und→⊆ A×A die Menge der Kanten ist. Wie üblich schreiben wir auch a→ b
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für (a, b) ∈→. Für a ∈ A bezeichnet •a = {a′ ∈ A | a′ → a} den Vorbereich und
a• = {a′ ∈ A | a → a′} den Nachbereich von a. Eine endliche Folge von Knoten
a0 . . . an (n ∈ N) mit ai−1 → ai ist ein Pfad von a0 nach an. Ein Pfad a0 . . . an mit
a0 = an ist ein Zyklus. Eine partielle Ordnung ist ein gerichteter Graph (A,<), wobei
< irreflexiv und transitiv ist. Eine Relation R über einer Menge A lässt sich als gerich-
teter Graph (A,R) auffassen und umgekehrt. Bekanntlich ist eine Relation R genau
dann zyklenfrei, wenn R+ irreflexiv, d.h. eine partielle Ordnung, ist.

Zur Modellierung der Dialogsteuerung verwenden wir farbige Petrinetze [2]. Aus
Platzgründen führen wir farbige Petrinetze hier nur semi-formal ein. Ein farbiges Pe-
trinetz besteht aus einer endlichen Menge von Stellen S, einer endlichen Menge von
Transitionen T (S ∩ T = ∅), einer Menge von Kanten F ⊆ (S × T ) ∪ (T × S) und
einer endlichen Menge von Farbmengen Σ. Eine Farbmenge C ∈ Σ lässt sich als Wer-
tebereich eines Datentyps auffassen. Einen Wert c ∈ C bezeichnet man als Farbe. Jeder
Stelle s ist eine Farbmenge C(s) zugeordnet, welche den Datentyp der Marken festlegt,
die in dieser Stelle liegen dürfen. Die initiale Markierung m0 legt fest, wieviele Mar-
ken welcher Farbe am Anfang in einer Stelle s liegen, d.h. m0(s) ist eine Multimenge
über C(s). Jede Kante e ist mit einem Ausdruck E(e) über einer Menge von Variablen
beschriftet, welche einen festgelegten Datentyp (gegeben durch eine Farbmenge) ha-
ben. Werden Variablen v eines Ausdrucks E(e) durch Farben b(v) der entsprechenden
Farbmenge evaluiert3, so ergibt E(e) eine Multimenge von Farben E(e) < b >. Tran-
sitionen t können mit Bedingungen G(t) beschriftet sein. Auch deren Variablen haben
eine Farbmenge als Datentyp und können durch eine Funktion b an Farben gebunden
werden. Durch eine solche Bindung evaluiert G(t) zu wahr oder falsch. Eine Transition
t kann in einer Markierung schalten, wenn eine Bindung b aller Variablen an Farben
existiert, so dass die Transitionsbedingung zu wahr evaluiert und in jeder (Eingangs-
)Stelle s mit (s, t) ∈ F mindestens die durch E(s, t) < b > beschriebenen Marken
liegen. Schaltet t bzgl. einer solchen Bindung b, so werden diese Marken aus solchen
Eingangs-Stellen entfernt, und in jeder (Ausgangs-)stelle s mit (t, s) ∈ F werden die
durch E(t, s) < b > beschriebenen Marken hinzugefügt.

Wir werden Informationsbestandteile durch Marken geeigneter Farben modellieren.

2.2 Informationsbestandteile: Merkmal-Werte-Relationen

Grundsätzlich eignet sich das vorgestellte Modell ganz allgemein zur Beschreibung
eines Dialogs zwischen Systemen, zwischen Menschen oder auch zwischen Mensch
und Maschine, also generelle Informationsübertragung nicht nur per Sprache. O.B.d.A.
wollen wir uns im Folgenden einen Mensch-Maschine-Dialog vorstellen, da sich dies
vorteilhaft auf die Wahl geeigneter Abstraktionen auswirkt.

Im durchlaufenden Beispiel betrachten wir ein Mensch-Maschine-Dialogsystem, in
dem der Benutzer des Systems einen Anruf mittels Spracheingabe tätigen möchte. Hier-
bei kann er die Nummer direkt angeben (falls er sie weiß), also z.B. “555666 anrufen”
sagen. Oder er kann ihm bekannte Informationen zum gewünschten Anrufpartner, wie
Vorname, Nachname und Ort, angeben. Er kann also sagen “Maja anrufen”. Zur Un-

3 man sagt auch: die Variablen werden an Werte des entsprechenden Datentyps gebunden
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terstützung des Systems existiert ein, in einer Datenbank gespeichertes, Telefonbuch
mit Einträgen, die solche Informationen zur Verfügung stellen (Abb. 2).

Abbildung 2. Die Telefondatenbank des
Sprachdialogsystems

Erste Aufgabe des Systems ist,
übertragene Informationen zu ver-
stehen. Üblicherweise wird eine In-
formation (oder ein Informationsbe-
standteil) mit einer bestimmten Wahr-
scheinlichkeit verstanden. Kann der
gewünschte Anrufpartner noch nicht
mit ausreichender Sicherheit identifi-
ziert werden, wird das System weite-
re spezifische Informationen erfragen.
So ist es beispielsweise möglich, dass mit hoher Wahrscheinlichkeit ein bestimmter
Nachname verstanden wurde, aber noch mehrere Personen mit diesem Nachnamen im
Telefonbuch existieren. Diese könnten sich bzgl. des Wohnortes oder des Vornamens
(oder beidem) unterscheiden lassen. Informationen werden so lange vom System “auf-
gesammelt” und “kombiniert”, bis der gewünschte Anrufpartner mit ausreichender Si-
cherheit feststeht.

Dieser Beschreibung zufolge können Informationen also verschiedenen Merkma-
len wie Vorname, Nachname und Ort zugeordnet werden. Diese nennen wir Werte. Die
Menge der Merkmale kann hierbei strukturiert sein, z.B. lassen sich Vor- und Nach-
name zum Merkmal Name zusammenfassen. Formal werden wir Informationen in sog.
Merkmal-Werte-Relationen darstellen.

Definition 1 (Merkmal-Werte-Relation). Gegeben seien zwei disjunkte endliche Men-
gen M (Merkmalmenge) und A (Menge atomarer Werte). Eine Merkmal-Werte-Relation
(MWR) über M und A ist eine linkstotale, zyklenfreie Relation R ⊂M × (M ∪A).

Eine gewichtete MWR ist ein Paar (R, π) bestehend aus einer MWR R und einer
Menge π = {πm | m ∈ M} von Gewichten πm ∈ R+ auf den nicht-leeren Wertemen-
gen W (m) = {w ∈ M ∪ A | (m,w) ∈ R} (d.h. πm : W (m) → R+). Handelt es sich
bei πm um Wahrscheinlichkeitsmasse, so spricht man von einer stochastischen MWR.

Die MWR bzgl. eines Merkmals m notieren wir als Rm := R|{m}×(M∪A).

Zur Illustration der Zyklenfreiheit betrachten wir das Merkmal Ziffernfolge. Übli-
cherweise ist eine Ziffernfolge ein Element der unendlichen Menge {0, 1, 2, 3, 4, 5, 6, 7,
8, 9}+, die mit Hilfe geeigneter Rekursionen dargestellt werden kann (Abb. 3 links
oben). Allerdings sind in einer speziellen Anwendung nur endlich viele Ziffernfol-
gen als Werte relevant, z.B. besitzen interne Telefonnummern meist eine vorgegebe-
ne Stellenzahl. Deshalb verzichten wir durch die Forderung der Zyklenfreiheit auf die
Möglichkeit der Rekursion4, was in unserer Situation einige Vorteile mit sich bringt.

Eine MWR hat, als Graph betrachtet, nicht notwendigerweise eine Baumstruktur
(Abb. 3, rechts oben und links unten), dennoch kann man von Wurzeln (Merkmale, die
nicht als Werte auftreten) und Blättern (atomare Werte, die tatsächlich als Werte auftre-

4 In unserem Kontext könnte z.B. das Merkmal m = Ziffernfolge als Wertemenge W (m) die
Menge der internen Telefonnummern haben.
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ten) sprechen. Falls nur eine Wurzel5 vorhanden ist (Abb. 3, unten) und es sich um eine
stochastische MWR handelt, kann man aus den Wahrscheinlichkeitsmassen {πm}m∈M

eindeutig ein Wahrscheinlichkeitsmaß πR auf der Menge der Blätter konstruieren, und
zwar ist für ein Blatt b ∈ A seine Wahrscheinlichkeit πR(b) die Summe der Pfadwahr-
scheinlichkeiten der Pfade von der Wurzel zum Blatt b. Hierbei erhält man eine Pfad-
wahrscheinlichkeit durch Multiplikation der Wahrscheinlichkeiten entlang des Pfades.
Falls die MWR eine Baumstruktur hat (Abb. 3, rechts unten), können aus einem Wahr-
scheinlichkeitsmaß πR auf den Blättern auch umgekehrt die Wahrscheinlichkeitsmasse
{πm}m∈M berechnet werden.

Die in Abbildung 3 rechts unten dargestellte MWR benutzen wir in unserem durch-
laufenden Beispiel eines Dialogs zur Anbahnung eines Anrufs zur Modellierung von
Informationsbestandteilen. Blätter, die vom Merkmal Datenbank aus erreichbar sind,
entsprechen grundsätzlich genau Datenbankeinträgen (vgl. Abb. 2). Die hier gezeigte
MWR hat bereits Gewichte, die wir aber später erklären werden.

Abbildung 3. Zyklenfreiheit einer MWR und verschiedene Erscheinungsformen von Merkmal-
Werte-Relationen.

2.3 Systembeschreibung

In diesem Abschnitt beschreiben wir das durch das Netz in Bild 4 modellierte Dialog-
system. Dazu bezeichnet M die Menge aller Merkmale und A die Menge aller atoma-
ren Werte. Die Transitionen stellen bis dato abstrakte Funktionen dar, deren Ein- und
Ausgabedaten durch Marken in den Stellen p1, . . . , p6 repräsentiert werden. Die durch
die Stellen p3, p4, p5 modellierten Daten repräsentieren hierbei gewichtete MWRen
über M ′ und A′ für geeignete Mengen M ′ ⊆ M und A′ ⊆ A. Dabei betrachten

5 Gibt es in der MWR genau ein Merkmal, das nicht als Wert vorkommt, so bezeichnen wir
dieses Merkmal als “Superwurzel”.
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wir o.B.d.A. nur MWRen mit Baumstruktur. Wir stellen eine solche gewichtete MWR
(R, {πm}m∈M ′) durch die Menge {(Rm, πm) | m ∈ M ′} dar (Abb. 6). Eine Marke
entspricht dann einem konkreten Paar (Rm, πm). Die Stellen p3, p4, p5 sind also mit
der Farbmenge C = {(Rm, πm) | m ∈ M} beschriftet. Die Stellen p1, p2, p6 haben
einfachere Datenstrukturen, welche von der betrachteten Anwendung abhängen.

Abbildung 4. Abstraktes Petrinetz zur Informati-
onsübertragung per Dialog.

Wie bereits erwähnt, be-
trachten wir einen Mensch-
Maschine-Dialog. Wir konzen-
trieren uns dabei auf die Mo-
dellierung der Funktionalität
der Maschine. Im dargestellten
Netz beschreibt die graue Stel-
le Informationseingabe Funk-
tionalität des Senders (also des
Menschen), während das restli-
che Netz die Funktionalität des
Empfängers (also der Maschi-
ne) repräsentiert. Ziel ist es, die
durch die Informationseingabe generierte Information in p2 so zu übertragen, dass der
Empfänger diese in p6 erhält. Dafür ist es notwendig den Zustand in p5 so zu verändern,
dass die Informationsübertragung abgeschlossen werden kann. Um diesen Vorgang zu
verstehen, werden wir im Folgenden jede Transition mit Ein- und Ausgaben in Struktur
beschreiben und interpretieren. Wir verifizieren dies anhand des durchlaufenden Bei-
spiels eines Dialogs zur Anbahnung eines Anrufs.

Wir beginnen bei der Informationsanforderung.6 Als Eingabe dieser Transition die-
nen Marken aus p5. Die Stelle p5 beinhaltet zwei voneinander unabhängige gewich-
tete MWRen. Die eine MWR (RIS) beschreibt den aktuellen Informationsstatus des
Empfängers durch Gewichtung gi(Güte) von bereits erkannten Informationsbestandtei-
len i. Die andere MWR RbI repräsentiert die noch benötigten Informationsbestand-
teile zur Vervollständigung der Informationsübertragung. Je größer das Gewicht eines
Merkmals aus RbI ist, desto dringender wird diese Information benötigt, um die In-
formationsübertragung erfolgreich abzuschließen. RbI dient als Eingabe der Informati-
onsanforderung, d.h. die Kantenbeschriftung ist derart, dass genau die den Merkmalen
von RbI entsprechenden Marken konsumiert werden.7 Auf der Basis von RbI wird eine
entsprechende Informationsanfrage (an den Sender) in p1 generiert (z.B. repräsentiert
durch einen String). Diese Anfrage ist mit einer gewissen Erwartung an die nächste In-
formationseingabe durch den Sender verbunden. Grundsätzlich können Informationen
nur dann verstanden werden, wenn eine gewisse Erwartung an den Inhalt der übertrage-
nen Information existiert.8 Eine solche Erwartung modellieren wir durch eine stocha-

6 Die Informationsübermittlung mit der Nachfrage beginnen zu lassen widerspricht zwar dem
Shannonschen Kommunikationsgedanken, aber diese Transition eignet sich am Besten zur
schrittweisen Beschreibung des Systems. Dies lässt sich aber ohne weiteres rechtfertigen, in-
dem man die initiale Nachfrage als Kommunaktionseröffnung interpretiert.

7 In dieser Arbeit verzichten auf die formale Angabe von Kantenbeschriftungen.
8 Dies ist sowohl beim Menschen als auch z.B. in existierenden Sprachdialogsystemen der Fall.
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stische MWR mit Superwurzel REH , die wir Erwartungshorizont nennen. Die zu den
Merkmalen von REH gehörenden Marken werden in p3 generiert.

Abbildung 5. Links: RIS - hier ist noch nichts erkannt worden. Rechts: RbI - hier wird im
Beispiel die Information als am notwendigsten eingestuft, welche die meisten (lautlichen) Unter-
schiede liefert.

Eine Analogie zur Informationsanforderung ist in unserem Beispiel der “Prompt”
(Abb. 7). Im ersten Schritt entspricht RbI einer Standardeinstellung und RIS ist “leer”,
i.e. es ist gi = 0 für alle i (Abb. 5). Aufgrund dieser Information wird der Benut-
zer (visuell, akustisch, textuell,...) aufgefordert den Namen des Teilnehmers zu nennen
(p1) und die entsprechende Erwartungshaltung (Erwartungshorizont in p3) wird gene-
riert (Abb. 6 und 3 rechts unten), wobei aber geringfügig berücksichtigt bleibt, dass
der Benutzer den Anrufvorgang abbrechen oder die Nummer direkt angeben könnte.
Der Ort wird nicht berücksichtigt, da πDatenbank(Ort) = 0. In p3 befinden sich jetzt
also die Marken (RErwartung , πErwartung), (RAbbruch, πAbbruch), (RDirekteingabe,
πDirekteingabe), (RDatenbank, πDatenbank), (RName, πName), (RV orname, πV orname)
und (RNachname, πNachname).

Aufgrund der Informationsanfrage in p1 liefert der Sender (Informationseingabe)
eine Information in p2 (z.B. in Form einer Lautfolge oder eines Strings). In unserem
Beispiel antwortet der Mensch mit “Maja” (Abb. 8).

Die Informationsverarbeitung besitzt eine eingehende Information aus p2 sowie den
Erwartungshorizont REH aus p3 als Eingabe. Die Informationsverarbeitung ordnet in
Verbindung mit REH die eingehende Information einem Merkmal zu. REH wird an-
schließend wieder unverändert in p3 zurückgelegt. Die Ausgabe in p4 ist strukturell
diesselbe stochastische MWR mit Superwurzel, die wir hier “Ergebnishorizont” RErg

nennen, allerdings nun mit anderen Gewichten. Die Wahrscheinlichkeitsverteilung auf
den Blättern von RErg repräsentiert das Erkennergebnis.

Der Erkenner (Abb. 9 links) erhält also die Information “Maja” als Sprachsignal.
Gemäß des Erwartungshorizonts in p3 wird dieses Signal als Name identifiziert, aller-
dings kann aufgrund der Lautähnlichkeit nicht festgestellt werden, ob nun tatsächlich
der Vorname “Maja” oder der Nachname “Meier” gemeint war. Sicher ist aber, dass es
sich weder um eine Ziffernfolge (also Direkteingabe der Telefonnummer) noch um den
Befehl “Abbruch” handelt. Diese Information befindet sich nun als Ergebnishorizont in
p4 (Abb. 9 rechts).

Die Stellen p3, p4 und p5 liefern nun die Eingabeparameter für die Informationsda-
tenbank. REH und RErg bilden in Kombination die Information nach der in der Da-
tenbank gesucht werden soll. RIS wird mit den Suchergebnissen aktualisiert und in p5

zurückgelegt. Sollte das Suchergebnis nicht eindeutig sein, wird über die Informations-
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datenbank eine MWR RbI in p5 generiert, welche die noch benötigten Informationen
für den Abschluss der Informationsübertragung repräsentiert.

Nachdem der Erkenner mit einer hohen Wahrscheinlichkeit die Erwartung des nach-
gefragten Namens bestätigt hat, wird nun also in der Datenbank in den Vornamen nach
“Maja” und in den Nachnamen nach “Meier” gesucht (bzw. nach Einträgen in Vor- und
Nachname, die ausgesprochen der erkannten Lautfolge entsprechen)(Abb. 10). Beides
existiert in der Datenbank und wird als Ergebnis in RIS gespeichert, indem die Gleich-
verteilung der Gewichte durch die entsprechende Erkenngüte ersetzt werden. Leider ist
die Suche daher nicht eindeutig und es erfolgt eine Auswertung, die das Merkmal “Ort”
als hochgradig identifizierend einstuft und diese Information in RbI einträgt (sehr hohe
Gewichtung von “Ort”, sehr geringe Gewichtung von “Name”).

In p5 befinden sich jetzt also aktualisierte MWRen RIS und RbI. Sofern der Infor-
mationsstatus vollständig ist, kann die Informationsübertragung abgeschlossen werden
und die aktuelle Information, in Form der Marken RIS wird an p6 übertragen. Falls es
sich allerdings um unvollständige Informationsbestandteile handelt, beginnt das System
den eben erklärten Zyklus von vorne, wobei durch den Prompt auf Basis der gerade ak-
tualisierten MWR RbI wieder ein vollkommen neuer Erwartungshorizont erstellt wird.

Das Ende des ersten Durchlaufs in unserem Beispiel liefert uns die Information,
dass der gewünschte Teilnehmer entweder den Vornamen “Maja” oder den Nachna-
men “Meier” besitzt.9 Diese Information ist nicht eindeutig und ermöglicht keinen Ab-
schluss des Tasks. In diesem Fall wird also auf Basis von RbI ein neuer Zyklus gestartet.
Der Prompt generiert einen neuen Erwartungshorizont, welcher einen Ort als Erwartung
widerspiegelt, worauf der Anrufer ihm “Sidney” nennt. Hätten wir nun keinen Erwar-
tungshorizont, würde der Erkenner sowohl den Teilnehmer “Sidney Meyer” aus “Ber-
lin” als auch “Maja Brandl” aus “Sydney” für möglich halten. Das Ergebnis wird durch
den Erwartungshorizont relativiert und wir erhalten nach zwei Schritten “Maja Brandl”
aus “Sidney” als eindeutig indentifizierten Anrufpartner und sind in der Lage den Task
abzuschließen.

3 Ausblick
Ziel ist es, dieses abstrakte Modell in die Realität umzusetzen und die Transitionen zu
implementieren. Nach Möglichkeit wollen wir hierfür weiter farbige Petrinetze verwen-
den. Als nächsten Schritt soll das vorgestellte Modell komplett mit Kanten- und evtl.
Transitionbeschriftungen formalisiert werden.
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Appendix

Zur Illustration stellen wir hier einige ergänzende Bilder zur Verfügung.

Abbildung 6. Jeder Kreis entspricht einer Marke (Rm, πm) in p3 in Abbildung 7

Abbildung 7. Der Prompt generiert aufgrund von RbI aus p5 eine Anfrage in p1 nach dem Namen
und einen damit verbundenen Erwartungshorizont in p3.
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Abbildung 8. Der Teilnehmer antwortet auf den Prompt mit “Maja”

Abbildung 9. p2 und p3 dienen als Eingabe für den Erkenner. Dieser kann die Lautfolge “Maja”
dem Merkmal “Name” zuordnen. “Abbruch” und “Direkteingabe” sind ausgeschlossen und deren
Blätter werden im Ergebnishorizont in p4 nicht berücksichtigt.

Abbildung 10. Die Datenbank erhält den Erwartungs- und Ergebnishorizont, sowie den Infor-
mationsstatus. Aufgrund dessen wird der Informationsstatus aktualisiert, sowie ggf. noch die
benötigten Informationen generiert.
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Abstract. We introduce a Janus-faced reference net component that
presents the basis for the recursive composition of complex systems from
open system units. We particularly focus on the operational aspect of
relating different levels of action at different system levels.

1 Introduction

We have presented various aspects of our organization-oriented software engi-
neering approach Sonar/Organ [1–4] in previous contributions. Sonar (Self-
Organizing Net ARchitecture) focusses on an exact mathematical body of rules
and regulations for activities in an organizational position network. Orthgonally,
Organ (ORGanizational Architecture Nets) provides a qualitative comprehen-
sion model for distinguishing different system levels according to distinctions be-
tween the (collective) organizational units studied at each level. In this paper, we
focus on operationalizing the most central concept of Organ, namely building
systems in terms of modular Janus-faced system units. This may be regarded
as a prototypical basis that is open for incorporation of the Sonar rule set and
orchestration according to the Organ architectural guidelines.

Organ rests on the universal model of an open and controlled system unit
from Figure 1 that is applied at all system levels. We distinguish different internal
system units (that are again instances of the universal model from Figure 1).
Integration units together with operational units represent the “here and now”
of the system unit in focus. The operational units are so to say the intrinsic
units and carry out the system’s primary activities. They are dependent on the
integration units which offer a technical frame via intermediary, regulation, and
optimisation services in the course of integration processes. The governance units
represent the “there and then” of the system unit in focus. They offer a strategic
frame via goal/strategy setting, boundary management, and transmitting their
decisions to the other internal system units in the course of governance processes.

Each system unit is a Janus-faced entity. It “looks inwards” by embedding
other system units and at the same time “looks outwards” by being itself embed-
ded in other system units. Thus, besides the already mentioned internal (tech-
nical and strategic) frames, each system unit in focus is externally framed by
surrounding system units to which the system unit in focus relates via periph-
ery processes. To conclude, we take a recursive, self-similar nesting approach,
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Fig. 1. Universal Model of an Open and Controlled System Unit

borrowed from Koestler’s concept of a holon [5] that we extend with a generic
reference model for control structures at each level. Thus, we arrive at a modular
approach to comprehend systems of systems. Each system part may be regarded
under a platform perspective and under a corporate agency perspective. All in
all, this provides a conceptual basis to systematically study and implement dif-
ferent modes of coupling, both horizontally and vertically. In particular, we have
conceptualised a reference architecture for multi-organization systems that ex-
hibits four system levels: the departmental level, the organizational level, the
level of organizational fields and the societal level.

In our previous contributions we have stressed the underlying Petri net se-
mantics (specifically, reference net semantics [6]) of the model from Figure 1.
However, the model remains rather abstract and we have omitted any real oper-
ationalisation details so far. In this paper, we have a look at one particular aspect
of Petri net operationalisation in this context. We leave aside any details con-
cerning a qualitative distinction between different system units and processes,
how exactly system processes come into being and the addition, removal, migra-
tion or expansion of system units. Instead, we focus on one possible technical
realization of relating different levels of action at different system levels with each
other. We present a recursive approach that allows us to prototype open systems
in a modular way, namely by addressing each system level and system unit in
turn. Vertical as well as horizontal ties between system units are established via
their inclusion in system processes through customisable generic interfaces.

2 Janus-Faced Net Component

Figure 2 displays a reference net component that reduces the various concepts
from Figure 1 to internal system units, system processes and internal or periph-
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eral actions of system units in the course of these processes. The component has
the already mentioned Janus-faced character: It “looks inwards” by providing a
platform for its embedded system units and at the same time “looks outwards”
by being itself embedded inside other enclosing system units.

Fig. 2. Janus-Faced Net Component

Each internal action takes place in the course of some system process (sp)
and is carried out by some internal system unit (su). It carries an action identifier
(actID) that is unique in the context of the associated process. The corresponding
system unit is identified by its address (addr) and is passed the identifier of the
process (pID) in whose course the action is carried out. Finally, each action is
associated with some data (data).

Peripheral actions are also carried out by internal system units. However,
from the perspective of surrounding system units, they are carried out by the
system unit in focus as a whole. Thus, we arrive at a technical understanding of
collective/corporate action. As an additional argument, peripheral actions are not
only associated with an internal system process but also with the corresponding
identifier of the system process of the surrounding system unit (pID2).

We first have a look at a simple production process in Figure 3 with only
internal actions. It can be read according to the common UML understanding:
Places and Transitions on a vertical line represent the life line of some role while
places and transitions on a horizontal line represent a message exchange between
different role players. As we do not look at process instantiation here, we assume
that the process net exists permanently (on the place system processes) and may
be used for multiple concrete production scenarios. System unit addresses are
associated with process roles and product identifiers dynamically at the first
transitions of the corresponding life lines.
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Fig. 3. Simple Production Process

3 Open System Prototyping

We now take a look at open systems by extending our modelling from the pre-
vious subsection with an additional system level that brings with it a collective
level of action as can be seen in Figure 4. We have to decide, which are the atoms

Fig. 4. System with Different Levels of Action

of our system, those parts from which all other activities eventually stem. These
atoms are marked in Figure 4 as individuals. As they embed no internal system
units themselves, they are not built according to the Janus-faced system unit
from Figure 2.

We now have a look at how different levels of action interfere. As an example
we take a look at the manager from the production firm that acts in turn on the
market. Figure 5 displays how actions of the manager either only take place on
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the level of the firm or are additionally transformed to collective level actions of
the firm itself on the market.

Fig. 5. Interplay between Different Levels of Action

– Step 1: The manager accepts a product order that occurs on the market.
The manager accepts on behalf of the firm. Consequently, it acts on two
system levels simultaneously: (1) at the firm level where a new production
activity is initiated and (2) at the market level where the manager’s action
is transformed into a collective level action of the firm.
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– Steps 2 + 3: The simple production scenario from Figure 3 can be found
(slightly modified) as a substructure of the system process at the firm level
in Figure 5. It still contains only (firm-)internal actions and in steps 2 and
3 the manager delegates the market order to some producer of the firm and
afterwards receives the finished product.

– Step 4: The manager ships the finished product to the customer on the
market. Just like in step 1, the manager acts both on the firm level (itself)
and on the market level (its action transformed into a collective level one on
behalf of the firm).

4 Outlook

We have presented a reference net operationalisation for combining different
levels of action in complex systems that are hierarchically built up from open
system units. This addresses one particular aspect of our previously published
Organ-model for building software systems in the large as systems of systems.

Our operational approach rests on a generic Janus-faced net component that
allows to recursively nest system levels inside each other. The generic interface
of the component allows to regard each system unit without the need to bother
with internal details of lower-level system units. For instance, in the example
from Figure 5 it would easily be possible to expand the manager part into a
complex system unit containing multiple managers (e.g. a salesman for market
exchange management and a foreman for internal production management). This
move would have no effect on the current process definition at the firm level.
Consequently, our approach allows for the modular prototyping of hierarchically
organized systems of systems that are composed of open system units.
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Abstract In distributed software development projects the different
parties involved can be coordinated by the use of flexible workflow man-
agement systems (WfMS). Often the process cannot be defined com-
pletely in the beginning of a project or has to be adapted later on when
conditions change.
In this paper the handling of workflow change in the agent-oriented
Potato system for distributed development will be presented. This in-
cludes the interaction of the different agents and their protocols as well
as the mechanisms for ensuring the soundness of workflows even if they
are changed during their execution.

1 Introduction

For distributed software development, the definition and enactment of processes
with workflow management systems (WfMS) is an important means of structur-
ing the interaction between the different participants. Often it can be important
to modify these processes during the course of the project. This can be to re-
flect changes in the general conditions which require changes in the workflow. In
other cases, it is not possible to completely specify the required process in the
beginning of a project, so that some parts of the workflow can only be defined at
a later stage. In ad-hoc workflows defined for one instantiation only, this is obvi-
ously more common than in production workflows, in both cases modifications
can be necessary, though.

In these cases the workflow process definitions or even the running workflow
instances need to be modified. Often it is difficult to decide whether a certain
modification can be safely enacted on a workflow. Therefore instead of changing
a running workflow changes are often only applied to a new instance, or special
monitoring is required. Since workflows in the Potato system (Process-Oriented
Tool Agents for Team Organization) are specified with Petri nets, net-based
methods can be used to ensure soundness of these modifications. In section 2
the Potato system will be described with a focus on the process infrastruc-
ture used to enact workflows. Section 3 describes the methods for modification
of workflows within the system. In section 2.4 the algorithms for checking the
modified workflows for soundness are presented.
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2 Workflows in Distributed Software Development

This paper describes the editing of workflow definitions in the context of the
Potato system for distributed software development. Therefore this section
outlines the main properties of this system.

Potato is an agent application built on the (Petri net based) Mulan/Capa

agent platform (see [7,2]). This agent platform itself is built using reference nets
and uses the reference net editor/simulator Renew[6] as its execution environ-
ment, which is implemented in Java.

The structure of Potato is twofold: It has a tool-based organization that
allows users of the system to equip their user agent (UA) with different kinds
of tool agents (TA), in order to execute the tasks in the system they need to
do. On the other hand a process infrastructure allows the execution of workflow
processes in the system, connecting and integrating the different users.

2.1 User, Tool and Material Agents

The main goal of the Potato system is to facilitate the work of different people
working together to produce software. To achieve this, users can use different
tools to manipulate materials, which are over the course of a project trans-
formed into work results. This follows the notions of the tools and materials
approach [10], applied to multi-agent systems to address distributed workplaces.

The main idea about the tool agent concept is that each user controls a user
agent (UA), which can be enhanced by different tool agents (TA) (see [4,3]).
The user agent provides basic functionality like a standard user interface and
the possibility to discover and load new tool agents (tools).

Those tool agents can then plug into the user agents UI with their own UI
parts, offering their functionality to the user. By choosing the specific set of tool
agents, the user can tailor his workspace to his specific needs. A developer for
example needs a completely different workplace then a tester or someone writing
documentation.

Material agents (MA) are used to represent and encapsulate the materials or
work objects that are currently worked on. Materials are manipulated by tools
and can be created, deleted and moved between workplaces. Tools and materials
populate the workspace of the user.

2.2 Process Infrastructure

A generic agent-based process infrastructure has been created (see [5]) and is
used for Potato. The process infrastructure offers the services of definition
and execution of workflow processes in the development environment. It models
a complete workflow management system (WfMS) using agent technology. This
allows to make use of agent-based features, like distribution and mobility, so that
the resulting WfMS is much more flexible than a normal stand-alone one. Within
Potato it is adapted to fit into the user/tool-agent structure. To organise the
cooperation of different people working together on a project, workflow processes
can be defined and enacted.
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2.3 Workflow and its Soundness

In [8] workflow nets as a special form of Petri net are defined as well as soundness
criteria. A test for checking workflow soundness is also given, which can be
executed automatically using for example the Woflan tool [9].

As one of the most wanted properties during the execution of a workflow
no deadlocks should occur nor should tokens be “lost” in the process. Therefore
the notion of soundness has been defined. If a workflow net is started with a
token on the start place, no matter which firing sequence occurs, it will always
be possible to reach a marking in which only the end place is marked, and this
is the only reachable marking in which the end place is marked. To check this
property, the short-circuited net is constructed, by adding a transition to the
net from the end place to the start place. Iff this net is live and bounded, the
original workflow net is sound.[8]

There are different degrees of possible modifications, that can be handled

2.4 Keeping it Sound

differently. If the definition of a workflow is changed with no currently running
instances or if the currently running instances are not to be changed, it suffices
to check the new workflow definition for soundness, without any concern for the
old definition.

The same is the case, if already running instances are concerned, but changes
only occurr within subworkflows, which are not yet started. This is often the
case if sections of a process are not specified when the execution begins, and
only placeholder subworkflows are inserted to be defined later on. As long as the
unspecified segments are workflows of their own, simply checking for soundness
of the new definition is sufficient here, too.

It gets problematic however, if workflows have to be changed that already
have running instances associated and those instances have to be converted to
the new version. Since these instances can be in various states of execution,
the standard method of checking for workflow soundness [8] cannot be applied
directly.

Ensuring the Soundness of Workflow Modification A workflow definition
is considered sound, if for every possible firing sequence it is possible to reach a
state, in which only the final place is marked with a token. As mentioned above,
for a normal workflow this can be ensured by constructing the sort-circuited net
and checking it for the live and bounded properties.

In the case of a modified workflow, the structure of the net changes during
the execution, therefore some special constructions are necessary to ensure the
soundness.

For every place in the original workflow net a corresponding place in the
modified net has to be defined, so that the transition to the new workflow can
be executed and checked for soundness. To do this a modification net can be
constructed as follows.
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For a workflow net its modification net consists of all places, transitions
and arcs from the original net as well as the modified net (disjointly united),
connected by transitions from all places in the original net to the modified net.

With this construction it is possible to convert any instance of the original
net to the new definition since all tokens are then accounted for. With the con-
struction as seen in figure 1 it should also be possible to check the absence of
deathlock possibilities during the transformation by checking the modification
net for soundness. We will not try to formalize or proof this here though.

Example An abstract example for a Wf modification net can be seen in figure 1.
The original workflow WA consists of two parallel branches, one of which consists
of two tasks. In WB the other branch has got two parallel tasks. In ttrans the fact
is accommodated, that no tokens must be left behind. Therefore even though
one of the parallel tasks is deleted in the modified workflow, the corresponding
tokens must be disposed of. Similarly, the task that is split up into two tasks in
WB requires two tokens to be generated in the target workflow.

W_A W_BT_trans

o_mod

i_mod

t_iA t_iB

t_oA t_oB

Figure 1. Workflow modification net
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3 Modifying Workflows in the Potato System

In this section the mechanisms for modifying workflows are described. Since
Potato is agent-oriented, the change process involves a couple of agents.

3.1 Involved Agents

Users with the appropriate authorization can edit workflows. To do so, they use
a workflow edit tool agent via their user agent. This tool agent communicates
with the workflow definition database agent to get the old workflow definition
as a workflow definition material agent. This is then edited and the new version
uploaded back to the definition database.

3.2 Adding New Workflows With the WF Edit Tool Agent

To add a new workflow definition, the net editing features of Renew can be
used. Additional properties of the workflow can be defined in a special tool, like
roles and rules for execution, workflow specific context data, tasks etc.

A material agent is then created and sent to the workflow definition database
agent, where it is checked for soundness. This can not find all problems with a
workflow, as many problems can occurr in the accompanying definitions of roles,
participants, tasks etc. and not in the net structure itself, but at least some of
the problems can be avoided this way.

3.3 Modifying Workflows and Their Definitions

If a workflow is to be modified, it must be decided how to handle already running
instances of this workflow. If old instances are to be finished according to the
old definition, the modification can be handled like a new workflow. The new
version can then be added just like a completely new workflow.

If running instances are to be updated to the new definition however, care
must be taken to migrate the processes correctly. In section 2.4 a simple algo-
rithm is described to ensure soundness of workflow modifications. It is mandatory
however, to specify the migration from the old to the new definition. For every
place in the old workflow a place in the new workflow must be specified, so that
all tokens can be moved over to the new definition.

In the editing process therefore a special mapping phase has to be added,
in which this can be defined. By default it is sensible to assume, that all places
existing in both versions of the workflow net are mapped to themselves, but it
needs to be checked by the modifying user. If the workflow editing consists of
a series of soundness-preserving transformations, each of these transformations
could be assigned a default pattern of transformation, which can be adjusted by
the user.

Then the new workflow definition along with the migration mapping is sent
over to the workflow definition database agent, where it is verified. If verification
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is successful, the new version is saved as the new default for this workflow type.
All workflow engines currently executing instances of the old definition must
then be notified of the change and the migration mappings be applied.

4 Conclusion and Outlook

Potato integrates the ideas and concepts from [1] and [4,3] to provide a frame-
work. This shall allow for the support of workflows within a group collaborating
in a distributed way. Here we proposed the use of user, tool and material agents,
which cover specific roles within the application. They allow for easy editing of
agent based workflows. Furthermore, we proposed to add formal checks on the
workflows resp. their modification at runtime, based on traditonal techniques.
The transfer of markings from one running instance of a workflow to another
can e.g. be based on the places cuts.
In the long run it is planned to apply these concepts to our own software devel-
opment process and environment. Therefore, the Renew-IDE will be enhanced
considerably.
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Abstract. When adapting services in a SOA environment, not only the
validity of the adapter may be of importance, but also non-functional
properties like the costs of the adapter. We introduce an approach for
finding cost-efficient adapters based on the operating guideline, which
characterizes all valid adapters for the given services.

1 Introduction

In the context of Service-Oriented Architectures (SOA) [1] composition of actu-
ally incompatible services, which have a well-defined interface in order to offer
a special functionality, is highly demanded. A service of one organization may
not have been designed to work together with a service of a different organi-
zation. But before changing one or even both of these services, an appropriate
adapter may help to overcome the incompatibility. A (behavioral) adapter then
acts between the two different services and controls their communication in such
a way, that a certain set of functional properties like deadlock freedom or weak-
termination is satisfied.

Especially in corporate environments costs like time, memory or money are
relevant factors for components. So if a company decides to use an adapter, it
may want that the overall runtime of the adapter stays below a certain limit in
order to guarantee some real-time constraints or the costs for using third parties
should be minimized. Besides this demand, the adapter still needs to be valid –
the original goal to resolve incompatibilities must be maintained.

Our approach focuses on the minimization of the most expensive run of an
adapter, meaning that for every other valid adapter the most expensive run is
at least as expensive as for the calculated adapter.

The paper is structured as follows: In Sect. 3 we will describe the approach
which covers both the validity and the cost optimization of adapters. Before it,
we will introduce the basic formalisms in Sect. 2, namely open nets and operating
guidelines. In the last section, we will summarize the obtained results and give
an outlook on extensions of this approach.

2 Adapting services

An adapter is an artifact acting as mediator between services. This is necessary if
the adapted services are incompatible regarding their interface or their behavior.
! Supported by German Research Foundation (DFG) under grant RE 834/18-1
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(a) Provider

AC

D

F

E

B

(b) Adapter

(c) Requester

D

F

E

B

(d) Cost-efficient
adapter

Fig. 1. Example

The adapter then should overcome these incompatibilities and guarantee a well
behaved interaction of the services.

There are different approaches for adapters like [2–6] and recently also [7],
to which we will refer. They mainly differ in the way, how elementary actions of
an adapter are described and derived, and how the actual adapter is calculated.

In [7] a two-step approach is presented. First, for two given services P and R
a rewriter part E (part of the final adapter) connects to the interfaces of P and
R, provides transitions to manipulate messages based on a set of simple rules,
and creates an interface for triggering these transitions. In the second step, a
controller part C for the composition of P⊕E⊕R is calculated such that certain
properties like deadlock freedom etc. are ensured (see [8]). The suggested cost
optimization in this paper is executed on C.

Open nets The used adapter approach is based on open nets, an extension of
Petri nets, where distinguished places act as interface.

Definition 1. The tuple (P, I, O, T, F,m0, Ω) is called an open net iff

– (P, T, F, m0) is a Petri net with a set of places P , a set of transitions T , a
flow relation F ⊆ P × T ∪ T × P and an initial marking m0 : P → N,

– I and O are disjoint sets of input I ⊆ P and output O ⊆ P places, I∩O = ∅,
and

– Ω is a set of final markings.

Two open nets can be composed (⊕) by merging equally named input and
output places. The firing rule is equivalent to the one of regular Petri nets. A
marking is not called a deadlock if it is included in the set of final markings.

The nets depicted in Fig. 1 are open nets. The places on the dashed border
form the interface, all places belonging to the initial marking contain a black
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Fig. 2. Operating Guideline for Adapter in Fig. 1(b)

token and places belonging to a final marking are shown with a two line border.
If the nets in Fig. 1 are composed as implied by the figures’ alignment, the
composition will be deadlock free.

Adapters The open nets P and R represented in Figs. 1(a) and 1(c) are not
compatible, since the number of exchanged messages does not fit. Based on
certain message transformation rules provided with the two services an adapter
like Fig. 1(b) might be build based on the considerations in [7].

In our example let A-F be such rules that transform messages. Instead of
executing these rules arbitrarily, we provide an interface such that these rules
can be triggered by an controller. This controller will ensure certain properties
like deadlock freedom, if wanted (see [11]). In the following, message exchange
will be called an event.

Figure 2 shows such a controller. The graph, called Operating Guideline, is a
labeled transition system, where each edge label represents an event, namely the
sending or receiving of a message. Furthermore each node n has an annotation Φ
over the labels of the edges leaving n. A Φ satisfying assignment β corresponds
to a valid combination of edges, that have to be included in an controller, such
that the controller is valid. In this paper we assume the operating guideline to
be acyclic.

The controller part C can be transformed to an open net using the approach
in [12], such that C and E can be composed to form a valid adapter E ⊕ C.

3 Cost optimization

Looking at the possible adapters for P and R, besides some control structures
we can mainly distinguish each single adapter by the transformation rules it
can execute. It is legitimate to assume, that these transformation rules generate
the costs in a corporate environment. In the simplest case, time is consumed to
apply such a rule. In a more distributed scenario, such a transformation might
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be done by an external service provider, which will result in a fee which must
be paid.

Just eliminating expensive transitions in the adapter is not an solution for
finding cost-efficient adapters. When changing the adapter, we have to ensure
that the correctness criterion like deadlock free communication is maintained.
Therefore approaches like [9,10] are not usable in this scenario, since we do not
want to just calculate the cost for a service, but based on cost estimation build
a service, in this case an adapter.

The operating guideline calculated during the adapter synthesis contains all
information about legal adapters. Therefore an cost optimization should be done
on this structure. There are two points we have to take care of, namely i) the most
expensive run of the adapter shall be minimized and ii) the resulting structure
must still be a valid adapter (thus, P ⊕A⊕R still must be deadlock free).

If we look at any given adapter A, it is still possible that A has different
execution traces, i.e. sequence of events, depending on internal decisions in the
services P and R.

The costs for one run of the adapter, a trace of events, is simply the sum of
each applied message transformation. Thereby the cost function is a mapping of
every transformation rule r ∈ R to a natural number: c : R #→ N.

Definition 2. The costs of a trace t is the sum of its contained events: c(t) =
k∑

i=1
c(ri) for t = (r1, . . . , rk).

We will focus on the question, which is the worst case, meaning, which are
the highest costs we have to anticipate regarding the possible traces of A.

Definition 3. The costs of an adapter A is the maximum costs over all traces

of A: c(A) = max
t∈traces(A)

k∑
i=1

c(t).

Based on Def. 3 our optimization goal is to find an adapter, whose costs are
at most as expensive as for any other valid adapter.

Definition 4. An adapter A is cost-efficient if for any other adapter A′ yields
c(A) ≤ c(A′).

The controller introduced in the previous section contains all information nec-
essary for finding cost-efficient adapters. The annotations provide details about
which other controllers are valid, and since every application of an transforma-
tion rule is communicated, it also contains all execution traces as a branching
structure.

In order to find an cost-efficient adapter we will annotated each edge with
a set of traces as follows. Given these edge annotations, we will compute an
assignment for each node’s annotation.

The costs incurred by using an edge is the maximum (the worst case) costs
of the traces that are possible via this edge.
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Definition 5. The costs of an edge e is the maximum cost of its assigned traces:
c(e) = max

t∈traces(e)
c(t).

Given a satisfying assignment β for the annotation of a node n, β states
which edges leaving n have to be included in a controller in order to be valid.
The node’s costs regarding β then is the maximum over the edges’ costs (again,
the worst case).

Definition 6. The costs for a node n and an assignment βn is the maximum
cost of the edges e leaving n, which corresponding literal is set to true in βn:

cβn(n) = max
βn(e)=true

c(e).

Since every satisfying assignment yields in a valid adapter, we choose an
assignment, which results in the minimal costs for a node.

Definition 7. The costs for a node n is the minimum costs over all assignments
βn satisfying n’s annotation Φ: c(n) = min

Φ(βn)=true
cβn(n).

The assignment βn, which minimizes c(n) is called the minimal βn.

Given the previous definitions the following algorithm will calculate a cost-
efficient adapter.

Algorithm Let P and R be two open nets, E a partial adapter, and C the
operating guideline for P ⊕E ⊕R. Then an cost-efficient adapter can be found
as follows:

Initially all edges have no traces assigned, and all nodes have infinite costs,
except for the leaf nodes (without successor), which have costs 0 (resulting
from Def. 7). Then, as long as there are nodes with infinite costs, pick such
a node n, so that each successor n′ of n has finite costs c(n′) < ∞. Assign
for each edge e = (n, n′) the set of traces according to the minimal βn′ of
n′: traces(e) = {label(e) + t′ | t′ ∈ traces(e′), βn′(e′) = true} (meaning: each new
trace starts with label(e) followed by the events in the traces of e′). Afterwards
the costs c(n) can be calculated.
The costs for resulting adapter A = E ⊕ C are the costs of C’s root node.

Since we assume the operating guideline to be finite and acyclic, it can be
easily seen, that the suggested algorithm will terminate, and all nodes will have
finite costs. Furthermore we gain a valid controller (implied by the found minimal
assignments), which minimizes the costs.

Theorem 1. The provided algorithm finishes with a controller C such that A =
E ⊕ C is a cost-efficient adapter for P and R.

Proof. (Sketch.) This result yields mainly due to Def. 7. The adapter A is valid,
since for each node n of the controller, the minimal βn satisfies n’s annotation
(see [8] for details). Assume A′ is another valid adapter with less costs c(A′) <
c(A). Since both A and A′ are derived from C there exists a node n included in
both adapters, but differing in the minimal βn, meaning cA′(n) < cA(n), which
contradicts Def. 7. Therefore the found adapter is valid and cost-efficient.
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4 Summary

We have seen an approach which calculates a cost-efficient adapter based on
an annotated graph which acts as controller for the application of the message
transformation rules. By finding optimal assignments to the nodes’ annotations
we obtain a smaller, but valid adapter, where expensive runs can be excluded.

The time for finding such an adapter is exponential in the number of ap-
plicable message transformation rules in the worst case, since for every node all
satisfying assignments must be checked. Nevertheless in most cases the approach
should yield the result in a reasonable time, since the annotations are normally
short and therefore quickly to be checked. In order to show its feasibility, this
algorithm shall be implemented and checked with real-world examples.

As extension of this approach probabilities for the occurrence of events shall
be introduced, so that the average costs of an adapter can be calculated. This
extension would also allow to lift the optimization to cyclic controllers. Although
cyclic adapters are finite, the have however infinite traces and therefore infinite
costs.
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Abstract. This paper presents an Interval Decision Diagram (IDD)
based approach to realize symbolically transient analysis of Continu-
ous Time Markov Chains (CTMC) which are derived from stochastic
Petri nets. Matrix-vector and vector-matrix multiplication are the major
tasks when doing exact analysis of CTMCs. We sketch a simple algorithm
which uses explicitly the Petri net structure and offers the opportunity
of parallelization. We present results computed with our first prototype
implementation.

1 Motivation

Stochastic Petri nets are a natural way to model biochemical networks, where
token values are interpreted as levels of concentration [1]. A stochastic Petri
net’s semantics is a CTMC which can be analysed applying steady-state and
transient analysis [2] or CSL [3] model checking. The tool of choice for these
purposes is often the probabilistic model checker PRISM [4], which seems to
represent the current state of the art. The description of stochastic Petri nets
can be translated into the PRISM language, as done in [1]. To face the problem
of state space explosion PRISM uses an engine based on Multi Terminal Binary
Decision Diagrams (MTBDD) and symbolically performs analysis.
Using PRISM’s MTBDD based approach in the context of stochastic Petri nets
with a level semantics has several drawbacks; prior knowledge about bounded-
ness of each place is required. A place which can carry up to k token must be
represented by |ld(k)| MTBDD variables. This results in an overhead in compu-
tation time and memory. Since a token represents a concentration level increasing
the accuracy of analysis implies an increase of the possible number of tokens on
places. PRISM creates an MTBDD which represents the entire CTMC. Therefore
it is necessary to double the number of MTBDD variables. A further drawback
occurs if the CTMC contains many different rate values, since the number of
terminal nodes in the MTBDD equals this amount.
A. Tovchigrechko introduced in [6] very efficient algorithms for the state space
based analysis of bounded Petri nets using IDDs. We combine the ideas and
algorithms in [4][5][6] and use a slightly augmented form of IDDs to realize tran-
sient analysis of stochastic Petri nets. In section 3 we will sketch how it works.
But before that we will briefly recall the most important concepts.
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2 Preliminaries

In a stochastic Petri net an exponentially distributed firing rate is associated to
each transition which is generally defined by a state-dependent hazard function.
Since we consider mass action kinetics [1] this hazard function is defined as the
product of a specific constant and the token values of the transition’s preplaces
of the state. The semantics of a stochastic Petri net is a CTMC which can be
seen as a graph isomorphic to the reachability graph of the underlying Petri net,
but state transitions are labeled with the firing rates. In general, CTMCs are
represented as very sparse matrices indexed by states, which entries are real val-
ued rates. Transient analysis determines for each state how probable it is to be in
it at a certain time point. An established technique to realize transient analysis
of CTMCs is the uniformization method [2]. Its basic operation is vector-matrix
multiplication which must be done for a certain number of iterations.
Faced with the state space explosion problem, it is not worth thinking about im-
plementing vector-matrix multiplication explicitly whereby the matrix and the
vector are indexed by states.
In our approach the set of states is represented by an Interval Decision Dia-
gram. We compute all needed data at each iteration anew from one augmented
IDD representing the reachable states. That is the main difference to PRISM’s
approach, where the CTMC’s state space and its rate matrix are represented
symbolically by a BDD and a MTBDD.
We will give a brief and informal introduction to IDDs:
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Fig. 1: A Petri net and the IDD RS representing its reachable states. The path n7
3
−→

n6
0
−→ n2

0
−→ 1 represents state m ≡ (p1 : 3, p2 : 0, p3 : 0). The path n7

1
−→ n4

1
−→ n1

1
−→ 1

represents state m′
≡ (p1 : 1, p2 : 1, p3 : 1) which can be reached from m by firing

transition t2. Edges are labeled with an interval and the additional index data.
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An IDD is a rooted, directed and acyclic graph which nodes can have any number
of outgoing edges. Each edge is labeled with a left closed and right open interval
on N. The intervals of the outgoing edges of an IDD node define a partition of N.
There are two nodes without outgoing edges: the terminal nodes, labeled with
ONE and ZERO. To each IDD node a variable is associated, in our context a
place of the stochastic Petri net. We assume that on each way from the root to a
terminal node, the variables occur in the same order. As for BDDs the variable
ordering influences the IDD size. Furthermore we assume, that the IDD does not
contain isomorphic subgraphs. A sequence of IDD nodes considering connecting
edges reaching the ONE-terminal node represents a set of states. We will denote
a path as such a sequence while chosing exactly one value from the interval of
the occuring edges.
In the following section we will present an algorithm which performs vector-
matrix (or vice versa) multiplication, whereby the matrix is defined by the reach-
able states of a stochastic Petri net, using only the IDD represenation and the
net structure.

3 Multiplication by traversing

To realize a matrix-vector or a vector-matrix multiplication, whereby the matrix
and the vector are indexed by states, we need a mapping from states to indices.
The depth first search traversation of an IDD induces a lexicographic order of
its represented states. Since a state is an unique path to the ONE-terminal node
we must store some information for each outgoing edge which enables the index
computation. For each edge we store the number of lexicographic smaller states,
which can be reached over all its previous sibling edges of the respective node
(See Fig. 1). We can also determine the number of states, which can be reached
over an arbitrary edge.
The basic concept of our algorithm is to traverse for each transition t of the
stochastic Petri net the IDD ESt representing its enabling states. For each path
in ESt the IDD RS respresenting the reachable states contains a respective
path. We can easily determine the lexicographic index for the associated state
m using the additional index data during traversation. Since m is an element of
ESt there exists a path in RS, which represents the state m′, reached by firing
of transition t in m. While traversing the IDD ESt we track the paths for m
and m′ in RS and compute their indices considering all reachable states. Each
time the ONE-terminal has been reached we extract the indices of a matrix en-
try. Furthermore we must determine the associated rate value. Considering mass
action kinetics implies to multiply the present rate with the current element of
an expanded interval if the current IDD node is related to a preplace of t.
The resulting recursive algorithm below should be self-explanatory. All used
functions can be implemented very efficiently. The function getWeight(p : Place,
t : Transition) returns the token change, the firing of t causes on p. If p is a
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preplace for instance, the return value would be negative.

var

transition, t : Transition;
j: int;

procedure traverse (IDD_Node root, IDD_Node src, IDD_Node dest,

src_index int, dest_index int, rate double)

begin

if root = ONE then
//e.g. vector-matrix r=v*M :
//r[src_index] = v[dest_index]*rate
//rate is M[src_index][dest_index]

processData(src_index, dest_index, rate);
return;

end //if

place: Place;
rate2: double;
value, value2, src_index2, dest_index2, i: int;

src2, dest2: IDD_NODE;
edge: Edge;
place:= root.correspondingPlace();

for 0 <= i < root.edges() do
edge := root.edge(i);
if edge.node() != ZERO then

while value < edge.upperBound() do
value2:= value;
rate2:= rate;

if isPrePlace(place, transition ) then
rate2: = rate * value;

end //if

value2:= value + getWeight(place, transition);
src2:= getChild(src, value);
dest2:= getChild(dest, value2);

src_index2:= src_index + smallerStates(src, value);
dest_index2:= dest_index + smallerStates(dest, value2);
traverse(edge.node(), src2, dest2,

src_index2, dest_index2, rate2);
value:= value + 1;

end //while

end //if
end //for

end. // traverse_

/* the following program code can be parallelized*/
for 0 <= j < SPN.transitions() do

t = SPN.getTransition(j);
traverse(ESt.root, RS.root, RS.root, 0, 0, t.rate);

end //for
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As for every implementation of decision diagrams, efficiency depends on consid-
ering redundancies. In general nodes on inner IDD levels will be visited many times.
Subpaths beginning in these nodes will be traversed each time anew. Like in [4] we set
a certain IDD level and cache index and rate information for each of its nodes about
all paths containg these IDD nodes. For shortage of space we must omit further details
considering used data structures. Each time a node of this cache level has been reached,
only the cached data must be processed. The remaining problem is to find an adequate
level. Moving the cache level towards the root speeds up the computation at the cost
of an increased memory consumption as can be seen in Table 1. We hope to find good
heuristics based on the IDD structure and the Petri net structure.
This traversation algorithm can be applied concurrently for more than one transition.
We have to care about synchronization of write access to the result vector only. Cur-
rently we realize this synchronization by allocating a result vector for each thread which
performs traversation. When the traversation for all transitions is finished, result data
must be gathered before the next iteration starts.

4 Results

We now present results obtained with our prototype, which is based on an IDD imple-
mentation of A. Tovchigrechko. Our biochemical model is the extended ERK pathway
from [1]. The test system is a Dual Core Intel Xeon with 2,1 GHz and 2 GB main
memory running a 64 Bit Linux. We made transient analysis for one second for the
eight level version. The CTMC has 6,110,643 states and 78,948,888 transitions. The
transient analysis requires 218 iterations. We compared the time per iteration and the
memory usage obtained by using our tool on one and two cores with PRISM 3.2 (hybrid
engine) as can be seen in Table 1. Currently our implementation requires significant
more memory than PRISM. This is in dept to our current cache data implementation
and the synchronization technique. Table 1 also underlines the impact of the cache
level to iteration time and memory usage.

idd transient PRISM 3.2
number of cores 1 2 1
cache level 10 8 6 10 8 6 19 55
time per iteration (sec) 1.29 1.90 5.43 1.03 1.26 2.98 2.53 1.22
memory (MB) 534 408 393 581 455 440 251 323

Table 1: For the CTMC representation of this model PRISM constructs a MTBDD
with 66 variables (levels). The IDD representing the state space has 22 levels. In both
cases the level counter starts above the terminal level with zero and increases towards
the root level. We set the cache level for our tool to 10, 8 and 6. PRISM sets the cache
level for this model to 19. To increase the performance we run PRISM with different
cache levels. Setting it to e.g. 55 halves the time per iteration.
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5 Future Work

In the near future a bulk of work has to be done to enhance functionality and perfor-
mance of our prototype.
functionality: As introduced in [7] and realized in PRISM we want to implement CSL
model checking.
Presently only mass action kinetics are implemented. In the future our tool should
handle arbitrary hazard functions as they can be specified with our Petri net editor
Snoopy [8].
performance: One example for a performance improvement is transition grouping.
Instead of one traversation for each transition we could group several transitions to-
gether and traverse the IDD for this transition group. Doing so should reduce the
traversation effort and should have an effect like loop blocking resulting in better us-
age of the CPU’s cache memory. First experiments provided promising results.
Moreover memory requirements must be reduced. To simplify synchronization each
thread gets currently an own result vector of type double to store intermediate data.
We will look for a better approach like Compare and Set (CAS) to get by with only
one result vector.
For the time being we use multiple cores sharing common main memory. We are going to
analyze whether our approach could be applicable in an environment with distributed
memory.
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On synthesizing service behavior that is
aware of semantical constraints

Karsten Wolf

Universität Rostock

Abstract. Without taking care of the semantics of messages, every message is an isolated
entity that can be created and sent at will. This leads to anomalies like a synthesized service
that sends a filled form before having received the empty form. In this paper we pick up
ideas from adapter synthesis for taking care of semantical constraints and develop them
into two directions. First, we show that the approach taken for adapter synthesis can be
applied to synthesis of services in general. Second, we argue that the taken approach is in
a certain sense complete.

1 Introduction

We synthesize service behavior for several purposes. First, we can show that it is possible to
interact correctly with a service by constructing a fitting service behavior [1–3]. This approach
can be used as a sanity check for given services. Second, we can try to exploit the canonicity
of the computed behavior and use it for characterizing all correctly interacting partners of a
service [4]. Third, we can transform the computed behavior into executable code that can be
executed as a particular partner of the service.

An instance of the latter approach is the synthesis of a behavioral adapter A between two
given services P and R. At first glance, A is not much more than a correctly interacting partner
of a disjoint composition of P and R. However, this general setting permits a number of anoma-
lies with arise from the fact that behavioral approaches typically abstract from the content of
exchanged messages. In plain language, messages are named a, b, c, . . . without taking care of
whether they denote the submission of a password, an address, a simple acknowledgement, a real
item (sold book), or anything else. This simplification leads to anomalies like the synthesis of an
adapter that can “invent” a password or forward two copies of a received (real!) book. Having
observed this, virtually all approaches to behavioral adapter synthesis [5–11] start with some kind
of specification that expresses appropriate constraints for the activities that can be performed
on certain messages. Although different in technical detail, the specifications all express more or
less the same class of constraints. This class of constraints can thus be considered as mature.

In this note, we demonstrate that the approach taken in adapter synthesis extends to the
synthesis of service behavior in general. That is, we can avoid semantic anomalies in any kind of
synthesis of services by taking into account an appropriate specification of semantical constraints.
For instance, we can suppress synthesis of a service that sends a message containing a session
identifier before having received this identifier. We can avoid sending a signed contract before
having received the unsigned version thereof. There are many other examples of constraints that
are imposed by the semantics of message contents.

As a second contribution, we argue about completeness of our approach. We claim that (under
a few technical limitations like boundedness) we can synthesize a correctly interacting partner
whenever one exists. To this end, we propose a definition for “arbitrary partner that respects
given semantical constraints” and then show our completeness result using this definition.

2 Services

We model services as open nets, i.e. as place/transition Petri nets with an initial marking, a
set of final markings, and a set of places serving as interface. Initial and final markings have no
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tokens on interface places. We require further that final markings do not enable any transition
(although transition may become enabled by putting tokens on input places). The interface is
divided into input and output places and we require that no transition takes tokens from an
output place an no transitions puts tokens on an input place.

There exist translations from industrial languages like WS-BPEL into open nets [12] and vice
versa [13] which proves the suitability of open nets for modeling services. Open nets are composed
by merging equally named interface places (an input place of one service with an output place of
the other one). The merged places are then removed from the interface. Initial and final markings
are composed canonically (remember that we require them to have no tokens on interface places).
We denote the composition of two open nets P and R by P ⊕R.

Composition may lead to an open net with empty interface which we call closed net.
A closed net is deadlock-free iff all markings without enabled transitions are final. An open

net P is controllable iff there exists an open net R such that their composition P ⊕ R is a
deadlock-free closed net.

It is just one possibility to use deadlock freedom as the underlying property for controllabil-
ity. Other requirements could include livelock freedom or any other desired property. Deadlock
freedom is, however, the most prominent property discussed in the context of web services.

3 Synthesis of service behavior

Controllability of an open net P is decidable [1, 2] if two conditions are satisfied. First, the inner of
P (the net obtained by removing the interface of P ) must be bounded and second, we restrict the
set of considered partners to those R where the composition P⊕R yields k-bounded (now merged)
interface places, for some a priori given k. In effect, the composition of considered nets are finite
state systems. In absence of the first restriction, controllability becomes undecidable [14] even in
presence of the second one. If only the second condition is dropped, decidability of controllability
is unknown.

In presence of the mentioned conditions, controllability can be decided by synthesizing (the
state space of) a canonical R as required by the definition of controllability. The resulting state
space (a kind of automaton) can be transformed into a Petri net using standard approaches [15–
17] and further into languages like WS-BPEL [13]. In the resulting WS-BPEL process, transitions
of the Petri net appear as opaque activities. Refining these activities, one obtains an executable
WS-BPEL process. We skip details as they are not necessary for understanding the results in
this note.

The synthesized partner provides a communication skeleton for correct interaction with P and
is thus valuable beyond witnessing controllability. If one desires to invoke P , he can automatically
generate the corresponding code from the description of P . If one does not want to use P
arbitrarily, additional constraints may be applied using the techniques of [18].

A particular application of this approach is the automated synthesis of an adapter A between
two services P and R. If the composition of P and R is not deadlock-free, an intermediate
component may mediate the communication between the two and enforce deadlock freedom.
Formally, A is a service such that P ⊕ A ⊕ R is deadlock-free and can thus be synthesized as a
witness for controllability of P ⊕ R. More precisely, we need to rename interfaces of P and R
such that they become disjoint. This way, all communication between P and R will pass A.

4 Semantical constraints

As we synthesize behavior, we are not necessarily interested in the details of the semantics of
exchanged messages as such. We are only interested in the impact of semantics on behavioral
issues. Experience from adapter synthesis suggests that the main impact of semantical issues is
to constrain the ability of a service to manipulate message contents. The semantics determines
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Table 1. Examples of semantical constraints in terms of transformation rules

Constraint Rule Example pro Example con

Create a !→ a own password, foreign password
simple acknowledgement

Copy a a !→ a, a address money transfer,
transaction number

Delete a a !→ electronic message real item (e.g., book)
Transform a into b a !→ b length in feet to zipcode to length

a !→ a, b length in meters
Split a into b, c, d a !→ b, c, d address to name, city, street the other way round

a !→ a, b, c, d
Merge a, b, c into d a, b, c !→ d name, city, street to address the other way round

a, b, c !→ a, b, c, d
Recombine a, b to c, d, e a, b !→ c, d, e

at reader’s discretion
a, b !→ a, b, c, d, e

whether or not the content of a message can be generated, copied, deleted, or computed from
the content of other messages.

In [11], we proposed to specify semantical constraints as a set of transformation rules. Each
rule consists of two bags saying that the contents of the right hand side messages can be deter-
mined from the contents of the left hand side messages, thereby consuming the messages at left
hand side. Consumption of involved messages makes sense as real items may be involved while
non-consumption of a message may be modeled by re-generating it on the right hand side. For
convenience, the universe used for building bags is a set of semantical entities that contains but
is not restricted to the names of exchanged messages. This way, we have more freedom to model
dependencies.

Table 1 lists those semantical constraints which have been proposed in the context of adapter
synthesis, together with examples where they make sense as well as examples where they don’t
make sense. The examples show that the applicability of a rule indeed depends on the semantics of
the message contents and cannot be inferred from the service protocol. Consequently, we consider
a scenario where the constraint specification is part of the input to the synthesis problem.

There are various ways to generate a specification of semantical constraints. First, they may
be generated manually. Since the transformation rules are rather simple, this should not be a
problem. Second, they may be inferred using semantic web technology like ontology reasoning.
State of the art in this field is beyond the scope of this note. Third, they may become part of
the service construction process using some (may be intra-organizational) modeling standard.

5 Synthesis of service behavior in presence of semantical constraints

Our approach (already exercised in [11]) consists of the following steps. Given an open net P
and a specification C of semantical constraints, we transform C into an open net S that covers
the whole interface of P . S basically manages the message transfer from and to P as well as the
transformation of semantical entities according to C. Via a separate interface, it is possible to
trigger any activity in S and receive a notification of its execution. In a second step, we synthesize
a correctly interacting partner R for P ⊕ S using the traditional approach (i.e., not taking care
of semantics). Finally, we merge R with S into the final result which can be further optimised
using Petri net reduction rules and, if desired, transformed into WS-BPEL.

In this agenda, the construction of S is obviously the crucial part as all other steps rely on
existing technology. Consider some given service P and a set C of semantical constraints ranging
on a set E of semantical entities. Let I and O be the sets of input and output places of P .
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We assume that I ∩ O = ∅ and I ∪ O ⊆ E. For simplicity of presentation, we assume that for
each rule in S, both sides are sets; the general case follows analogously using Petri nets with arc
multiplicities.

For defining the service S, we use names from the space (E ∪ C)× {e, n, c, r, s}, where e, n,
c, r, s denote characters instead of variables; hence we assume that these names do not occur in
the given service.

The interface of S consists of output places I, input places O (i.e., the interface of P in opposite
orientation), and some input and output places specified below. For each entity e : e ∈ E, we
introduce in service S an internal place (e, c) (c for “copy”). In the initial and final markings,
the internal places are empty, although this can easily be generalized in future work.

Service S has three kinds of transitions. For every input place o : o ∈ O, there is a transition
(o, r) (r for “receive”) to move arriving messages from interface place o to their internal place
(o, c). For every transformation rule w : w ∈ C, there is a transition (w, c) to perform the actual
transformation in terms of the internal places. Finally, for every output place i : i ∈ I, there
is a transition (i, s) (s for “send”) to move messages from their internal place (i, c) to interface
place i.

Finally, we discuss the additional interface places for the controller. For every input place
o : o ∈ O, output place (o, n) (n for “notify”) notifies an arrived message o. For every trans-
formation rule w : w ∈ C, input place (w, e) (e for enable) enables transformation rule w, and
output place (w, n) notifies an execution of w. Finally, for every output place i : i ∈ I, input
place (i, e) enables the delivery of a message i (once available).

Definition 1 (Service S). Let I, O,E, C be as introduced before. The corresponding service S
is defined as an open net with the following constituents:

P = (E × {c}) ∪ Pi ∪ Po

Pi = O ∪ (C × {e}) ∪ (I × {e})
Po = I ∪ (C × {n}) ∪ (O × {n})
T = (O × {r}) ∪ (C × {c}) ∪ (I × {s})
F = Fr ∪ Fc ∪ Fs

Fr =
⋃

o∈O { [o, (o, r)], [(o, r), (o, n)], [(o, r), (o, c)] }
Fc =

⋃
w=X "→Y ∈C ( {[(m, c), (w, c)] | m : m ∈ X} ∪

{[(w, e), (w, c)], [(w, c), (w, n)]} ∪{ [(w, c), (m, c)] | m : m ∈ Y } )
Fs =

⋃
i∈I { [(i, c), (i, s)], [(i, e), (i, s)], [(i, s), i] }

m0 = 0
Ω = {0}

We use 0 to denote the marking that is zero in every place. By construction, all outputs
to P have been obtained from the input of P using the transformation rules only. The actual
scheduling of rule applications and message deliveries is left to a controller using the remaining
interface.

The inner of S may be unbounded which would complicate further synthesis. For this reason,
we pragmatically introduce some capacity on the places of S that, if chosen sufficiently large,
should not restrict our results unduely.

Having generated S, it remains to synthesize a partner R of P ⊕ S which can be done using
the approach of [1, 2]. R basically schedules the application of available actions: it triggers the
application of transformations as well as the shipment of messages. Its decisions are based on
notifications about incoming messages and applied transformations.

A WS-BPEL process constructed from R ⊕ S would contain an opaque activity for each
transition, including those that represent the application of transformation rules. In several



53

situations, it is possible to complement the specification of semantical constraints with code
snippets that actually implement the specified transformation. In these cases, we may end up
with an executable WS-BPEL process that implements the whole interaction with P and is
correct by construction.

6 Obeying semantical constraints

In the next section, we wish to establish a result of the following kind: Given a service P and a
set C of semantical constraints, if there is any R such that R interacts correctly with P and R
obeys the semantical constraints, then P ⊕S is controllable. A result of that kind is only valuable
if the definition of “to obey the semantical constraints” is as liberal as possible. In this section,
we propose such a definition. For simplicity, we consider only nets where all arc multiplicities are
equal to one.

As a starting point, we assume that R has one place for each semantical entity occurring in
C. This may be seen as a restriction. Since, however, typical semantical entities are exchanged
messages for which there is anyway a representing place, this condition should not be too restric-
tive. Let PS be the set of places that represent semantical entities. Let FS be the set of edges
that have their source or sink node in PS .

The idea of our definition is to mark the application of transformation rules in the normal
control flow of an open net. To this end, we use some infinite set U . Each element of U represents
the application of a single rule in C. There may be several elements in U that represent the same
rule. Elements of U are assigned to those edges which are connected with PS , i.e. we consider
a mapping ψ : FS → U . This way, access to semantical entities is grouped. u represents a rule
X #→ Y iff the source places of arcs labeled with u match X, the sink places of arcs labeled u match
Y , and each consumption activity causally precedes each production activity. Formally, the first
requirements amount to X = {p | [p, t] ∈ FS , ψ([p, t]) = u}, Y = {p | [t, p] ∈ FS , ψ([p, t]) = u}.
Causal precedence is difficult to formalize as we do not want to rule out open nets with cycles.
Therefore, we need to separate different instances of transitions which contribute to a rule. This
leads to the second restriction. We require that, for each u, every run of the inner of R can be
divided into sequentially arrangeable parts such that each part contains exactly one occurrence
of each transition contributing to u (i.e. there is a p such that ψ([p, t]) = u or ψ([t, p]) = u).
Within each part, we may now require that ψ([p, t]) = u and ψ([t, p]) = u implies that t causally
precedes or is equal to t′ which formalizes the idea that consumption precedes production.

We say that R obeys C iff a mapping ψ with the discussed properties exists.
It is easy to see that R⊕ S as computed in the previous section obeys C.

7 Completeness

With the definition of the previous section we are now ready to claim completeness of our
approach.

Theorem 1. Consider an open net P and a set C of semantical constraints. If P has a correctly
interacting partner that obeys C then P ⊕ S is controllable where S is the open net constructed
from C as described earlier in this note.

For proving this theorem, let R be a correctly interacting partner of P that obeys C. We
transform R into a correctly interacting partner of P ⊕ S using the following ideas.

– Rename input places p of R to (p, n) and output places to (p, e). This way, R talks to S
instead of P .

– For each used u ∈ U , introduce new places pu and qu. These places control the invocation of
rules.
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– For each [p, t] with ψ([p, t]) = u, an arc [t, pu]; for each [t, p] with ψ([t, p]) = u, an arc [qu, t];
– For each u (where c=X !→ Y is the rule represented by u), a transition that consumes |X|

tokens from pu and puts one token on (c, e) as well as a transition that consumes one token
from (c, n) and puts |Y | tokens on qu.
By this construction, a rule is invoked in S after having consumed the corresponding se-

mantical entities in R but before having produced any entity. By our requirements on causal
dependencies, the construction does not influence the behavior of R. Thus, the resulting partner
interacts correctly with P ⊕ S.

8 Conclusion

We have shown that the approach of [11] applies to partner synthesis in general. We have further
shown that, for a quite liberal definition of “obeying semantical constraints” our approach is
complete in the sense that we can synthesize a partner that obeys the constraints iff one exists.
This result is, of course, subject to the following shortcomings: First, we are restricted to finite
state partners with a given bound on the access of interface places. Second, we have artificially
limited the concurrent application of rules and intermediate storage of semantical entities in S
to make S finite state as well. Third, technicalities in the definition of “obey C” may be further
relaxed. Nevertheless, the completeness result should add confidence into our approach.
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Towards Synthesis of Petri Nets from General Partial

Languages
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Abstract. In this paper we investigate synthesis of place/transition Petri nets

from three different finite representations of infinite partial languages, general-

izing previous results.

1 Introduction
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Fig. 1. Partial language given by a term.

In the last two years we

generalized the theory

of regions for the syn-

thesis of Petri nets from

sequential languages and

step languages to so

called partial languages

[LJ06]. A partial lan-

guage specifies the be-

haviour of a concurrent

system through a possibly infinite set of labeled partial orders (LPOs). Each LPO speci-

fies a run of the system given by a partial order between events labeled by action names.

Unordered events are interpreted to be concurrent. The left side of Figure 1 shows three

different LPOs, the right side shows a partial language. Through the theory of regions

it is possible to compute from a given partial language a Petri net having all specified

LPOs as partially ordered runs and having minimal additional behaviour.
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b

2

ba

a

b b

a

a b

a b

a

a b
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(N1,m1) L(N1,m1)

Fig. 2. Partial language without term-based representation.

In this paper we

consider classical place/

transition Petri nets (p/t-

nets). In [LBDM07] we

developed an effective

synthesis algorithm based

on the theory of regions

from finite partial lan-

guages. In [LBDM08]

we generalized this result to such infinite partial languages having a finite term based

representation using operators for iteration (∗), sequential composition (;), alternative
composition (+) and parallel composition (‖). Figure 1 shows some of the LPOs of
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the infinite partial language given by the term (A ‖ (B + C))∗ composing elementary
LPOs A, B, C.1

a

a

a

a

2

a

a

a a

a a

...

(N2,m2) L(N2,m2)

a a

Fig. 3. Partial language without term-based represen-

tation.

Unfortunately only a small

class of infinite partial lan-

guages can be represented in

such a term based form. The

Figures 2 and 3 show ex-

amples of infinite partial lan-

guages which can not be given

by a term as above. The main

reason for that is, that by the it-

eration operator it is not possi-

ble to append events only to a

part of an LPO, but only to the whole LPO. In both cases a p/t-net having the given

partial language as its set of (partially ordered) runs is shown.

In this paper we propose three different more general finite representations of infi-

nite partial languages. Each of these representations allows to iteratively append events

to parts of LPOs. Therefore, it is possible to represent the finite complete prefix of the

branching process of bounded p/t-nets, i.e. we claim that by each of these finite repre-

sentations the language of (partially ordered runs) of arbitrary bounded p/t-nets can be

specified.

Due to lack of space we mostly present the ideas lying behind these finite represen-

tations only in an informal way through examples. Finally, very briefly, we suggest how

regions could be defined for each of the finite representations.

2 Finite Representations

In this section we introduce three different finite representations of infinite partial lan-

guages.

By N we denote the nonnegative integers. N+ denotes the positive integers. Given a

finite set A, the symbol |A| denotes the cardinality of A. The set of all multi-sets over a
set A is the set NA of all functions f : A → N. Given a binary relationR ⊆ A×A, we
write aRb to denote (a, b) ∈ R. A directed graph is a pair (V,→), where V is a finite

set of nodes and→⊆ V ×V is called the set of arcs. A partial order is a directed graph

po = (V, <), where <⊆ V × V is irreflexive and transitive.

Definition 1 (Labeled partial order). A labeled partial order (LPO) is a triple lpo =
(V, <, l), where (V, <) is a partial order and l : V → T is a labeling function with set

of labels T .

In our context, a node v of an LPO (V, <, l) is called event, representing an oc-
currence of l(v). Two nodes v, v′ ∈ V are called independent if v &< v′ and v′ &< v.
Notice that by this definition, independence is reflexive. By co ⊆ V × V we denote

the set of all pairs of independent nodes of V . A co-set is a subset C ⊆ V satisfying

1 Note that for a clearer presentation no transitive edges of the LPOs are drawn.



57

∀x, y ∈ C : x co y. A cut is a maximal co-set (w.r.t. set inclusion). For a co-set C of

a partial order (V, <) and a node v ∈ V \ C we write v < C, if v < s for an element
s ∈ C, and v coC, if v co s for all elements s ∈ C. A partial order (V ′, <′) is a prefix of
a partial order (V, <) if V ′ ⊆ V , <′=< |V ′×V ′ and (v′ ∈ V ′ ∧ v < v′) =⇒ (v ∈ V ′).
Given two partial orders po1 = (V, <1) and po2 = (V, <2), we say that po2 is a se-

quentialization of po1 if <1⊆<2. We use the notations defined for partial orders also

for LPOs. If T is the set of labels of lpo = (V, <, l) then for a set V ′ ⊆ V , we define
the multi-set |V ′|l ⊆ NT by |V ′|l(t) = |{v ∈ V ′ | l(v) = t}|. We consider LPOs only
up to isomorphism

Definition 2 (Partial language). Let T be a set. A set L of LPOs lpo = (V, <, l) with
l(V ) ⊆ T and

⋃
(V,<,l)∈L l(V ) = T is called partial language over T .

A net is a triple (P, T, F ), where P is a (possibly infinite) set of places, T is a finite
set of transitions satisfying P ∩ T = ∅, and F ⊆ (P × T )∪ (T ×P ) is a flow relation.

Definition 3 (Place/transition net). A place/transition-net (p/t-net) N is a quadruple

(P, T, F, W ), where (P, T, F ) is a net, andW : F → N+ is a weight function.

We extend the weight functionW to pairs of net elements (x, y) ∈ (P×T )∪(T×P )
with (x, y) +∈ F by W (x, y) = 0. A marking of a net N = (P, T, F, W ) is a function
m : P → N, i.e. a multi-set over P . A marked p/t-net is a pair (N, m0), where N
is a p/t-net, and m0 is a marking of N , called initial marking. The occurrence rule of
p/t-nets is defined as usual. The non-sequential semantics of a p/t-net can be given by

enabled LPOs, also called runs. An LPO is enabled in a net if the events of the LPO

can occur in the net respecting the concurrency relation of the LPO.

Definition 4 (Enabledness). Let (N, m0) be a marked p/t-net, N = (P, T, F, W ). An
LPO lpo = (V, <, l) with l : V → T is called enabled w.r.t. (N, m0) if for every cut C
of lpo and every p ∈ P there holdsm0(p) +

∑
v∈V ∧v<C(W (l(v), p)−W (p, l(v))) ≥∑

v∈C W (p, l(v)). Its occurrence leads to the marking m′ given by m′(p) = m0(p) +∑
v∈V (W (l(v), p) − W (p, l(v))) for each p ∈ P .
The set of of LPOs enabled w.r.t. a given marked p/t-net (N, m0) is denoted by

L(N, m0). L(N, m0) is called the partial language of runs of (N, m0).

An alternative characterization of enabled LPOs is through so called process nets. A

process net is an acyclic net without conflicts which “unfolds” a p/t-net by representing

tokens from some marking of the p/t-net through places (called conditions) and tran-

sition occurrences through transitions (called events). Since in a process net the flow

relation has no cycles and thus defines a partial order among conditions and events.

Omitting the conditions and keeping this partial order between the events yields an en-

abled LPO, called run underlying the process net. The other way round, each enabled

LPO sequentializes the run underlying some process net.

The set of all (alternative) process nets of a p/t-net can be represented by the (possi-

bly infinite) branching process which is an acyclic net including conflicts. In the case the

p/t-net is bounded, there is a finite prefix of the branching process (called complete fi-

nite prefix) which represents all reachable markings. Roughly speaking, it is determined
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through cutting the branching process if a marking is repeated. Omitting the conditions

and keeping the partial order and conflict relation between the events yields a so called

prime event structure (underlying the finite complete prefix) which represents a set if

runs underlying process nets.

Note that the partial language of runs of a p/t-net is always prefix- and sequentialization-

closed. In examples and Figures we often do not draw all prefixes and sequentializations

but assume that they are present.

2.1 Identification of states

ab a

b

a

a b

a

a

a

b b

A1 A2 A3 A4 A5 A6

&

A2[A6]=A2[A5]=A4[A5]

Fig. 4. Set of LPOs with identification of states

representing L(N1, m1).

The finite complete prefix (resp. its

underlying prime event structure) of

a bounded p/t-net can be represented

on the level of languages by a finite

set of LPOs. Of course, from this fi-

nite set the complete non-sequential

behavior can only be re-constructed,

if one keeps the information, at which

points the branching process was cut

w.r.t. which repeated marking. This

can be done by remembering, which

prefixes of which LPO lead to the

same marking. That means, a possibility for specifying the non-sequential behavior of

bounded p/t-nets is through a finite set of LPOs together with some equivalence relation

on prefixes of these LPOs.

a a

a

a

a a

A1 A2 A3

&

A1[A3]=A2[A3]

Fig. 5. Set of LPOs with identification

of states representing L(N2, m2).

If two prefixes are equivalent, this means

that all events occurring after the one prefix

also can occur after the second prefix and vice

versa. Infinite behavior is specified for exam-

ple if a prefix is prefix of an equivalent prefix.

Figure 4 shows, how by this method the lan-

guageL(N1, m1) from Figure 2 can be given.
The equation A2[A6] = A2[A5] = A4[A5]
means that after occurrence of A2 in A6 the

same marking is reached as after occurrence

of A2 in A5 or after occurrence of A4 in

A5. Therefore, after the occurrence ofA4, the

same events as after A2 in A5 or A6 can occur and so on. Also L(N2, m2) from Figure
3 can be represented this way (see Figure 5). This means, that through identifying states

also the non-sequential behavior of unbounded nets can be specified (at least in some

cases).

2.2 Partial Iteration

In [LBDM08] we introduced a term-based representation of infinite partial language.

These terms, called composed runs, are build through composing inductively (elemen-
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tary) LPOs from some given finite set of LPOsA. LPOs can be composed sequentially
(;), alternatively (+) and parallel (‖) and can be iterated (∗). That means each LPO
A ∈ A is a composed run and if α, β are composed runs, then also α; β, α + β,
α ‖ β and α∗ are composed runs. Each composed run represents a set of LPOs,

where an elementary LPO A represents the one-LPO set L(A) = {A}. The com-
posed run α; β represents the set L(α; β) = {A; B | A ∈ α, B ∈ β}, α + β the
set L(α + β) = L(α)∪L(β), α ‖ β the set L(α ‖ β) = {A ‖ B | A ∈ α, B ∈ β} and
α∗ the set L(α∗) = {A1; ...; An | Ai ∈ α}. On the level of LPOsA; B means that each

event in A precedes each event in B and A ‖ B means that there is no order between

events in A and in B.

ab aa b

a

b b

A1 A2 A3 A4 R S

! = A1 + ((A2 ; (A3)*  );  A4)R
S

b

a

b b

Fig. 6. Composed run with partial iteration

representing L(N1, m1).

Such a representation of partial

languages by composed runs is quite

restrictive as shown in the introduc-

tion, because through sequential com-

position and iteration it is not possi-

ble to append an LPO only to parts of

some previous LPO. We therefore in-

troduce here the possibility to iterate

and sequentially compose LPO w.r.t.

an “interface” specifying to which

parts of a previous LPO a subsequent

LPO is appended. Such an interface is

given through an LPO I connecting events in the previous LPO to minimal events in the
subsequent LPO. The composition w.r.t. to such an interface I is denoted by ∗I resp. ;I
and is realized w.r.t. the ordering given by I .

ab

A1 A2

X = A2 ; ((X + A1)|| A1)

! = A1 + X

Fig. 7. Composed term

with recursion representing

L(N1, m1).

Figure 6 shows, how by this method the lan-

guage L(N1, m1) from Figure 2 can be specified:

The LPO A3 is iterated through appending it only to

the a-labeled event and finally A4 also is appended

only to the a-labeled event. Note that it is in prin-
ciple also possible to represent L(N2, m2) through
A1; (A1 ‖ A1)∗A1;(A1‖A1). But the interpretation of

this expression is not totally clear because there are

two possibilities to use the interface A1; (A1 ‖ A1)
to iterate A1 ‖ A1. One interpretation is that only

one of the possibilities can be applied, another is that

both possibilities can be applied in parallel (and only

in this second case L(N2, m2) is represented).

2.3 Recursion

Another possibility to generalize composed runs is to equip themwith recursion. Through

recursion it is possible specify that some behavior is repeated at certain points of a com-

posed run. For this also variables can be used in a composed run. Each variable repre-

sents a set of LPOs. The set of LPOs specified through a variable X is given through

an equation X = α(X), where α(X) is a composed run including X (X need not be
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minimal in α(X)). The interpretation of such an equation is, that each occurrence of
X on the right side may be replaced by the empty LPO or by α(X) and so on. It is in
general also possible that there are more variables in one composed run and that there

are more equations.

Figure 7 shows, how by this method the language L(N1, m1) from Figure 2 can be
given. Figure 8 shows, how by this method the languageL(N2, m2) from Figure 3 can
be given.

3 Synthesis

a

A1

X = A1 ; (X || X)

! = X

Fig. 8. Composed term

with recursion representing

L(N2, m2).

The general ideas of region based synthesis of p/t-

nets from partial languagesL are as follows: The set
of transitions of the synthesized net is the finite set of

labels of L. Places are defined by their initial mark-
ing and the weights on the arcs connecting them to

transitions. Two kinds of places can be distinguished.

In the case that there is an LPO specified in L which
is no run of the net which has only the one con-

sidered place, this place restricts the behaviour too

much. Such places are non-feasible (w.r.t. L). In the
other case, the considered place is feasible (w.r.t. L).
The aim is to add enough feasible places in order ex-

actly reproduce the specified behavior.

Feasible places are computed through so called token flow regionswhich are defined

on the level of the partial language [LJ06]: If two events x and y satisfy x < y in
an LPO lpo = (V, <, l) ∈ L, this specifies that the corresponding transitions l(x)
and l(y) may be causally dependent. Such a causal dependency arises exactly if the
occurrence of the transition l(x) produces one or more tokens in a place, and some
of these tokens are consumed by the occurrence of the other transition l(y). Such a
place can be defined as follows: Assign to every edge (x, y) of an LPO in L a natural
number r(x, y) representing the number of tokens which are produced by the occurrence
of l(x) and consumed by the occurrence of l(y) in the place to be defined. For this,
we extend each LPO lpo ∈ L by an initial event vlpo and a final event, representing

transitions producing the initial marking and consuming the final marking (after the

occurrence of lpo). A feasible place pr is then defined by assigning for each extended

LPO lpo = (V, <, l) ∈ L a natural number r(x, y) to each edge (x, y) function r,
where it holds that (IN): In(y, r) =

∑
x<!y r(x, y) =

∑
x<!z r(x, z) = In(z, r) for

l(y) = l(z), (OUT ): Out(y, r) =
∑

y<!x r(y, x) =
∑

z<!x r(z, x) = Out(z, r) for
l(y) = l(z) and (INIT ): Out(vlpo1

, r) = Out(vlpo2
, r) for lpo1, lpo2 ∈ L. We call

In(y, r) the intoken flow of y which is interpreted as the weight of the arc connecting the
new place pr with the transition l(y) (i.e. W (pr, l(y)) = In(y, r)). We call Out(y, r)
the outtoken flow of x, which is interpreted as the weight of the arc connecting the
transition l(x) with the new place pr (i.e.W (l(y), pr) = Out(y, r)). The outtoken flow
of vlpo is called initial flow and is interpreted as the initial marking of the new place pr

(i.e.m0(pr) = Out(z, r)). The value r(x, y) is called the token flow between x and y.
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A function r satisfying (IN), (OUT ) and (INIT ) is called region. The main result of
[LJ06] is that the set of places corresponding to regions of a partial language equals the

set of feasible places w.r.t. this partial language.

This notion of regions can easily be adapted to each of the proposed finite repre-

sentations. Namely, in each case a token flow function r need to fulfil requirements
additional to (IN), (OUT ) and (INIT ). In case, a partial language is given by a finite
set of LPOs and an equivalence relation on prefixes of those LPOs, we require that

– r satisfies (IN), (OUT ) and (INIT ) on the finite set of LPOs.
– r satisfies that for equivalent prefixes the sum of token flows on edges leaving one
prefix equals the sum of token flows on edges leaving the other prefix.

In case, a partial language is given by a composed run using partial iteration, we require

the same properties as for composed runs introduced in [LBDM08]. There an additional

requirement was introduced for the so called set of iterated LPOs postulating that the

initial and the final token flow of such iterated LPOs should be equal. The only differ-

ence now is that the initial and final token flow of such LPOs is computed in another

way, namely w.r.t. the given interface. In case, a partial language is given by a composed

run equipped with recursion equations, we require

– the same as for composed runs and additionally that

– for each equationX = α(X) the intial flow of α(X) equals the sum of token flows
on edges ingoing an occurrence ofX in α(X) for each such occurrence.

All these additional requirements can be represented as homogenous linear inequations

as it is the case for (IN), (OUT ) and (INIT ). Thus effective solution algorithms can
be adapted.
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Abstract. An operating guideline (OG) for a service S finitely charac-
terizes the (possibly infinite) set of all services that can interact with S
without deadlocks. This paper presents a decompositional approach to
calculate an OG for a service whose underlying structure is acyclic and
contains free-choice conflicts. This divide-and-conquer approach promises
to be more efficient than the classical OG computation algorithm.

1 Introduction

In the paradigm of service-oriented computing, a service is a component that offers
a functionality over a well-defined interface and is discoverable and accessible
via a unique identifier. By composing several services, complex tasks (e. g., inter-
organizational business processes) can be realized. Thereby, the correct interplay
of distributed services is crucial to achieve a common goal.

Recent literature [1] proposed an operating guideline (OG) of a service S
as finite characterization of all (partner) services that communicate correctly
(i. e., without deadlocks or livelocks) with S. Applications of OGs include the
realization the “find” and “publish” operations of service brokering, as well as the
analysis, construction, and correction of services. Unfortunately, the algorithm to
calculate an OG for a service has exponential complexity in both the service’s state
space and the size of the interface. In this paper, we propose a decompositional
divide-and-conquer approach to calculate OGs for service models that contain
free choice conflicts.

In Sect. 2, we recall some necessary definitions. Section 3 introduces decompo-
sition of service models and describes how OGs can be calculated decomposition-
ally. In Sect. 4, we analyze which constructs of industrial specification languages
meet the requirements of the decomposition. Section 5 concludes the paper and
discusses future work.

2 Background

We use open nets [2] to model services. Open nets extend classical Petri nets [3]
with an interface I = (Pin ∪Pout ) ⊆ P to explicitly model asynchronous message
exchange and a set of final markings Ω modeling desired final states of the service.
Two open nets N and M can be composed (denoted by N ⊕M) by merging their
interfaces accordingly (N ’s input places with M ’s output places, and vice versa).
Thereby, the inner structures of N and M (i.e., the open net without interface)
∗ funded by the DFG project “Operating Guidelines for Services” (WO 1466/8-1)
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are assumed to be disjoint. An open net is acyclic if the reachability graph of its
inner structure is acyclic. An open net weakly terminates if, from every reachable
marking, a final marking is reachable.

Definition 1 (Controllability, strategy). Let N be an open net. N is con-
trollable, iff there exists an open net M such that N ⊕M is weakly terminating.
Then M is called a strategy for N . Denote the set of all strategies for N by
Strat(N).

In [1], the concept of an operating guideline (OG) was introduced. The
operating guideline OGN for a service N is a finite automaton whose states are
annotated with Boolean formulae. It characterizes a (possibly infinite) set of
services, denoted by Comply(OGN ). In fact, it exactly characterizes the set of
strategies of N .

Theorem 1 ([1]). Let OGN be an operating guideline for an open net N . Then
Comply(OGN ) = Strat(N).
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(b) M
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a ! b
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d

final

a

b

c
d

true

a, b, c, d

a, b

a, b

a, b

(d) OGN

Fig. 1. Open net N, strategy M, composition N⊕M, and operating guideline OGN

Example Figure 1 depicts an open net N. The net is controllable, as there exists
a strategy M which first receives either an a or a b message and then responds
with a c or a d message, resp. This and all other strategies are characterized by
the operating guideline OGN. The conjunction a∧ b annotated to the initial node
states that a strategy must be ready to initially both receive an a message and a
b message. The node with the true formula is a technical necessity. Though it
will never be reached in a composition (e. g., after having received an a message,
the further receipt of either a or b is impossible, because N will not send these
messages), such respective branches may be still part of a strategy, because they
do not jeopardize weak termination.

3 Decomposition

In a Petri net, a place with more than one transition in its postset models a
conflict.

Definition 2 (Conflict cluster, free choice). Let x ∈ P ∪ T be a node of a
net. The conflict cluster x, denoted by [x], is the minimal set of nodes such that:
– x ∈ [x].
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– If p ∈ [x] for a place p ∈ P , then p• ⊆ [x].
– If t ∈ [x] for a transition t ∈ T , then •t ⊆ [x].

[x] is free choice if for all t, t′ ∈ [x] ∩ T holds: either •t ∩ •t′ = ∅ or •t = •t′.

Given a marking of a net, this marking either enables all transitions in a
free choice conflict cluster or none of them. We exploit this property by using
the transitions of a free choice conflict cluster to decompose the net. For each
possible outcome of the conflict, we define one net in which only this transition
is present and all others are removed together with their adjacent arcs.

Definition 3 (Decomposition). Let N = [P, T, F, m0, Ω] be an open net and
C a free choice conflict cluster of N with C∩T = {t1, . . . , tm}. The decomposition
of N w.r.t. C is the set {N1, . . . , Nm} with Ni = [P, T\{t1, . . . , ti−1, ti+1, . . . , tm},
F \ ((P ×{t1, . . . , ti−1, ti+1, . . . , tm})∪ ({t1, . . . , ti−1, ti+1, . . . , tm}×P )), m0, Ω],
for i ∈ {1, . . . ,m}.

Theorem 2. Let N be a safe acyclic open net and {N1, . . . , Nm} be its decom-
position w.r.t. a free-choice conflict cluster C of N with C ∩ T = {t1, . . . , tm}.
Then Strat(N) =

⋂m
i=1 Strat(Ni).

Proof. We prove the equality by showing mutual set inclusion.

⊆: Let M ∈ Strat(N). We will show by contradiction that M ∈
⋂m

i=1 Strat(Ni).
Assume M /∈

⋂m
i=1 Strat(Ni). Then M ⊕ Ni contains a deadlock for a net

Ni. Let m0
σ−→ md be a transition sequence to this deadlock in M ⊕Ni. This

sequence is also realizable in M ⊕N . There, md might activate a transition
not present in M ⊕ Ni, which can only be a transition in (C ∩ T ) \ {ti}.
As C is a free choice conflict cluster, md also activates ti in M ⊕Ni which
contradicts the assumption that M ⊕Ni contains a deadlock. Consequently,
M ⊕Ni is deadlock free and M ∈ Strat(Ni). Repeating the arguments, we
can conclude M ∈

⋂m
i=1 Strat(Ni).

⊇: Let M ∈
⋂m

i=1 Strat(Ni). We will show by contradiction that M ∈ Strat(N).
Assume M /∈ Strat(N). Then M ⊕N contains a deadlock. Let m0

σ−→ md be
a transition sequence to this deadlock in M ⊕N . There are two cases:

– σ contains a transition of C∩T . Then, by definition of the decomposition,
there exists a net Ni such that σ is realizable in M ⊕Ni, because due to
safeness and acyclicity, transitions in C ∩ T can occur at most once in σ.

– σ contains no transition of C. Then σ is realizable in M ⊕Ni, for any
1 ≤ i ≤ n.

Both cases would contradict the assumption that M ∈
⋂m

i=1 Strat(Ni). Hence,
M ⊕N is deadlock free and M ∈ Strat(N).

,-

Theorem 1 describes the relationship between the strategy set of a service
and its OG. The intersection of strategy sets can be related to OGs using the
product operator [4]. The product of two operating guidelines OGN and OGM ,
denoted by OGN ⊗OGM , is constructed similar to the product automaton for
classical finite automata. In addition, the formula annotated to a state [q1, q2] of
the product is defined to be the conjunction of the formula annotated to q1 and
that of q2.
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Theorem 3 ([4]). Let OGN , OGM be operating guidelines. Then
Comply(OGN ⊗OGM ) = Comply(OGN ) ∩ Comply(OGM ).

This result allows us to express Theorem 2 in terms of operating guidelines:

Corollary 1. Let N be a safe acyclic open net and {N1, . . . , Nm} be its decom-
position w.r.t. a free-choice conflict cluster C of N with C ∩ T = {t1, . . . , tm}.
Then Comply(OGN ) = Comply(OGN1 ⊗ · · · ⊗OGNm).

We are now able to calculate an operating guideline for N by calculating
the operating guidelines for the decomposition of N , followed by calculating the
product of the operating guidelines. Note that Theorem 2 does not require the
whole net to be free choice, but only the conflict cluster under consideration.
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final ! 
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(e) OGN1 ⊗OGN2

Fig. 2. Decomposed open nets N1 and N2 with operating guidelines OGN1 and OGN2

and the product operating guideline OGN1 ⊗OGN2

Example (cont.) The net N in Fig. 1 contains a free choice conflict cluster
{p, t1, t2} and can be decomposed into the nets N1 and N2, depicted in Fig. 2.
The respective OGs characterize the strategies for the decomposed nets. To
determine the intersection of these strategy sets, the product OGN1 ⊗ OGN2

needs to be constructed. As described earlier, it is the product of the underlying
automata, and each state is annotated with the conjunction of the respective
formulae. For example, the annotation of state [q1, r1] is the conjunction of the
formulae of q1 (a) and r1 (b). The resulting product OGN1 ⊗OGN2 is equivalent
to OGN (cf. Fig. 1); that is, it characterizes the same set of strategies.

The advantage of the decompositional OG calculation is the reduced complex-
ity of the intermediate results. Though the OGs of the decomposed nets might
have more nodes, the state space of the decomposed nets is usually much smaller.
Furthermore, the product operator’s associativity allows to interleave the OG
calculation and the product construction.

4 Applications

Though the requirements of Theorem 2 (safeness, acyclicity) are very restrictive,
the decompositional approach to calculate an OG can still be used for industrial
specification languages. In the following, we evaluate which features of the
languages BPEL [5], BPMN [6], and UML2 [7] activity diagrams may be used to
while still meeting the requirements of Theorem 2.
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BPEL For BPEL there exists a feature-complete Petri net semantics [8] which
allows to translate a BPEL process into safe open nets. The net is cyclic only if
activities for repetitive execution (while, repeatUntil, and sequential forEach)
or event handlers are used in the process. Several patterns contain conflicts of
which many are not free-choice. However, the following are:
– decisions modeled with the if activity (in case XPath errors are not modeled),
– transition conditions to set control links within a flow activity, and
– leaving the process’s positive control flow (throwing a the first fault).

Furthermore, conflicts can depend on each other. For example, whether or not to
skip an activity during dead path elimination is a non-free choice, yet dependent
on the setting of the respective control links, which in turn is a free choice
decision. Hence, when decomposing the net using such a “dominant” conflict,
several “dependent” decisions become deterministic.

BPMN Dijkman et al. [9] defined a Petri net semantics for a subset of BPMN.
The resulting Petri net is safe if the control flow does not contain a lack of
synchronization. This situation can arise if gateways are not nested properly (e.g.,
the control flow splits using an AND-gateway, but joins using an XOR-gateway).
Such models contain obvious design flaws.

The nets are acyclic if the control flow is acyclic and no activities with explicit
loop annotation are used. Again, many occurring conflicts are not free-choice,
especially when exception flow is modeled. However, decision gateways can be
translated into free choice conflicts.

UML-AD UML2 activity diagrams have a very close relationship to BPMN
and Petri nets. An activity diagram can be translated into an acyclic Petri net if
its control flow is acyclic. In case the diagram contains no lack of synchronization,
the translation results a safe Petri net. Additionally, the whole net (i. e., every
conflict cluster) is free choice if no pinsets are used.

Table 1. Language constructs for acyclic safe Petri nets and free choice conflicts.

language acyclic Petri net safe Petri net free choice conflicts

BPEL ! while " always safe " if branches
! repeatUntil " transition conditions
! sequential forEach " throwing first fault
! event handlers ! pick

BPMN ! loop activities ! lack of synchronization " data-based gateways
" acyclic control flow " inclusive gateways

" timeout event gateway

UML-AD " acyclic control flow ! lack of synchronization " all, if no pinsets are used

Table 1 summarizes the language constructs that are forbidden or that
guarantee acyclic and safe Petri nets, and that yield free choice conflicts. The
latter constructs can be used to discover free choice conflict clusters already
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during the translation of a process described in BPEL, BPMN or UML-AD into
Petri nets. This allows for avoiding an a-posteriori discovery of free choice conflict
clusters.

We implemented the described decomposition approach in the compiler
BPEL2oWFN [8] which translates a BPEL process into a set of decomposed
open nets. For these nets, the OGs can be calculated using the tool Fiona [10],
which also implements the calculation of product operating guidelines.1

5 Conclusion

We presented a decompositional approach that uses free-choice conflict clusters
to decompose a safe acyclic open net. The operating guidelines for the resulting
nets can be calculated independently and subsequently merged using the product
operator. Hence, the calculation can be seen as a divide-and-conquer approach
to calculate operating guidelines.

Both the calculation of the OGs for the decomposed nets and the product
operators are currently implemented to cope with arbitrary nets and OGs, resp.
In future work we plan to adjust these algorithms to exploit the simpler structure
of the intermediate constructs. In particular, we plan to study free choice open
net, because they can be decomposed into conflict free open nets for which the
OG construction should be less complex.

In addition, the requirements of Theorem 2 might be relaxed. For example,
the theorem still holds if every transition sequence marks the conflict cluster at
most once. This requirement can also be fulfilled by open nets which are cyclic
or non-safe.
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Abstract. We calculate a fixed finite set of state space fragments for a
service P , where each fragment carries a part of the whole behavior of P .
By composing these fragments according to the behavior of a service R
we build the state space of their composition P⊕R which can be checked
for deadlocks and livelocks. We show that this approach is applicable to
realize a “find” request by a service R with a provided service P in SOA.

1 Introduction

In the paradigm of service-oriented computing (SOC) a service serves as a build-
ing block for designing flexible business processes by composing multiple services.
Service-oriented architectures (SOA) serve as an enabler for publishing services
via the Internet such that these services can be automatically found. By dynam-
ically binding published services with other services, a composed service that
achieves certain business goals can be designed.

In SOA, we would like to answer a “find” request by a service R with a
provided service P such that P ⊕ R forms a sound, i.e. a deadlock-free and
livelock-free system. The apparent approach is to have P (or a public view of P )
stored in the repository and to construct P ⊕R for checking the absence of dead-
locks and livelocks upon “find”. This approach is, however, not feasible due to
state space explosion, and the necessity to have P (or a formally equivalent pub-
lic view) stored in the repository. State space reduction during the construction
of P ⊕R might help a lot but needs to be performed for each “find” request.

Another approach is to publish an operating guideline [1] for each service P ;
that is, an operational description of all services R such that P ⊕ R is sound.
To answer a “find” request by R, one has to check whether R matches with the
operating guidelines of P [1]. However, in this approach soundness is restricted
to deadlock-freedom so far and hence livelocks in P ⊕R are possible.
! Funded by the DFG project “Substitutability of Services” (RE 834/16-1).

!! Supported by the DFG project “Operating Guidelines for Services” (WO 1466/8-1).
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In this paper, we propose a novel approach. We still build the state space
P ⊕R, but not from operational descriptions of P and R. Instead, we calculate
a finite set of state space fragments for a service P . Each fragment carries a
part of the whole behavior of P . These fragments are published in a repository.
Upon a “find” request by a service R, the state space of P ⊕R is calculated by
composing fragments of P according to the behavior of R. The resulting state
space can then be checked for deadlocks and livelocks using a model checker.
The approach has two advantages:
1. The construction of fragments and their internal state space reduction is done

once for each published service at the “publish” phase. That way, computa-
tional efforts are shifted from “find” to “publish”. This is a clear advantage
as we expect the number of “find” to be much higher than the number of
“publish”.

2. When reducing the size of fragments, we can apply reduction techniques
which are different from standard state space reduction techniques used in
model checking. In fact, we may reduce the transition system after having
computed it.
Section 2 formalizes fragments, shows how fragments for a given service P

can be computed, and it presents how the state space P⊕R can be built from the
fragments of P . Section 3 sketches several abstractions to condense fragments
while preserving deadlocks and livelocks and, finally, Sect. 4 concludes the paper.

2 Calculating State Spaces From Fragments

2.1 Formalizing Fragments

In this section, we define fragments and connections between these fragments.
A (state space) fragment Frag = (V,E, F ) is a graph that consists of a set V

of nodes, a set E ⊆ V × V of (directed) edges, and a set F ⊆ V of final nodes.
We assume that different fragments have disjoint sets of nodes.

Let x be an element of some fixed set M . An instance Frag(x) of a fragment
Frag is built by renaming the constituents as follows: v $→ [v, x], e = [v1, v2] $→
[[v1, x], [v2, x]] for all v ∈ V and e ∈ E. That way, the structure is preserved but
the nodes get previously unused names.

To plug different fragments yielding again a state space, we define connections
which link states of one fragment to states of another fragment. A connection
CFrag1,Frag2

between fragments Frag1 and Frag2 is a subset of VFrag1
× VFrag2

.
If CFrag1,Frag2

is a connection between fragments Frag1 and Frag2, then
CFrag1,Frag2

(x, y) = {([v1, x], [v2, y]) | (v1, v2) ∈ C} is a connection between
Frag1(x) and Frag2(y).

Consider the fragments and the connections depicted in Fig. 1. For instance,
we have fragment Frags1 = ({v0, v1, v2}, {(v0, v1), (v0, v2), ∅}) and connection
CFrags1,Frags3 = {(v1, v4)}. Thereby, v0 relabels α, v1 relabels ωa, etc.

Given a set of fragments Frag1, . . . ,Fragn and connections C1, . . . , Cm, a
transitions system TS = (V,E) is defined by V =

⋃n
k=1 VFragk

and E =
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Fig. 1. Fragments and connections. Dotted (solid) lines denote fragment internal tran-
sitions (connections).

⋃n
i=1 EFragi

∪
⋃m

j=1 ECj . Thereby, several instances of one and the same fragment
or connection may be used to build TS .

In the following, we introduce our service model open nets and show how
fragments and connections of an open net can be calculated.

2.2 Open Nets and Most Permissive Strategy

We use open nets as a service model. An open net N consists of a Petri net
together with an interface. The interface is divided into a set of input places and
output places. Input places have an empty preset, output places have an empty
postset. Furthermore, N has a distinguished initial marking m0, and a set Ω
of final markings such that no transition of N is enabled at any m ∈ Ω. We
further require that in the initial and the final markings the interface places are
not marked.

The behavior of an open net is defined using the standard Petri net seman-
tics [2]. With RN (m0) we denote the set of reachable markings of N .

For example, the open net P depicted in Fig. 2(a) has an initial marking
m0P = [α] and the set of final markings is defined by ΩP = {[ω]}. P has two
input places c and d and two output places a and b that are depicted on the
dashed frame.
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Fig. 2. Open net P and
its most permissive strat-
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sending (receiving) message
x that produces a token on
input place x (consumes a
token from output place x)
in P .



72

As a correctness criterion for an open net N we require the absence of dead-
locks and livelocks in N . N is deadlock-free and livelock-free if for all reachable
markings m ∈ R(m0), RN (m) ∩ΩN #= ∅.

For the composition of two open nets M and N , we require that the input
places of M are the output places of N and vice versa. M and N can be composed
by merging input places of M with equally labeled output places of N and vice
versa.

As we are interested in composing open nets such that the composition is
deadlock-free and livelock-free we define the notion of a strategy. An open net
M is a strategy for an open net N if M ⊕N is deadlock-free and livelock-free.

In [1] it has been proven that there always exists a most permissive strategy
R∗ for an open net N that has richer behavior than every other strategy for N .

The most permissive strategy for P (of Fig. 2(a)) is depicted in Fig. 2(b).
It is an automaton (which can easily be transformed in a state machine and by
adding an input (output) place for each ?x (!x) to an open net) with initial state
s1 and two final states s3 and s4. State s6 is depicted for technical purposes only.
Every edge to s6 shows a possible set of messages R∗ can receive but that will
never occur because P cannot send them.

For R∗ we can prove the following useful property.

Lemma 1. If R is a strategy of P , then R∗ weakly simulates R.

The converse does not hold in general. The automaton R∗ (see Fig. 2(b))
weakly simulates R (see Fig. 3(a)) but P ⊕R has a livelock (as we will see later
on). In fact, R is an example why the operating guideline approach in [1] is not
applicable to tackle livelock-freedom.

When computing R∗ we have the information needed to calculate the frag-
ments and connections of P . Each state s of R∗ is a fragment. In each state
s, R∗ has knowledge about the possible markings of P in s. These markings
(together with their transitions) are the nodes and the edges of the fragment.
Figure 1 shows the fragments and the connections of P . Frags1 is the fragment
derived from s1, Frags2 from s2 and so on. For s6 there is no fragment. We have
relabeled the markings of all fragments by v0, . . . , v9 to make the internals of
P anonymous. For each edge of R∗, we define a connection. The connection is
calculated from the edges of R∗ and the markings.

Given a service R, the most permissive strategy R∗ for P and the fragments
and connections of P , we show in the following how a transition system P ⊕ R
can be constructed.

2.3 Fragments and Connections for P

From the construction of fragments we know that for each state s of R∗, its state
space is defined by the fragment Frags. Furthermore, for each pair of fragments
Frag1 #= Frag2, the set of edges with source in Frag1 and sink in Frag2 is defined
by connection CFrag1,Frag2

. For each fragment Frag , let idFrag denote connection
CFrag,Frag . Then, by Lemma 1, R can only be a strategy for P if R∗ (weakly)
simulates R.
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Fig. 3. Constructing
the state space P ⊕ R
from the fragments
for a given service
R. Note that the ?b
edge in state n5 yields
[n4, s6] ∈ ρ. However,
as s6 is not reachable,
there is no fragment
for state s6 and hence
there is no transition
from Frag5 to Frag3.

Definition 1 (Construction of TSR). Let ! be simulation relation between
R and R∗. Compose transition system TSR from the following fragments and
connections:
– FRAG = {Frags(n) | [n, s] ∈ !},
– CONN = {CFrags,Frags′ (n, n′) | [n, s] ∈ !, [n, x, n′] ∈ δR (x "= τ), [s, x, s′] ∈

δR∗(which implies [n′, s′] ∈ !)} ∪{ idFrags
(n, n′) | [n, s] ∈ !, [n, τ, n′] ∈ δR}

The fragment that corresponds to the initial state of R and R∗ is unique and
it contains the initial state of the resulting transition system TSR.

In our example, (n1, s1), (n2, s1) ∈ !. Thus we add two instances of Frags1,
i.e. Frags1(n1), Frags1(n2). As we have transition [n1, τ, n2] ∈ δR in R we add
connection idFrags1(n1, n2). Furthermore, we add fragment Frags3(n4) because
(n4, s3) ∈ !. From transition [n2, ?a, n4] ∈ δR in R and [s1, ?a, s3] ∈ δR∗ we
conclude that connection CFrags1,Frags3(n2, n4) for ?a has to be added. Figure 3(b)
shows the resulting state space P ⊕ R. TSR contains a livelock (the nodes of
Frags2(n3) and Frags5(n5) have no final node), thus R is no strategy for P .

The resulting transitions system TSR can be verified for deadlocks and live-
locks. Our main result of this paper guarantees that each deadlock and livelock
in P ⊕R is preserved in TSR and vice versa.

Theorem 1. Let R be a strategy for P and let TSR be as defined above. Then
TSR is bisimilar to the state space P ⊕R.

3 Deadlock and Livelock-preserving Abstraction

To speed up the model checking run when checking TSR, we can apply state-
of-the-art reduction techniques such as partial-order and symmetry reduction.
Besides this, we statically reduce the fragments. This may lead to a smaller TSR

and thus increasing the performance of our approach and, in addition, we need to
store smaller fragments in the repository (when publishing P ). All abstractions
we sketch in the following preserve both deadlocks and livelocks.
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For each fragment we compute its strongly connected components (SCCs).
It is sufficient to store only SCCs instead of nodes.

To condense the state space of each fragment, we adapt state space conden-
sation rules from [3]. These rules can be applied to each fragment. For example,
we can condense the three SCCs in Frags5 (see Fig. 1(a)) to a single SCC.

Finally, we can also minimize R, in particular, its τ transitions. For instance,
we can apply minimization rules that preserve branching bisimulation. That way,
states n1 and n2 in Fig. 3(a) could be merged.

4 Conclusion

We have proposed a technique to realize the “find” operation in SOA in case the
composed system is required to be free of deadlocks and livelocks. We suggest
that a service provider publishes a set of state space fragments such that each
fragment carries a part of the whole behavior of P . Given a requester R, “find”
means to construct the state space P ⊕R from the fragments of P guided by the
behavior of R. The resulting state space is checked for deadlocks and livelocks.

Although the space complexity is the product of the state spaces of R and P
(in worst case), we assume that applying abstraction techniques results in much
smaller states spaces.

We are currently implementing the proposed approach in our analysis tool
Fiona [4]. The computed state space P ⊕ R can then be checked for deadlocks
and livelocks using the model checker LoLA [5]. Future work also includes a case
study to validate the strength of the abstraction techniques.
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Abstract. WoPeD (Workflow Petrinet Designer) is an easy-to-use, Java-based 
open source software tool being developed at the University of Cooperative 
Education, Karlsruhe. WoPeD is able to edit, simulate and analyze workflow 
nets, providing a useful instrument in particular for research and educational 
purposes. This paper gives an overview to the current features of the tool, in 
particular on the newly-added BPEL export and coverability graph 
visualization capabilities which will be part of the next major release 2.0 

What is WoPeD? 

WoPeD is Java-based and supports the class of workflow nets as well as standard 
place/transition nets. WoPeD is strictly supporting the well-established "van der 
Aalst" notation [Aal02] and can visualize both structure and dynamics of workflow 
processes, helping to get a deeper and more intuitive understanding of the underlying 
theoretical concepts. WoPeD mainly focuses on educational, scientific and publishing 
purposes in the field of Petri net-based workflow modelling. WoPeD is open source 
and freely-available. Source code and installer packages are provided via 
Sourceforge1, a common platform for the distributed development of free software 
projects. Several publications have accompanied the emerging development of the 
software, giving additional information on the underlying architecture [FrL03], on 
used algorithms [Eck06] and on visualization concepts [FlF06]. A new major release 
will be released in the fourth quarter of 2008. The rest of this paper gives a brief 
overview on the most important features of WoPeD, with special focus on new 
functions which will be part of the new major release 2.0. 

Process and resource view editors 

The WoPeD editor offers full support for the class of workflow nets including 
operators, triggers, sub-processes, resource assignments and quantitative parameters 
like task service times or branching probabilities of XOR-splits. In addition, WoPeD 
contains a separate graphical resource modelling editor to define resource classes 
(groups and roles) and their contained resource objects (workflow participants). 

                                                           
1 http://sourceforge.net/projects/woped 
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Within the process model, each resource-triggered transition can be associated with 
one role and one group. The standard file format of WoPeD is PNML [WeK03], 
allowing model exchange with other Petri net tools. For convenient import into other 

tools supporting PNML, complex operators in "van der Aalst" notation are expanded 
automatically into their Petri net primitives. WoPeD supports several export 
interfaces, including JPEG, BMP and PNG graphic formats.  

Exporting workflow nets to BPEL  

An important new feature of WoPeD 2.0 is exporting well-structured, free-choice 
workflow nets into the widely-used BPEL format. The process control flow is 
converted to the associated BPEL constructs and single transitions can be used as 
placeholders for basic BPEL operations (assign, invoke, receive, reply, wait). A 

Fig. 2 
 

BPEL 2.0  
export tab 

Fig. 1 
 

Process and 
resource editor 
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global namespace is supported for defining state variables which can be used as 
parameters when interacting with web-services. By this, WoPeD allows the 
orchestration of arbitrary web services identified by partner links as well as their 
import from UDDI business registries. The parser used to convert the workflow net 
control flow into a executable BPEL script is based on the ideas published in [AaL08] 
and [Las06]. 

Sound sub-process support 

WoPeD allows hierarchical editing of sub-processes. Any transition of a workflow net 
can be an abstraction of another workflow net, symbolized by a special, double-
framed sub-process transition symbol. By this, even large workflow process models 
can be managed by splitting them up into small portions. As a restriction, WoPeD 
forces all sub-processes to be workflow nets, such that only subnets with exactly one 
input and one output place are supported. This has the interesting consequence that 

most qualitative and quantitative behaviour properties (like e. g. soundness) can be 
checked locally on sub-process level and the results can be recursively exported to the 
embedding process levels. Currently, the composition of the analysis results must be 
done manually. A future version of WoPeD will be able to automate this task by 
creating a hierarchical analysis report over all sub-processes.  

Enhanced simulation control 

WoPeD provides an animated token game simulation for navigating through the 
reachable markings of a workflow net. The new version 2.0 contains an improved 
interface to navigate both forward and backward, step into or step over sub-processes 
and automatically proceed to the next conflicting marking. Apart from this, WoPeD 
allows recording and playback of simulation sessions as well as saving them for later 

Fig. 3 
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reference. A comfortable "remote-control"-like widget in three different views 
(standard, compact and "iPod") is provided in order to control all these activities. 

Qualitative analysis and visual debugging 

WoPeD can analyse a variety of qualitative, soundness-related properties, e. g. free-
choice, S-component coverage, well-structuredness, boundedness and liveness. 
Almost all properties are checked by built-in algorithms, except for some runtime 

consuming parts of the soundness check which are computed by using Woflan 
[VBA01] [Wof08] transparently as an external library. This allows the direct graphical 

Fig. 4 
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visualization of the analysis results inside the associated workflow net, making 
WoPeD a powerful visual debugging tool for workflow process definitions.  

Automated coverability graph creation 

The new release 2.0 of WoPeD implements automatic reachability and coverability 
graph construction and visualization.  Two simple layout algorithms are implemented 

to allow a visual representation. To facilitate the creation of visually appealing graph 
representations, the software allows users to adjust node positions according to their 
needs. Once displayed in a satisfying way, the coverability graph can also be exported 
to the most common graphics formats such as JPEG, BMP and PNG. By this, WoPeD 
can be used to create sample graphs e. g. for lecture material or other publications. 

Fig. 6 
 

Coverability 
graph visualization 

Fig. 7 
 

Capacity planning 
report 



80

Quantitative analysis and capacity planning 

WoPeD is able to store and visualize an average service time value with each 
resource-trigged transition and an average branching probability with each outgoing 
arc of an implicit or explicit XOR-split operator. Based on the role/group assignment 
to all contained tasks, this allows the computation of a capacity planning table derived 
from both process and resource model, assigning each transition the expected number 
of work items per case, and each resource class the minimum required number of 
members under a given resource utilization rate. The algorithm to compute the 
number of work items per case is based on a special sort of net unfolding which is 
capable to approximate possibly infinite loop behaviour. 

Conclusion and outlook 

WoPeD is an evolving software tool. The editing component supports a process 
model view as well as a resource model view and a functional view (currently BPEL 
code). WoPeD strictly supports the original workflow net notation and contains 
algorithms for checking qualitative properties (soundness) as well as quantitative 
properties (capacity planning). By this, WoPeD is an instrument for "blended 
learning" in the context of teaching and publishing in the area of workflow 
management and process analysis. Future development will focus on an enhanced 
resource model editor, a more powerful coverability graph visualization and more 
additional process debugging and analysis functions. For further information, 
including announcements of new features, download links, screenshots and 
documentation, please refer to the website [WoP08]. 
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Abstract. In this paper we show an implementation of an algorithm to synthe-
size a place/transition Petri net (p/t-net) from a possibly infinite partial language,
which is given by a term over a finite set of labelled partial orders (LPOs).
The implementation is integrated as an extension of our Petri net toolset Vip-
Tool. The new extension comprises two plug-ins. The first plug-in offers editing
features to specify term based partial languages. The specification of terms is
graphically supported by a visualization similar to structograms as well as by a
representation in the form of UML activity diagrams. The second new plug-in
provides the algorithmic computation of a p/t-net synthesized from a term spec-
ification. This algorithm is in principle based on ideas already presented in the
paper [4], but a so called separation computation is applied instead of the basis
representation used in [4].

1 Introduction

Synthesis in the field of Petri net theory means algorithmic construction of a Petri net
satisfying a given behavioural description. Often labelled partial orders (LPOs) are con-
sidered the most natural model to describe the non-sequential behaviour of Petri nets.
An LPO represents a run of a place/transition Petri net (p/t-net) if it is enabled w.r.t the
net in the sense that the events of the LPO modelling transition occurrences can fire in
the net respecting the concurrency and dependency relations given by the LPO. In [4]
we presented an algorithm to synthesize a finite unlabelled p/t-net from a partial lan-
guage, i.e. a set of LPOs, which is given in a term based representation. It was shown
that the set of runs of the synthesized net coincides with the set of LPOs represented by
the term – if such a net exists. A term of LPOs is built from a finite alphabet of LPOs
and composition operators for union, parallel composition, sequential composition and
iteration. Due to the iteration operator the partial language represented by such term
may be infinite. The synthesis approach in [4] is based on the theory of regions. Each
transition of the synthesized net is given by a label appearing in the term, and the places
of the net are computed by so called token flow regions. Since the set of all regions is
infinite, the synthesis algorithm calculates a finite set of so called basis regions.

It was shown in [3] that such basis representation is often inappropriate for practical
applications, because the set of places corresponding to basis regions is usually very
large causing unreadable nets. Therefore, in this paper we change the synthesis algo-
rithm from [4] by computing so called separating regions, which proved to yield good
synthesis results [3]. Moreover we use the region type called transition regions instead
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of the token flow regions considered in [4]. But this is only a design decision, because
we showed in [3] that both region types have advantages in different settings. While ex-
changing the region type of token flow regions by transition regions only requires minor
changes of the synthesis algorithm, it is difficult to use the principle of computing a sep-
arating representation of all regions instead of a basis representation. The problem in
particular lies in the infinity of the considered partial languages. Tackling this problem
to get a synthesis algorithm from terms of LPOs which uses separating regions is the
main theoretical contribution of this paper.

On the practical side we implemented this algorithm as an extension of our toolset
VipTool [1] (viptool.ku-eichstaett.de). VipTool offers a user-friendly framework for in-
tegrating plug-ins. The focus of VipTool is on partial order behaviour of Petri nets. In
particular, VipTool already offers functionalities for editing, visualizing and storing p/t-
nets and LPOs. The new extension comprises a plug-in to specify terms of LPOs. It
allows to compose stored LPOs by respective composition operators. The composition
of LPOs is graphically supported by a visualization of the term in a style analogous
to structograms. This representation of such terms was already suggested in [2] as a
nice possibility to compose LPOs. The plug-in also offers an alternative visualization
of terms of LPOs in the form of UML activity diagrams which might be more intuitive
for some users. The second plug-in is an implementation of the actual synthesis algo-
rithm developed in this paper. It computes a p/t-net from a term of LPOs which can then
be layouted and displayed by VipTool.

2 Synthesis Algorithm
In this section the new synthesis algorithm is described. Due to lack of space, we omit
formal details here, and try to give a high-level explanation of the algorithm. We provide
a toy example concerning a workflow of processing a claim in an insurance company.

The input to the synthesis algorithm is a term over a finite alphabet of LPOs serv-
ing as building components. Terms are constructed inductively by iteration (*), parallel
composition (||), sequential composition (;) and union (+). A term defines a possibly
infinite set of LPOs, called the partial language of the term, by combining the LPO
components according to the composition operators. For example the infinite partial lan-
guage of the term Registration; (((PosEvaluation; ((Queries)∗); Payment) + NegEval-
uation) || Reserves) build of the LPOs given in Figure 1 is illustrated in Figure 2. For
formal definitions see [4].

The aim now is to compute a p/t-net, such that the set of enabled LPOs of the
net coincides with the partial language of the specified term (or more precisely with
its prefix- and sequentialization closure) - if such net exists. The synthesis algorithm
proposed in this paper follows standard techniques known from the theory of regions. It
roughly works as follows: The set of transitions of the synthesized net is the finite set of
labels appearing in the term. One restricts the behaviour of this net by creating causal
dependencies between the transitions through addition of places. Places are defined by
their initial marking and the arc weights connecting them to transitions. Two kinds of
places can be distinguished. In the case that there is an LPO in the partial language
of the term which is not enabled in the net which has only the one considered place,
this place restricts the behaviour too much. Such places are non-feasible. In the other



83

Fig. 1. Example LPOs modelling parts of a claim handling process in an insurance company.

Fig. 2. Example term over the LPOs given in Figure 1 and the corresponding infinte partial lan-
guage (transition names are abbreviated).

case, the considered place is feasible. The set of feasible places corresponds to the set
of regions of the term. The definition of regions considered in this paper is similar to
the one developed in [4]. But the idea of considering token flows is replaced by using
so called transition regions (compare [3]). Since in general there are infinitely many
regions, in [4] a finite set of so called basis regions representing all feasible places is
computed. The approach in this paper is different. The aim is to iteratively compute
feasible places prohibiting LPOs not in the language of the term from being enabled,
such that after a finite number of steps all behaviour not given by the term is not any
more possible in the calculated net. The basic idea is to append events to LPOs given by
the language of the term such that the resulting behaviour, called a wrong continuation
of the term, is not specified by the term. Then for each wrong continuation a region is
computed such that the corresponding feasible place separates the wrong continuation
(compare [3]), if such a place exists. In the positive case the place is added to the net and
the next wrong continuation is considered, in the negative case it is directly proceeded
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with the next wrong continuation. This solves the synthesis problem, because the finite
set of wrong continuations is defined in such a way that, if all wrong continuations are
separated, then the infinite set of all LPOs not in the language of the term is prohibited,
or it is not possible to prohibit all such behaviour. The problem is first to define the
notion of regions of a term appropriately and second to define wrong continuations of
a term in such a way that the set of wrong continuations is finite, although the language
of a term may be infinite.

The idea in [4] to define regions of a term is to consider a finite set of representation-
LPOs R and a finite set of iteration-LPOs I (see Figure 3 for an example). The region
definition ensures that the LPOs in R are enabled, and that the LPOs in I can be iterated,
which means that if such LPO is enabled in a marking then it is again enabled after
having fired all events of the LPO. Consequently the LPOs in R are enabled w.r.t. a
place corresponding to a region (i.e. the place is feasible w.r.t. R) and the LPOs in I
produce at least as many tokens in a place corresponding to a region as they consume.
It is shown in [4] that a place is feasible w.r.t. the language of a term if and only if it
satisfies these constraints. In this paper we consider regions of a term by applying these
constraints to transition regions. Then similar as in [4] the set of feasible places of the
language of a term corresponds to the set of regions of the term where the set of regions
is given by the integer solutions of an inequality system.

Fig. 3. Example term of Figure 2 and the corresponding finite representation and iteration sets.

Having defined regions we have to tackle the problem of defining wrong contin-
uations. The basic idea is to use the notion of wrong continuations of a finite partial
language developed in [3] on the finite set R. Note that due to iteration it may happen
that a wrong continuation of an R-LPO is an element of the partial language of the
term, but this does not matter, because in this case there is of course no feasible place
prohibiting this wrong continuation and thus the step is skipped. The aim is that if we
separate all wrong continuations of R, then also all wrong continuations of LPOs that
can be generated by iterating the I-part of an R-LPO are separated. More precisely, a
feasible place separating a wrong continuation of an R-LPO should also separate the
respective wrong continuation of an LPO arising from this R-LPO through iteration of
I-LPOs. But we found examples showing that this is not automatically guaranteed, be-
cause separating places may be filled with tokens by iterating I-LPOs, such that these
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places do not any more separate behaviour after enough iterations. Therefore, we need
some constraints ensuring that iterating certain I-LPOs does not pump up the tokens in
a separating place, i.e. such I-LPOs are not allowed to produce more tokens in the place
than they consume from the place. But there are examples showing that we cannot intro-
duce such restriction for each I-LPO and each separating place, because sometimes only
an unsafe place can prohibit a certain wrong continuation. The solution is to identify for
each feasible place separating a wrong continuation of an R-LPO an appropriate subset
of I-LPOs, for which we consider a ”non-pump-up” constraint. This subset is roughly
speaking given by the I-LPOs that can occur before the wrong continuation within the
R-LPO, because each such I-LPO could otherwise pump up the place so that the wrong
continuation is not separated after a certain number of iterations of the I-LPO.

The algorithm described semi-formally in this section synthesizes a p/t-net from
a term of LPOs. For the term of Figure 2 the resulting net is shown on the right part
of Figure 4. Without providing a formal proof in this workshop paper, we claim that
if there is a p/t-net having the partial language of the given term as its set of enabled
LPOs, then the computed net is such net. The decidability if the computed net actually
has the given behaviour is an open problem (see also [4]).

3 Implementation
We implemented the algorithm presented in the last section as an extension of our
toolset VipTool [1]. VipTool was originally designed as a tool for modelling, simu-
lation, validation and verification of business processes using (partial order behaviour
of) Petri nets. It now offers a flexible xml-based open plug-in architecture to integrate
methods concerned with causality and concurrency modelled by partially ordered runs
of Petri nets. In particular, it already provides plug-ins to synthesize p/t-nets from finite
partial languages. The new extension to synthesize p/t-nets from terms of LPOs now
offers two important advancements: On the one hand it is for the first time possible to
compute nets from infinite sets of LPOs (finitely represented by terms), and on the other
hand terms allow a modular specification of the input partial language. The support of
modularity and the possibility to specify infinite behaviour are two innovative steps to-
wards practical applicability of our synthesis framework in industrial settings, where
our focus remains on modelling of business processes.

The new synthesis extension can nicely build on VipTool’s existing plug-ins for edit-
ing, visualizing and storing p/t-nets and LPOs. A first new plug-in of VipTool supports
the design of terms of LPOs. Using LPOs drawn with VipTool and stored as xml-files,
the plug-in provides an editor to specify terms over such LPOs. The composition of sin-
gle LPOs to terms of LPOs by using the provided composition operators is supported
by two graphical views. The first visualization illustrates the inductive composition of
the LPOs in a natural way by building a block structure illustrating the composition
operators between the blocks (as shown in [2]). This is very similar to the visualization
of algorithms by structograms. The second visualization translates the term structure
into an UML activity diagram (see Figure 4). The alphabet of single LPOs underlying
the term form the activities of the diagram. In this sense, they have to be interpreted as
abstract activities that are refined by a behavioural description through the respective
LPOs. The sequential composition operator determines the path dependencies between
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the LPO-activities. The parallel and alternative composition operators yield balanced
parallel and alternative splits and joins. The iteration operator is implemented as a re-
spective cyclic structure. Having designed a specification of partial order behaviour of
Petri nets by a term, a description of the term of LPOs is stored in an xml-file.

A second plug-in loads such xml-file and xml-files of the LPOs occurring in the
term. It computes a p/t-net from the term specification by applying the described al-
gorithm. The resulting net is stored as a pnml-file, which can be loaded, visualized,
layouted and analyzed by already existing plug-ins of VipTool. Figure 4 shows that in
our running example the computed net nicely models the workflow specified by the
considered term.

Fig. 4. Screenshoot of VipTool showing the example term of Figure 2 represented as an activity
diagram and the net resulting from the synthesis algorithm.
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Abstract. MulanViewer, a Mulan inspection tool, is focused on
gathering information from a Petri net-based multi-agent system and
greatly helps finding bugs, but fixing them is overly time-intensive. We
overcome this limitation by extending MulanViewer with runtime net
manipulation features. To do so, we analyze a typical debugging cy-
cle, point out bottlenecks and implement the most promising additions.
The new features considerably accelerate the identification and fixing
of bugs frequently encountered in Mulan applications. Overall the en-
hancements complement MulanViewer’s features to navigate large and
complex Petri net implementations by adding manipulation capabilities.

1 Introduction

The Paose approach is based on high-level Petri nets forming an agent-oriented
structure, embedding other successful techniques, such as Java and UML. The
development process is highly complex. However, it is supported by a set of
powerful tools and we improve the development process by continuous investi-
gation of techniques, tools and methods. In our last project, the time consuming
debugging process was one of our targets. In Section 2 we sketch the Paose
development setting, highlight the challenges in debugging agent systems and
describe current solutions within Mulan. Subsequently, we identify debugging
bottlenecks by timing common tasks during Paose debugging processes and suit-
ably extend MulanViewer in Section 3. Section 4 closes with a short summary
and an outlook of future work.

2 Developing Multi-Agent Systems with Mulan

Before tackling our goal, we will look at the existing work we can build on: the
current development environment, the challenges during debugging multi-agent
systems and the toolset meeting them.

2.1 The Paose Development Environment

The multi-agent system development environment used for Petri net-based agent-
oriented software engineering is based on Renew (Reference net workshop [4]).
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Renew provides a graphical user interface for creating and editing Petri nets
and a simulator supporting different formalisms. In the Java net formalism, ev-
ery token can be a reference to another net or an arbitrary Java object. Nets can
communicate with embedded nets through synchronous channels and directly
work with Java objects using our Java-based inscription language. During the
simulation, Renew visualizes the token game, allowing its user to interactively
pause and continue the simulation, fire transitions manually, set breakpoints on
transitions or places and inspect the token in detail.

Mulan/Capa is our FIPA-compliant framework for developing multi-agent
systems (MAS) based on reference nets and Java. For Mulan, we identify three
orthogonal views on a MAS [1]: structure, behavior and terminology. The frame-
work respects this by separating the agents and their knowledge from their be-
havior, which is encapsulated in protocol nets, and from the Java-based ontol-
ogy. The implementation of Mulan/Capa extensively uses the nets-within-nets
paradigm: The system infrastructure net holds all platform nets, providing global
communication and agent mobilization services. Each platform net hosts a num-
ber of agents, which can use the platform to exchange messages. An agent, in
turn, can be a reference net, too. The default agent holds a declarative knowledge
base and active knowledge encapsulated in decision component nets as well as a
protocol factory, which instantiates protocol nets in reaction to incoming mes-
sages based on associations in the knowledge base (reactive behavior) or through
internal triggers (proactive behavior). Protocol nets are reference nets defining a
structured schedule of internal actions (knowledge base and decision component
access) and external actions (messages send out and received). A protocol usu-
ally corresponds to a column in an interaction diagram defining the interactions
taking place with one or multiple other agents (roles).

2.2 Challenges in Debugging Multi-Agent Systems

Apart from the common pitfalls [6] shared with object-oriented software de-
velopment, developers of multi-agent systems have to cope with some specific
problems, the most important one being that “[m]ultiagent systems tend to lack
any central control” [7, p.3]: The system consists of autonomous, possibly dis-
tributed agents acting and interacting concurrently without any global instance
controlling it. This imposes a number of challenges to be overcome during de-
bugging a MAS. Due to the dependencies between agents, locally inspecting
them often does not suffice to track the source of a problem, but the complex-
ity of the system and the lack of a central instance makes it difficult to gain a
global overview of the system’s state [2]. Furthermore, the concurrent processes
within the system may induce nondeterministic behavior [5], preventing the clear
reproduction of observed problems.

2.3 Solutions in Mulan

Renew principally provides means to inspect a running multi-agent system,
gaining insight into platforms, its agents and their states in terms of net in-
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Fig. 1. MulanViewer displaying an agent’s knowledge base

stances. However, actually finding a certain agent’s knowledge base or a par-
ticular protocol instance within the running system requires navigating a deep
hierarchy of heterogeneous nested nets. This may often be confusing and time-
consuming and makes it difficult to grasp a thorough overview about what is
happening. The inspection tool called MulanViewer [3,2] fills this gap. Gen-
erally spoken, this tool enables its user to easily access the tokens of interesting
places and (some) transitions in the complex net system. It does so by browsing
the net structure, registering for change notifications at the Renew simulation
engine and building a hierarchical model of the system’s accumulated state, i.e.
the platforms, agents, their knowledge bases, decision components and protocols.
This model is visualized in a graphical user interface providing an overview of
the active components in the MAS as well as adequate views into these com-
ponents such as a table listing an agent’s declarative knowledge (see Figure 1).
For investigation on a lower level MulanViewer allows opening a component’s
corresponding net in Renew.

The two tools MulanViewer and Renew form a powerful inspection toolset
for multi-agent systems implemented in Mulan/Capa. As the system’s compo-
nents are reference nets, most types of errors lead to a transition not being able to
fire, which in turn leads to a protocol being blocked. Blocked protocols can easily
be found in MulanViewer’s overview. Renew’s visualization of the protocol
net instance allows to quickly locate the problematic transition: The developer
just has to look for the lifeline token in the protocol’s schedule of actions. The
following transition’s inscription reveals whether the protocol is blocked because
of a missing knowledge base entry, an erroneous decision component channel or
other unmet preconditions.

3 Extending MulanViewer

While finding the problem in a MAS is rather easy, fixing it is tedious. As
Renew does not provide a way to change a net or its tokens during simulation
– which, by the way, might introduce more problems than it solves – developers
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have to stop the MAS, modify the nets or the agent’s initial knowledge base and
recompile the project, leading to an overly time-consuming debugging cycle.

We propose that extending the toolset with manipulation features for a run-
ning MAS would greatly optimize the process of debugging: Modifying a running
MAS dynamically until it works should be faster than modifying the static MAS
code, recompiling and restarting it each time. To find out which kinds of features
particularly help saving time, we analyze a typical debugging cycle to identify
bottlenecks. Subsequently, we extend our toolset to eliminate these bottlenecks
by providing means to carefully modify net instances during the simulation.

3.1 Identifying Debugging Bottlenecks

Reflecting on a project course held in Winter 2007/2008, we analyze how the
tools described in Section 2.3 are usually used to resolve problems in a Mu-
lan/Capa MAS in order to find the most time-intensive steps. We use a MAS
implementing the German board game “Siedler”, running on a 2.8 GHz dual core
machine with 3 GB working memory to take the time for the tasks. Figure 2
depicts our results: a Petri net modeling the dependencies between debugging
tasks and the outcomes of tests.

To be able to debug a component of the MAS, its developers have to ensure
they have the latest versions of the project, compile it and bring the MAS into
a state that uses their component to see whether it works as intended (steps 1
to 5). Although we assumed the project can be quickly retrieved from a shared
repository and the developers can easily activate their component (here: a pro-
tocol of an interaction), these steps take up to three minutes.

As we can see in the debugging cycle, these steps have to be repeated on each
knowledge base, protocol or decision component related problem. Knowledge
base problems comprise an additional bottleneck: The design artifact cannot be
merged, thus distributed manipulation synchronized through a repository is not
possible, yet.

Fig. 2. Petri net modeling a typical Paose debug cycle.
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3.2 Implementing Manipulation Features

Although the debugging cycle could be sped up by minimizing the time needed
for the repeated steps (most notably steps 1 to 5), this would not change its
problematic structure. Improving the knowledge base editor to eliminate the
dependency on the knowledge base team would arguably help, but we would
rather like to completely remove the need for changing the initial knowledge
base content just to continue testing. In the same line, decision component and
protocol problems should be solvable in the running system.

A general solution for this would be extending Renew to allow editing a net’s
structure during a simulation, automatically updating all of the net’s instances
(Hot Code Replacement), and to allow modification of a token (Token Injection)
– this way all problems in knowledge bases, protocols and decision components
could be fixed or at least worked around on the fly without needing to restart
the system. However, this would require substantial changes to Renew, which
are outside the scope of this work. Instead, we will cope with the different types
of problems separately, trying to find and implement solutions to fix the most
common problems by carefully modifying the running system.

The most usual knowledge base related problems are missing or misspelled en-
tries, causing protocols or decision components accessing them to be blocked. To
resolve them, we extend MulanViewer’s knowledge base view with capabilities
to interactively add, change and remove knowledge base entries. MulanViewer
does not directly modify the knowledge base net, but asks Renew’s simulation
engine to fire the knowledge accessing transitions on the agent’s behalf, thus
avoiding concurrency problems.

For the specific, but frequent case of erroneous message-to-protocol associa-
tions merely fixing the entry often does not suffice: When the problem is spotted
by a developer, it usually is because the agent could not interpret a message
and suspended an interaction. After correcting the entry, recreating the state of
the MAS prior to the misinterpretation may require a restart, which we want to
avoid. So we extend MulanViewer to allow moving a message from the pro-
tocol factory’s not understood place to the place of incoming messages, forcing
the agent to reinterpret the message without the other agent needing to resend
it.

In the case of missing or misnamed DC channels, being able to modify the
affected agent’s DC certainly would provide the greatest relief. However, as this
is out of scope, we implement a feature that loads additional DCs into an agent
by instantiating them and injecting them into the agent net. This way misspelled
and missing channels can be provided as wrapper and stub channels in a new
DC, which can be drawn and loaded by the developer on the fly.

As an all-round solution for circumventing problems during debugging a par-
ticular component that are caused by another agent not acting as supposed, we
extend MulanViewer to enable developers to start a protocol interactively in
the context of an agent. While this does not solve the real problem, it allows a
developer to finish testing the respective component independently of the other
agent’s bugs.
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4 Conclusion

We evolved MulanViewer from a mere monitoring tool into an inspection tool ca-
pable of manipulating a Mulan multi-agent system during runtime by directly
working on the underlying net instances. By this, we reduced the time needed
for fixing particularly common problems found during the debugging phase from
about 3 minutes to less than a minute, which was our main source of motiva-
tion. Apart from that, the new manipulation features help testing a single MAS
component outside its usual environment, partly eliminating the dependency
between developers when working in a team.

Future work will include additional manipulation features and tool support
for repeated tasks in order to further accelerate the debugging cycle. Addition-
ally, we will extend MulanViewer to allow its users to apply runtime manip-
ulations – like editing the knowledge base – to the static code, making changes
persistent. As our tool now can considerably interfere with a running MAS, we
need to develop a security model, allowing a system or its components to be pro-
tected from being manipulated. The MulanViewer idea of directly accessing
particular places and transitions provokes a strong dependence on the Mulan
implementation anyway, so we plan to rework the architecture, shifting as much
responsibility as possible to the MAS, allowing it to determine which and how
much information may be published and which states may be modified from
outside.
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Abstract In this paper we propose a method and present a tool as
plugin for Renew that supports the process of discovery of differences
in possibly conflicting versions of Petri net code. The method uses the
image representaion of the net graph and compares the pixels of the
exported Petri nets. The tool uses the image processing of ImageMagick.
An open source graphical tool kit, which is available on all common
operating systems.
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1 Introduction

During development of large applications or models with Petri nets develop-
ers frequently encounter different and/or conflicting versions of the code base
artifacts. Especially in shared projects where Petri net code is shared through
source code management systems (SCM) such as the Concurrent Versions Sys-
tem (CVS) or Subversion conflicts frequently appear and have to be resolved
manually by the developer. In the evaluation of the code (Petri nets) the main
problem is the identification of the syntactical differences or equalities. However,
on the one hand formally it is very hard to verify graph equality and even harder
to determine the minimum of parts that are different. The graphical representa-
tion, on the other hand, may contain valuable hints for the mentioned problems
but may also differ without change in the syntax. The merging of changes is usu-
ally a manual task, even if only different parts of the nets have been modified. In
contrast, when text-based source code is used, merging of non-conflicting con-
current changes is possible. To our knowledge no tools exist so far that manages
the merging to some extend or even support the developer in this task. Even if
a string representation of the net code exists, usually this code is not handleable
by common tools such as diff [2] (or windiff).

In this paper we propose a simple but efficient method that can simplify
the task of the discovery of differences under certain conditions. To this means
we exploit the graphical representation of the nets and transfer the problem to
finding differences in the visual image of the Petri nets. We also present an imple-
mentation of the method as plugin for Renew [4,5]. In Section 2 we describe the
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method, its implementation and integration within Renew. Section 3 presents
an example to illustrate the method and tool.

2 Discovery of Net Differences

The development of models within development groups frequently leads to con-
flicting models. Even if the system model is decomposable in many parts, still
the problem persists – as with all source code – that within one design artifact
(Petri net) several changes can occur concurrently and have to be merged. In
this situation two tasks have to be performed. First, the differences have to be
identified. Second, the changes have to be included. For Petri nets these tasks
usually have to be performed manually.1 We propose that tool support for the
discovery of net differences can accelerate the development of net system models
significantly.

2.1 Scenarios

We can distinguish at least two different scenarios in which the tool can be uti-
lized: the similarity check and the difference discovery. In the similarity check a
developer does not know, whether two Petri nets or two versions of the Petri net
own the same code (are syntactically/semantically equal but may differ in visu-
ally). For text-based code exist code beautifiers that manage to unify the style
of code as a preparation for the differences tools. Often net elements or text
inscriptions have been moved in the image by another developer and this has
been committed to the repository resulting in a conflict. If the nets (or the net
versions) contain only small differences (e.g. only one node has been moved) the
ImageNetDiff image will show instantly that the nets are syntactically equal.
The checking of the equality of the nets is thus reduced to the checking of the
graphically differing parts.

In the difference discovery the visual areas of the net that own differences can
be easily spotted by the developer. Again if simple changes have been made in the
Petri net, such as the removal or the addition of net elements, the ImageNetDiff
image will directly and clearly show the differences. If this is not the case and
substantial changes have been made, at least the ImageNetDiff image points out
the net areas which are of concern to the developer and which parts have not
changed.

2.2 Technique

The tool makes use of the internal export function of Renew and the Image-
Magick[3] tool kit. For the production of the differences image in the format
of Portable Network Graphics (PNG) or alternatively Encapsulated Postscript
(EPS) first the nets are being exported to the file system as image. Then the

1 An alternative strategy is the avoidance of concurrent changes.
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exported images are passed on as arguments to the imaging tool to compute the
differences image, which will also be stored in the file system. The resulting image
will feature light grayish drawing elements for the parts of the original images
that are equal and two different shades of red for the additional and removed
graphical parts Finally, for the convenience of the user the image is displayed
by Renew once the computation of the differences image has finished. Sources
of nets that are to be compared can be either nets that are opened within the
editor of Renew or nets from the file system.

2.3 Constrains and Limitations

Several limitations to the presented method exist that result from the underlying
tools. For a flawless comparison the compared images must have the same size.
The comparison can not be customized, yet. For instance, the color scheme is
fix. The results for nets in which all graphical elements have been moved are not
satisfying, yet, because the images are compared coordinate pixel against coordi-
nate pixel. There is no integration with the Petri net representation, yet. Thus,
the discovery of changes is supported but the knowledge has to be transferred
to the Petri net.

3 Example

As an example net for the presentation of the method we present the knowledge
base net of the Mulan standard agents. The two nets differ – pragmatically – in
the fact that they support two different property files formats: simple properties
(kb) and XML notation (kbe, kb enhanced). The net that supports the enhanced
representation is built upon the simple version, thus they are comparable. To
find the similarities and differences of the implementation we present fragments
of both nets in Figures 1 and 2. The fragments show the initialization of the net
with the initial knowledge parts of the agents interface to the knowledge base
and the interface that handles the initialization of decision components (active
knowledge). Figure 3 then shows a screenshot of the resulting difference image
(similar fragment).2

The developer’s awareness is instantly attracted by the bright red net ele-
ments and inscriptions. One can see simple additions – manually marked in the
image by dotted outlined squares – and also changes to the code / inscriptions –
manually marked by dotted outlined ellipses –that have been made. The image
shows clearly that all of the old net structure has been preserved. Only addi-
tional net elements and inscriptions have been added and some inscriptions have
been altered.

In a scenario of a shared development, if a developer is confronted by a
concurrent change of the net, which results in a conflicting version of the net code,
the tool can help the developer to decide whether the code has been manipulated,

2 The dashed squares and ellipses are added manually.
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Figure 1. Knowledge base net template of a Mulan agent.

Figure 2. Enhanced knowledge base net template of a Mulan agent.
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the syntax has not been changed and/or if the changes have been made in the
same areas of the net. Thus, the manual act of merging the code or model can
be significantly accelerated.

Figure 3. Screenshot showing differences of the two Petri nets.

4 Conclusion, Discussion and Outlook

Although the approach is rather simple, the results are effective and surprisingly
efficient. Developers of Petri net models have the means to check for differences
in their graphical code by the means of visual support. Clearly a code beautifier
for Petri nets would improve the results of the ImageNetDiff plugin considerably.
Here net components [1] could help to impose a conventionalized structure upon
the nets.

The presented approach makes use of the graphical representation of the
Petri nets, the export to an image format and the power of the graphical frame-
work ImageMagick. There are, however, several other possibilities to tackle the
presented problem. A similar possibility would be if the Petri net views in the
editor could use layered canvas and alpha channels. Thus, one could easily find
differences between versions, which are loaded in overlapping layers. One could
compute equality of Petri nets on the ground of the formal representation in-
cluding node and arc ids. Alternatively, one could program a diff tool on the
ground of an exchange format such as PNML.
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The presented method and the tool leaves room for many improvements.
By choosing different color schemes for the diff images the readability could be
improved significantly. However, since the used tools main purpose of comparing
images is not concerned with graph representations, it does not support this
feature and a reimplementation or switch to another tool could – with some
effort – produce better results. The interpretation of the graphically highlighted
elements could lead to a integration of useful information within the Petri net
editor to further support the merging of concurrent changes.

Principally, with the presented method the results from image processing
have to be re-transferred to the application domain. Alternatively, similar differ-
ences can be computed and presented to the developer on the direct analysis of
Petri net structures. Here, additional information could support the process of
matching elements in Petri net versions. For instance, id-tagged net elements (in
Renew transitions and places have ids) could be matched. However, this would
not solve the problem of constructs that have different ids but are syntactically
equal. A method based on a Petri net representation is also less general than the
presented method, which can be applied to other graphs such as UML diagrams.

In the future we want to investigate possibilities to automatically merge con-
current non-conflicting changes within a source code management system. Here,
the questions of mergeable representations of graph structures and reimplemen-
tations of diff tools that may handle Petri net code are in the focus of research.
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Abstract. Fiona is a tool that has been designed to check behavioral
correctness of a service and to analyze the interaction of services in ser-
vice oriented architectures, for instance. It implements very efficient data
structures and algorithms, which have partly been adapted from LoLA.
Fiona has been proven to be applicable in practice by service design-
ers, service publishers, and service brokers. This tool paper describes the
functionality of Fiona and provides an insight into its architecture.

1 Introduction

In this paper we present Fiona (available at http://www.service-technology.
org/fiona), a tool to analyze the interaction of services. Its features cover the
check of controllability and the construction of an operating guideline of a service
as well as other derived notions. Controllability [1, 2] is a minimal correctness
criterion of a service stating the existence of a behaviorally compatible partner
for the service. An operating guideline (OG) [3, 4] of a service is an operational
characterization of all behaviorally compatible partners of this service.

As a formal model for services we use open nets [5, 4], a special class of Petri
nets that extend classical Petri nets by an interface for communication with
other open nets. This idea is based on the module concept for Petri nets which
was first proposed by Kindler [6].

The development of Fiona started in 2006 as a reimplementation of a tool
called Wombat (available at http://www.informatik.hu-berlin.de/top/
wombat). Wombat was designed to constructively decide controllability of an
open net (called workflow module in Wombat). The main reasons for a reimple-
mentation were (1) a completely new theoretical foundation for deciding con-
trollability, (2) a desired focus on efficiency rather than mere effectiveness, (3)
the newly developed concept of an operating guideline, and, thus, (4) the need
for a separation of computing compatible interactions from reduction rules to
ensure efficiency of the algorithms.

Currently, Fiona is developed distributedly by the groups of Wolfgang Reisig
(Humboldt-Universität zu Berlin) and Karsten Wolf (University of Rostock, Ger-
many). It is written in C++ and released as free software under the terms of the
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GNU General Public License. Fiona’s distribution is based on the GNU auto-
tools, which provide the possibility to run Fiona on most operating systems.1

The functionality of Fiona comprises (among others) the following features:

Controllability. Controllability of an open net N is decided by synthesizing
a partner of N (as an automaton called interaction graph (IG) [2]). If no
partner can be synthesized (i.e. the IG is empty), then N is un-controllable.

Operating guideline. An operating guideline (OG) [4] is a finite characteriza-
tion of all behaviorally compatible partners by annotating a single partner
(as automaton) with Boolean formulae in order to derive all other partners.

Matching. Given an open net M and an operating guideline OGN of an open
net N , Fiona decides whether M is behaviorally compatible to N by match-
ing M with OGN . Matching is more efficient than composing the two nets
and model checking the composition (as proposed by other approaches, like
the public view approach).

Partner synthesis. Given an open net N , Fiona computes a behaviorally
compatible partner open net M (if possible). The synthesis can be trig-
gered to construct a small M (with respect to communication) or a partner
M which exhaustively communicates with N .

Substitutability. Given two open nets N and N ′, Fiona can compare their
sets of compatible partners using the corresponding OGs OGN and OGN ′ . If
OGN ′ comprises OGN , then N can be substituted by N ′ without rejecting
any compatible partner. Different notions of substitutability are described
in [7]. The corresponding decision procedures are implemented in Fiona.

Adapter generation. Given two open nets M and N which are not behav-
iorally compatible, we can consider their composition as an open net and
ask Fiona to synthesize a partner. If such a partner exists, it constitutes an
adapter A, mediating between M and N and making the composition of M ,
N , and A well-behaving by construction. For more details see [8].

Fiona is a stand-alone tool, designed to be used as a background service of
existing service modeling tools. Therefore, Fiona has no graphical interface—
the analysis task as well as the input file(s) are given to Fiona via command line
options. Fiona then computes and reports the result and, if needed, generates
the output file(s).

2 Context

Fiona can be used within the new computing paradigms of service-oriented com-
puting (SOC) and service-oriented architectures (SOA) (see [9] for an overview),
as well as other areas of intra- and interorganizational business process model-
ing and analysis [10]. Therein, a service represents a self-contained software unit
that offers an encapsulated functionality via a well-defined interface. Services
are used as building blocks to implement complex, highly dynamic, and flexible
1 It compiles on MS Windows! (with Cygwin), Unix (Solaris), Linux, and Mac! OS.
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business processes. SOAs introduce a service broker to organize the challenges of
service discovery, i.e. the publishing and management of available services and
the introduction of procedures to enable a client to find and use such a service.

Controllability is a minimal requirement for the correctness of a service and
is particularly relevant for service designers. Operating guidelines are suited to
support service discovery and can be used to decide substitutability of services
or to generate adapters for incompatible services [8]. Thus, Fiona is intended
to be used by service designers, by service providers, and by service brokers.

3 How to Use Fiona

Fiona accepts two different types of files as its input. The open net file for-
mat (.net) has been adapted from the LoLA [11] file format. It is fairly easy
to read and to comprehend. So, it is possible to model an open net manu-
ally. Additionally, there exists a compiler BPEL2oWFN (available at http:
//service-technology.org/bpel2owfn) that implements a feature-complete
open net semantics [12] for WS-BPEL and automatically generates an open net
file for a given WS-BPEL process. Further, Fiona is able to read a textual
representation of an operating guideline stored in a special file format (.og).

In the following we describe the main use cases of Fiona.

Controllability. Given an open net as a .net file, Fiona decides controllability
by constructing an IG. The corresponding command is:

> fiona -t ig nets/example.net

After computing the IG, Fiona reports whether the net is controllable or
not. Furthermore, a graphic file showing the IG is generated by invoking
GraphViz Dot (available at http://www.graphviz.org).

Operating guideline. Given an open net as a .net file, Fiona constructs the
OG of the net using the following command.

> fiona -t og nets/example.net

Fiona reports whether N is controllable or not and a graphic file showing
the OG is generated. Further, a file called example.net.og is generated that
represents the OG of the net textually.

Matching. If a .net file and an .og file is given, Fiona can decide whether the
given net is behaviorally compatible to the net that the given OG corresponds
to. The following command is used for invoking the matching algorithm.

> fiona -t match nets/client.net ogs/service.net.og

Fiona will report whether the net matches with the given OG or not. In
case the matching fails, Fiona reports where the failure manifests in.

Partner synthesis. By passing a .net file to Fiona it is possible to construct
a partner of that net. Fiona can construct two different types of partners:
a very small one or a partner that exhaustively communicates with the net.
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> fiona -t smallpartner nets/example.net
> fiona -t mostpermissivepartner nets/example.net

In both cases Fiona will create an open net example-partner.net that rep-
resents the partner. This is done with the help of the tool Petrify (available
at http://www.lsi.upc.es/~jordicf/petrify/distrib/home.html).

Fiona provides some more analysis and construction features. A list of all
features is available by invoking Fiona with the parameter –help. Using the
parameter -d 1, ..., -d 5 it is possible to retrieve detailed information of com-
putation progress and debug information. Furthermore, the IG and OG graphics
can be enriched to show more details of the graphs. Additionally, there exists
a message bound parameter (-m) that refers to the k-limited communication [4]
of open nets. The message bound limits the number of tokens that an interface
place can carry simultaneously. The default is -m 1, i.e. interface places are safe.

4 Implementation Details

In the following we describe the main architecture of Fiona to construct an IG
and an OG, which are the two basic features of Fiona and provide the basis of
most other functionalities of Fiona.

In either case, an automaton called communication graph (CG) is constructed
first, from which both IG and OG will be derived. The CG consists of nodes and
events. The events reflect possible sending or receiving actions of a partner P of
the considered net N . Each node q of the CG contains the set of markings of N ,
which can be reached by consuming and producing the messages along any path
from the initial node of the CG to q. That set of markings is called knowledge
at q (k(q), for short) [4], representing the hypothesis of P about the state of N .

Representation of markings. The markings of N are stored in a data struc-
ture which was adapted from LoLA. The more markings it stores, the more
the structure converges into a decision tree. It has proven to be very space
efficient while allowing to decide the containment of a marking in linear time.

Knowledge calculation. The knowledge k(q0) of the root node q0 of the CG
consists of all markings reachable from the initial marking m0 of N . For cal-
culating the knowledge of q != q0, k(q) is initially filled with those markings
derived from the predecessor nodes’ knowledges that represent the occur-
rence of the event(s) leading to q. Then, Fiona computes the markings m′

that are reachable from an m ∈ k(q) and adds these m′ to k(q). The com-
putation of the reachability graph is done as in LoLA. For instance, instead
of backtracking, we fire a transition backwards.
The calculation of k(q) can be enhanced by using stubborn sets. Here, only
representative markings are stored in k(q) (Fiona parameter -R) which may
significantly reduce the space required for storing the CG.

Node classification. Each node is classified as either red or blue. The blue
nodes constitute the IG/OG later on, whereas a red node represents a state
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of the partner P that is behaviorally incompatible with the open net N . Such
nodes must be avoided and are not part of the IG/OG. Initially, every node
q is blue. Then, we analyze k(q) for non-final deadlocks and check for each
such deadlock whether it is resolvable by an event of P . If some deadlock
is not resolved, q is set to red. If k(q) contains a marking that violates the
message bound, q is set to red, too. By backtracking, the red color of q is
propagated to its predecessors. To speed up the computation, red nodes are
not deleted but stored to avoid a repeated computation of such a node.

Annotating a node. For each node q a Boolean annotation φ(q) (in conjunc-
tive normal form) is stored. The annotation of q is uniquely defined by k(q):
each deadlock d ∈ k(q) is represented by a clause c where each literal of c
represents an event that resolves d. The annotation is part of the OG later
on, but is also used to drive the order in which the successor nodes are
computed (IG and OG).
φ(q) can also be used as an early classification of q: each literal x corresponds
to an event leading from q to a node q′ in the CG. If q′ is red, then x is set
to false. If thereby φ(q) becomes unsatisfiable, q becomes red immediately.

Successor node computation. For each blue node q we perform each event
that occurs in φ(q), i.e. each event resolving at least one deadlock. For being
able to apply the early classification as often as possible, we sort the clauses
of φ(q) by its length and follow events of short clauses first.
In case of IG computation, we only consider a subset of the possible events:
several reduction rules [2] for the CG are proven to preserve controllability.

The data structure of the CG is the basis of deciding controllability and for
constructing an OG. The OG provides the basis of the matching algorithm. The
IG/OG is used to construct a partner (small/most permissive) for a given net.

Controllability. The IG contains the blue nodes of the CG which was com-
puted by applying all reduction rules. The annotations and knowledge values
of the nodes are discarded. The open net N is controllable if and only if the
root node of the CG is blue. Fiona reports this decision (and statistical
numbers of the IG and CG sizes) on the command line; a graphical repre-
sentation of the IG is generated.

Operating guideline. The OG consists of the blue nodes of the CG, too, this
time computed without reductions. Again, the knowledges are discarded,
but the annotations remain. In the graphical representation of the OG the
annotation of a node q is shown inside of q. Fiona generates a graphical and
a textual representation of the OG and stores both in separate files.

Matching. The matching algorithm is a check whether (1) the given net M
is simulated by the given operating guideline OGN and (2) M satisfies all
annotations of OGN . Therefore, Fiona performs a coordinated depth-first
search through the state space of M and OGN and evaluates each formula
φ(q) by interpreting the currently enabled transitions of M as an assignment
for φ(q). Eventually, Fiona will report the matching result. In case that M
does not match, Fiona will report the marking of M and the node of OGN

where the simulation or the annotation is violated.
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Partner synthesis. Fiona can synthesize two types of partners for a given
open net N . A small partner is constructed based on the IG of N , or a most-
permissive partner is computed out of the OG of N . Either graph provides
the basis of the input of the tool Petrify, which creates the corresponding
open net M . M is behaviorally compatible with N by construction.

5 Conclusion

We have presented the tool Fiona that is designed to be used by service de-
signers, service brokers, and service publishers. Some of its data structures and
algorithms have been adapted from LoLA. Further, we have put great effort on
the theoretical basis of our algorithms in order to make the computations effi-
cient with respect to time and memory consumption. Our case studies show that
Fiona is indeed suitable to be used in practice [4, 2].

Fiona has been integrated into the ProM framework, a process mining tool
kit with plug-able architecture (available at http://prom.sourceforge.net/).

References

1. Schmidt, K.: Controllability of Open Workflow Nets. In: EMISA 2005. LNI, Bonner
Köllen Verlag (2005) 236–249

2. Weinberg, D.: Efficient controllability analysis of open nets. In: WS-FM 2008.
LNCS, Springer-Verlag (2008) accepted.

3. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. In: QSIC 2005, Melbourne, Australia,
IEEE Computer Society Press (2005) 452–457

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In: ICATPN 2007. Volume 4546 of LNCS., Springer-Verlag (2007) 321–341

5. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3) (2005) 35–43

6. Kindler, E.: A compositional partial order semantics for Petri net components. In:
ICATPN 1997. Volume 1248 of LNCS., Springer-Verlag (1997) 235–252

7. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of Services
with Operating Guidelines. Technical Report 222, Humboldt-Universität zu Berlin,
Germany (2008) accepted for a journal.

8. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Technical Report CS-02-08, Universität
Rostock, Germany (2008) submitted to a conference.

9. Papazoglou, M.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (2007)

10. Aalst, W.M.P.v.d., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Contracts:
Agreeing and Implementing Interorganizational Processes. Technical Report 213,
Humboldt-Universität zu Berlin, Germany (2007) submitted to a journal.

11. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN 2000. Volume 1825 of
LNCS., Springer-Verlag (2000) 465–474

12. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In:
WS-FM 2007. Volume 4937 of LNCS., Brisbane, Australia, Springer-Verlag (2008)
77–91



Autorenverzeichnis

Bergenthum, Robin, 81

Cabac, Lawrence, 87, 93

Eckleder, Andreas, 75

Fahland, Dirk, 1
Freytag, Thomas, 75

Gierds, Christian, 37

Huber, Markus, 15

Kölbl, Christian, 15

Leymann, Frank, 7
Lohmann, Niels, 63
Lorenz, Robert, 15, 55

Markwardt, Kolja, 31
Martin, Daniel, 7
Massuthe, Peter, 99
Mauser, Sebastian, 81
Moldt, Daniel, 25, 31, 87

Ortmann, Jan, 31
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