
Towards Synthesis of Petri Nets from General Partial
Languages

Robert Lorenz

Lehrprofessur für Informatik
Universität Augsburg, Germany

e-mail:robert.lorenz@informatik.uni-augsburg.de

Abstract. In this paper we investigate synthesis of place/transitionPetri nets
from three different finite representations of infinite partial languages, general-
izing previous results.

1 Introduction

a

a

b

b

c

A B C (A || (B + C))*

a

a

b

b

c

a

a

a

a

b

b

a

a

b

b

a

a

b

b

a

a

c

...

Fig. 1.Partial language given by a term.

In the last two years we
generalized the theory
of regions for the syn-
thesis of Petri nets from
sequential languages and
step languages to so
called partial languages
[LJ06]. A partial lan-
guage specifies the be-
haviour of a concurrent
system through a possibly infinite set of labeled partial orders (LPOs). Each LPO speci-
fies a run of the system given by a partial order between eventslabeled by action names.
Unordered events are interpreted to be concurrent. The leftside of Figure 1 shows three
different LPOs, the right side shows a partial language. Through the theory of regions
it is possible to compute from a given partial language a Petri net having all specified
LPOs as partially ordered runs and having minimal additional behaviour.

a

a

b

b

2

ba

a

b b

a

a b

a b

a

a b

b b

(N1,m1) L(N1,m1)

Fig. 2.Partial language without term-based representation.

In this paper we
consider classical place/
transition Petri nets (p/t-
nets). In [LBDM07] we
developed an effective
synthesis algorithm based
on the theory of regions
from finite partial lan-
guages. In [LBDM08]
we generalized this result to such infinite partial languages having a finite term based
representation using operators for iteration (∗), sequential composition (;), alternative
composition (+) and parallel composition (‖). Figure 1 shows some of the LPOs of

the infinite partial language given by the term(A ‖ (B + C))∗ composing elementary
LPOsA, B, C.1

a

a

a

a

2

a

a

a a

a a

...

(N2,m2) L(N2,m2)

a a

Fig. 3. Partial language without term-based represen-
tation.

Unfortunately only a small
class of infinite partial lan-
guages can be represented in
such a term based form. The
Figures 2 and 3 show ex-
amples of infinite partial lan-
guages which can not be given
by a term as above. The main
reason for that is, that by the it-
eration operator it is not possi-
ble to append events only to a
part of an LPO, but only to the whole LPO. In both cases a p/t-net having the given
partial language as its set of (partially ordered) runs is shown.

In this paper we propose three different more general finite representations of infi-
nite partial languages. Each of these representations allows to iteratively append events
to parts of LPOs. Therefore, it is possible to represent the finite complete prefix of the
branching process of bounded p/t-nets, i.e. we claim that byeach of these finite repre-
sentations the language of (partially ordered runs) of arbitrary bounded p/t-nets can be
specified.

Due to lack of space we mostly present the ideas lying behind these finite represen-
tations only in an informal way through examples. Finally, very briefly, we suggest how
regions could be defined for each of the finite representations.

2 Finite Representations

In this section we introduce three different finite representations of infinite partial lan-
guages.

By N we denote thenonnegative integers. N
+ denotes the positive integers. Given a

finite setA, the symbol|A| denotes thecardinalityof A. The set of allmulti-setsover a
setA is the setNA of all functionsf : A → N. Given a binary relationR ⊆ A×A, we
write aRb to denote(a, b) ∈ R. A directed graphis a pair(V,→), whereV is a finite
set of nodesand→⊆ V ×V is called theset of arcs. A partial order is a directed graph
po = (V, <), where<⊆ V × V is irreflexive and transitive.

Definition 1 (Labeled partial order). A labeled partial order(LPO) is a triplelpo =
(V, <, l), where(V, <) is a partial order andl : V → T is a labeling functionwith set
of labelsT .

In our context, a nodev of an LPO(V, <, l) is calledevent, representing an oc-
currence ofl(v). Two nodesv, v′ ∈ V are calledindependentif v 6< v′ andv′ 6< v.
Notice that by this definition, independence is reflexive. Byco ⊆ V × V we denote
the set of all pairs of independent nodes ofV . A co-setis a subsetC ⊆ V satisfying

1 Note that for a clearer presentation no transitive edges of the LPOs are drawn.

∀x, y ∈ C : x co y. A cut is a maximal co-set (w.r.t. set inclusion). For a co-setC of
a partial order(V, <) and a nodev ∈ V \ C we writev < C, if v < s for an element
s ∈ C, andv coC, if v co s for all elementss ∈ C. A partial order(V ′, <′) is aprefixof
a partial order(V, <) if V ′ ⊆ V , <′=< |V ′×V ′ and(v′ ∈ V ′ ∧ v < v′) =⇒ (v ∈ V ′).
Given two partial orderspo1 = (V, <1) andpo2 = (V, <2), we say thatpo2 is a se-
quentialization ofpo1 if <1⊆<2. We use the notations defined for partial orders also
for LPOs. IfT is the set of labels oflpo = (V, <, l) then for a setV ′ ⊆ V , we define
the multi-set|V ′|l ⊆ N

T by |V ′|l(t) = |{v ∈ V ′ | l(v) = t}|. We consider LPOs only
up to isomorphism

Definition 2 (Partial language).LetT be a set. A setL of LPOslpo = (V, <, l) with
l(V) ⊆ T and

⋃
(V,<,l)∈L l(V) = T is calledpartial language overT .

A netis a triple(P, T, F), whereP is a (possibly infinite) set ofplaces, T is a finite
set oftransitionssatisfyingP ∩ T = ∅, andF ⊆ (P × T)∪ (T ×P) is aflow relation.

Definition 3 (Place/transition net).A place/transition-net(p/t-net) N is a quadruple
(P, T, F, W), where(P, T, F) is a net, andW : F → N

+ is aweight function.

We extend the weight functionW to pairs of net elements(x, y) ∈ (P×T)∪(T×P)
with (x, y) 6∈ F by W (x, y) = 0. A markingof a netN = (P, T, F, W) is a function
m : P → N, i.e. a multi-set overP . A marked p/t-netis a pair(N, m0), whereN

is a p/t-net, andm0 is a marking ofN , calledinitial marking. The occurrence rule of
p/t-nets is defined as usual. The non-sequential semantics of a p/t-net can be given by
enabled LPOs, also calledruns. An LPO is enabled in a net if the events of the LPO
can occur in the net respecting the concurrency relation of the LPO.

Definition 4 (Enabledness).Let (N, m0) be a marked p/t-net,N = (P, T, F, W). An
LPO lpo = (V, <, l) with l : V → T is calledenabled w.r.t.(N, m0) if for every cutC
of lpo and everyp ∈ P there holdsm0(p) +

∑
v∈V ∧v<C(W (l(v), p)−W (p, l(v))) ≥∑

v∈C W (p, l(v)). Its occurrenceleads to the markingm′ given bym′(p) = m0(p) +∑
v∈V (W (l(v), p) − W (p, l(v))) for eachp ∈ P .
The set of of LPOs enabled w.r.t. a given marked p/t-net(N, m0) is denoted by

L(N, m0). L(N, m0) is called thepartial language of runsof (N, m0).

An alternative characterization of enabled LPOs is throughso called process nets. A
process net is an acyclic net without conflicts which “unfolds” a p/t-net by representing
tokens from some marking of the p/t-net through places (called conditions) and tran-
sition occurrences through transitions (called events). Since in a process net the flow
relation has no cycles and thus defines a partial order among conditions and events.
Omitting the conditions and keeping this partial order between the events yields an en-
abled LPO, called run underlying the process net. The other way round, each enabled
LPO sequentializes the run underlying some process net.

The set of all (alternative) process nets of a p/t-net can be represented by the (possi-
bly infinite) branching process which is an acyclic net including conflicts. In the case the
p/t-net is bounded, there is a finite prefix of the branching process (called complete fi-
nite prefix) which represents all reachable markings. Roughly speaking, it is determined

through cutting the branching process if a marking is repeated. Omitting the conditions
and keeping the partial order and conflict relation between the events yields a so called
prime event structure (underlying the finite complete prefix) which represents a set if
runs underlying process nets.

Note that the partial language of runs of a p/t-net is always prefix- and sequentialization-
closed. In examples and Figures we often do not draw all prefixes and sequentializations
but assume that they are present.

2.1 Identification of states

ab a

b

a

a b

a

a

a

b b

A1 A2 A3 A4 A5 A6

&
A2[A6]=A2[A5]=A4[A5]

Fig. 4.Set of LPOs with identification of states
representingL(N1, m1).

The finite complete prefix (resp. its
underlying prime event structure) of
a bounded p/t-net can be represented
on the level of languages by a finite
set of LPOs. Of course, from this fi-
nite set the complete non-sequential
behavior can only be re-constructed,
if one keeps the information, at which
points the branching process was cut
w.r.t. which repeated marking. This
can be done by remembering, which
prefixes of which LPO lead to the
same marking. That means, a possibility for specifying the non-sequential behavior of
bounded p/t-nets is through a finite set of LPOs together withsome equivalence relation
on prefixes of these LPOs.

a a

a

a

a a

A1 A2 A3

&
A1[A3]=A2[A3]

Fig. 5. Set of LPOs with identification
of states representingL(N2, m2).

If two prefixes are equivalent, this means
that all events occurring after the one prefix
also can occur after the second prefix and vice
versa. Infinite behavior is specified for exam-
ple if a prefix is prefix of an equivalent prefix.
Figure 4 shows, how by this method the lan-
guageL(N1, m1) from Figure 2 can be given.
The equationA2[A6] = A2[A5] = A4[A5]
means that after occurrence ofA2 in A6 the
same marking is reached as after occurrence
of A2 in A5 or after occurrence ofA4 in
A5. Therefore, after the occurrence ofA4, the
same events as afterA2 in A5 or A6 can occur and so on. AlsoL(N2, m2) from Figure
3 can be represented this way (see Figure 5). This means, thatthrough identifying states
also the non-sequential behavior of unbounded nets can be specified (at least in some
cases).

2.2 Partial Iteration

In [LBDM08] we introduced a term-based representation of infinite partial language.
These terms, calledcomposed runs, are build through composing inductively (elemen-

tary) LPOs from some given finite set of LPOsA. LPOs can be composed sequentially
(;), alternatively (+) and parallel (‖) and can be iterated (∗). That means each LPO
A ∈ A is a composed run and ifα, β are composed runs, then alsoα; β, α + β,
α ‖ β and α∗ are composed runs. Each composed run represents a set of LPOs,
where an elementary LPOA represents the one-LPO setL(A) = {A}. The com-
posed runα; β represents the setL(α; β) = {A; B | A ∈ α, B ∈ β}, α + β the
setL(α + β) = L(α)∪L(β), α ‖ β the setL(α ‖ β) = {A ‖ B | A ∈ α, B ∈ β} and
α∗ the setL(α∗) = {A1; ...; An | Ai ∈ α}. On the level of LPOsA; B means that each
event inA precedes each event inB andA ‖ B means that there is no order between
events inA and inB.

ab aa b

a

b b

A1 A2 A3 A4 R S

α = A1 + ((A2 ; (A3)*); A4)R
S

b

a

b b

Fig. 6. Composed run with partial iteration
representingL(N1, m1).

Such a representation of partial
languages by composed runs is quite
restrictive as shown in the introduc-
tion, because through sequential com-
position and iteration it is not possi-
ble to append an LPO only to parts of
some previous LPO. We therefore in-
troduce here the possibility to iterate
and sequentially compose LPO w.r.t.
an “interface” specifying to which
parts of a previous LPO a subsequent
LPO is appended. Such an interface is
given through an LPOI connecting events in the previous LPO to minimal events in the
subsequent LPO. The composition w.r.t. to such an interfaceI is denoted by∗I resp.;I
and is realized w.r.t. the ordering given byI.

ab

A1 A2

X = A2 ; ((X + A1)|| A1)
α = A1 + X

Fig. 7. Composed term
with recursion representing
L(N1, m1).

Figure 6 shows, how by this method the lan-
guageL(N1, m1) from Figure 2 can be specified:
The LPOA3 is iterated through appending it only to
thea-labeled event and finallyA4 also is appended
only to thea-labeled event. Note that it is in prin-
ciple also possible to representL(N2, m2) through
A1; (A1 ‖ A1)∗A1;(A1‖A1). But the interpretation of
this expression is not totally clear because there are
two possibilities to use the interfaceA1; (A1 ‖ A1)
to iterateA1 ‖ A1. One interpretation is that only
one of the possibilities can be applied, another is that
both possibilities can be applied in parallel (and only
in this second caseL(N2, m2) is represented).

2.3 Recursion

Another possibility to generalize composed runs is to equipthem with recursion. Through
recursion it is possible specify that some behavior is repeated at certain points of a com-
posed run. For this also variables can be used in a composed run. Each variable repre-
sents a set of LPOs. The set of LPOs specified through a variable X is given through
an equationX = α(X), whereα(X) is a composed run includingX (X need not be

minimal in α(X)). The interpretation of such an equation is, that each occurrence of
X on the right side may be replaced by the empty LPO or byα(X) and so on. It is in
general also possible that there are more variables in one composed run and that there
are more equations.

Figure 7 shows, how by this method the languageL(N1, m1) from Figure 2 can be
given. Figure 8 shows, how by this method the languageL(N2, m2) from Figure 3 can
be given.

3 Synthesis

a

A1

X = A1 ; (X || X)
α = X

Fig. 8. Composed term
with recursion representing
L(N2, m2).

The general ideas of region based synthesis of p/t-
nets from partial languagesL are as follows: The set
of transitions of the synthesized net is the finite set of
labels ofL. Places are defined by their initial mark-
ing and the weights on the arcs connecting them to
transitions. Two kinds of places can be distinguished.
In the case that there is an LPO specified inL which
is no run of the net which has only the one con-
sidered place, this place restricts the behaviour too
much. Such places arenon-feasible (w.r.t.L). In the
other case, the considered place isfeasible (w.r.t.L).
The aim is to add enough feasible places in order ex-
actly reproduce the specified behavior.

Feasible places are computed through so called token flow regions which are defined
on the level of the partial language [LJ06]: If two eventsx andy satisfyx < y in
an LPO lpo = (V, <, l) ∈ L, this specifies that the corresponding transitionsl(x)
and l(y) may be causally dependent. Such a causal dependency arises exactly if the
occurrence of the transitionl(x) produces one or more tokens in a place, and some
of these tokens are consumed by the occurrence of the other transitionl(y). Such a
place can be defined as follows: Assign to every edge(x, y) of an LPO inL a natural
numberr(x, y) representingthe number of tokens which are produced by the occurrence
of l(x) and consumed by the occurrence ofl(y) in the place to be defined. For this,
we extend each LPOlpo ∈ L by an initial eventvlpo and a final event, representing
transitions producing the initial marking and consuming the final marking (after the
occurrence oflpo). A feasible placepr is then defined by assigning for each extended
LPO lpo = (V, <, l) ∈ L a natural numberr(x, y) to each edge(x, y) function r,
where it holds that(IN): In(y, r) =

∑
x<⋆y r(x, y) =

∑
x<⋆z r(x, z) = In(z, r) for

l(y) = l(z), (OUT): Out(y, r) =
∑

y<⋆x r(y, x) =
∑

z<⋆x r(z, x) = Out(z, r) for
l(y) = l(z) and(INIT): Out(vlpo

1
, r) = Out(vlpo

2
, r) for lpo1, lpo2 ∈ L. We call

In(y, r) theintoken flowof y which is interpreted as the weight of the arc connecting the
new placepr with the transitionl(y) (i.e. W (pr, l(y)) = In(y, r)). We callOut(y, r)
the outtoken flowof x, which is interpreted as the weight of the arc connecting the
transitionl(x) with the new placepr (i.e.W (l(y), pr) = Out(y, r)). The outtoken flow
of vlpo is calledinitial flow and is interpreted as the initial marking of the new placepr

(i.e.m0(pr) = Out(z, r)). The valuer(x, y) is called thetoken flowbetweenx andy.

A functionr satisfying(IN), (OUT) and(INIT) is calledregion. The main result of
[LJ06] is that the set of places corresponding to regions of apartial language equals the
set of feasible places w.r.t. this partial language.

This notion of regions can easily be adapted to each of the proposed finite repre-
sentations. Namely, in each case a token flow functionr need to fulfil requirements
additional to(IN), (OUT) and(INIT). In case, a partial language is given by a finite
set of LPOs and an equivalence relation on prefixes of those LPOs, we require that

– r satisfies(IN), (OUT) and(INIT) on the finite set of LPOs.
– r satisfies that for equivalent prefixes the sum of token flows onedges leaving one

prefix equals the sum of token flows on edges leaving the other prefix.

In case, a partial language is given by a composed run using partial iteration, we require
the same properties as for composed runs introduced in [LBDM08]. There an additional
requirement was introduced for the so called set of iteratedLPOs postulating that the
initial and the final token flow of such iterated LPOs should beequal. The only differ-
ence now is that the initial and final token flow of such LPOs is computed in another
way, namely w.r.t. the given interface. In case, a partial language is given by a composed
run equipped with recursion equations, we require

– the same as for composed runs and additionally that
– for each equationX = α(X) the intial flow ofα(X) equals the sum of token flows

on edges ingoing an occurrence ofX in α(X) for each such occurrence.

All these additional requirements can be represented as homogenous linear inequations
as it is the case for(IN), (OUT) and(INIT). Thus effective solution algorithms can
be adapted.

References

[LBDM07] L ORENZ, R. ; BERGENTHUM, R. ; DESEL, J. ; MAUSER, S.: Synthesis of Petri Nets
from Finite Partial Languages. In:ACSD, IEEE Computer Society, 2007, S. 157–166

[LBDM08] L ORENZ, R. ; BERGENTHUM, R. ; DESEL, J. ; MAUSER, S.: Synthesis of Petri Nets
from Infinite Partial Languages. In:Proceedings of ACSD, 2008, S. 170 – 179

[LJ06] LORENZ, R. ; JUHÁS, G.: Towards Synthesis of Petri Nets from Scenarios. In:
DONATELLI , S. (Hrsg.) ; THIAGARAJAN, P. S. (Hrsg.):ICATPNBd. 4024, Springer,
2006 (Lecture Notes in Computer Science), S. 302–321

[LMB07] L ORENZ, R. ; MAUSER, S. ; BERGENTHUM, R.: Theory of Regions for the Synthesis
of Inhibitor Nets from Scenarios. In: KLEIJN, J. (Hrsg.) ; YAKOVLEV , A. (Hrsg.):
ICATPNBd. 4546, Springer, 2007 (Lecture Notes in Computer Science), S. 342–361

