Decompositional Computation of
Operating Guidelines Using Free Choice Conflicts

Niels Lohmann*

Universitat Rostock, Institut fiir Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. An operating guideline (OG) for a service S finitely charac-
terizes the (possibly infinite) set of all services that can interact with S
without deadlocks. This paper presents a decompositional approach to
calculate an OG for a service whose underlying structure is acyclic and
contains free-choice conflicts. This divide-and-conquer approach promises
to be more efficient than the classical OG computation algorithm.

1 Introduction

In the paradigm of service-oriented computing, a service is a component that offers
a functionality over a well-defined interface and is discoverable and accessible
via a unique identifier. By composing several services, complex tasks (e.g., inter-
organizational business processes) can be realized. Thereby, the correct interplay
of distributed services is crucial to achieve a common goal.

Recent literature [1] proposed an operating guideline (OG) of a service S
as finite characterization of all (partner) services that communicate correctly
(i.e., without deadlocks or livelocks) with S. Applications of OGs include the
realization the “find” and “publish” operations of service brokering, as well as the
analysis, construction, and correction of services. Unfortunately, the algorithm to
calculate an OG for a service has exponential complexity in both the service’s state
space and the size of the interface. In this paper, we propose a decompositional
divide-and-conquer approach to calculate OGs for service models that contain
free choice conflicts.

In Sect. 2, we recall some necessary definitions. Section 3 introduces decompo-
sition of service models and describes how OGs can be calculated decomposition-
ally. In Sect. 4, we analyze which constructs of industrial specification languages
meet the requirements of the decomposition. Section 5 concludes the paper and
discusses future work.

2 Background

We use open nets [2] to model services. Open nets extend classical Petri nets [3]
with an interface I = (Py, U Pyyt) C P to explicitly model asynchronous message
exchange and a set of final markings {2 modeling desired final states of the service.
Two open nets N and M can be composed (denoted by N & M) by merging their
interfaces accordingly (IN’s input places with M’s output places, and vice versa).
Thereby, the inner structures of N and M (i.e., the open net without interface)

* funded by the DFG project “Operating Guidelines for Services” (WO 1466/8-1)



are assumed to be disjoint. An open net is acyclic if the reachability graph of its
inner structure is acyclic. An open net weakly terminates if, from every reachable
marking, a final marking is reachable.

Definition 1 (Controllability, strategy). Let N be an open net. N is con-
trollable, iff there exists an open net M such that N & M is weakly terminating.
Then M is called o strategy for N. Denote the set of all strategies for N by
Strat(N).

In [1], the concept of an operating guideline (OG) was introduced. The
operating guideline OGy for a service N is a finite automaton whose states are
annotated with Boolean formulae. It characterizes a (possibly infinite) set of
services, denoted by Comply(OG ). In fact, it ezactly characterizes the set of
strategies of N.

Theorem 1 ([1]). Let OGy be an operating guideline for an open net N. Then
Comply(OGy) = Strat(N).

(a) N (b)y M (c) Ne M (d) OGN
Fig. 1. Open net N, strategy M, composition N & M, and operating guideline OGy

Ezxample Figure 1 depicts an open net N. The net is controllable, as there exists
a strategy M which first receives either an a or a b message and then responds
with a c or a d message, resp. This and all other strategies are characterized by
the operating guideline OGy. The conjunction a A b annotated to the initial node
states that a strategy must be ready to initially both receive an a message and a
b message. The node with the true formula is a technical necessity. Though it
will never be reached in a composition (e.g., after having received an a message,
the further receipt of either a or b is impossible, because N will not send these
messages), such respective branches may be still part of a strategy, because they
do not jeopardize weak termination.

3 Decomposition

In a Petri net, a place with more than one transition in its postset models a
conflict.

Definition 2 (Conflict cluster, free choice). Let x € PUT be a node of a
net. The conflict cluster x, denoted by [z], is the minimal set of nodes such that:

-z € [x].



— If p € [z] for a place p € P, then p® C [z].
— Ift € [z] for a transition t € T, then *t C [z].
[x] is free choice if for all t,t' € [x] N'T holds: either *tN*t' =0 or *t = *t’.

Given a marking of a net, this marking either enables all transitions in a
free choice conflict cluster or none of them. We exploit this property by using
the transitions of a free choice conflict cluster to decompose the net. For each
possible outcome of the conflict, we define one net in which only this transition
is present and all others are removed together with their adjacent arcs.

Definition 3 (Decomposition). Let N = [P, T, F,mq, 2] be an open net and
C' a free choice conflict cluster of N with CNT = {t1,...,tm}. The decomposition
of N w.r.t. C istheset{Ny,..., Ny} with N; = [P,T\{t1,.. ., tic1,tit1,---,tm},
F\((P X {tl, . 7ti—17ti+17 . ,tm}) U ({tl, e 7ti_1,ti+17 . ,tm} X P)),mo, .Q],
forie{l,...,m}.

Theorem 2. Let N be a safe acyclic open net and {Ny,..., Ny} be its decom-
position w.r.t. a free-choice conflict cluster C of N with CNT = {t1,...,t;m}.
Then Strat(N) = (-, Strat(N;).

Proof. We prove the equality by showing mutual set inclusion.

C: Let M € Strat(N). We will show by contradiction that M € ., Strat(N;).
Assume M ¢ (“, Strat(N;). Then M @& N; contains a deadlock for a net
N;. Let mg = mg be a transition sequence to this deadlock in M @ N;. This
sequence is also realizable in M & N. There, mg4 might activate a transition
not present in M @& N;, which can only be a transition in (C NT) \ {t}.
As C is a free choice conflict cluster, mq also activates t; in M @ N; which
contradicts the assumption that M & N; contains a deadlock. Consequently,
M @ N; is deadlock free and M € Strat(N;). Repeating the arguments, we
can conclude M € (2, Strat(N;).

: Let M € (-, Strat(N;). We will show by contradiction that M € Strat(N).
Assume M ¢ Strat(N). Then M @& N contains a deadlock. Let mg = mq be
a transition sequence to this deadlock in M @ N. There are two cases:

— o contains a transition of CN7T. Then, by definition of the decomposition,
there exists a net N; such that o is realizable in M @ N;, because due to
safeness and acyclicity, transitions in C'NT" can occur at most once in o.

— o contains no transition of C. Then ¢ is realizable in M & N;, for any
1<i<n.

Both cases would contradict the assumption that M € ([~ Strat(N;). Hence,
M @ N is deadlock free and M € Strat(N).

1)

a

Theorem 1 describes the relationship between the strategy set of a service
and its OG. The intersection of strategy sets can be related to OGs using the
product operator [4]. The product of two operating guidelines OG y and OG)y,
denoted by OGpyn ® OG)y, is constructed similar to the product automaton for
classical finite automata. In addition, the formula annotated to a state [q1, g2] of
the product is defined to be the conjunction of the formula annotated to ¢; and
that of gs.



Theorem 3 ([4]). Let OGN, OGym be operating guidelines. Then
Comply(OG N ® OG ) = Comply(OG ) N Comply(OG ).

This result allows us to express Theorem 2 in terms of operating guidelines:

Corollary 1. Let N be a safe acyclic open net and {N1,..., Ny} be its decom-
position w.r.t. a free-choice conflict cluster C of N with CNT = {t1,...,tm}.
Then Comply(OG ) = Comply(OGn, ® --- @ OGy,,).

We are now able to calculate an operating guideline for N by calculating
the operating guidelines for the decomposition of NV, followed by calculating the
product of the operating guidelines. Note that Theorem 2 does not require the
whole net to be free choice, but only the conflict cluster under consideration.

ab [agr]

@ ~ 4 ab a,b,cd
| NG
(a) N1 (b) OGN1 (C) N> (d) OGN2 (6) OGN1 ® OGN2

Fig. 2. Decomposed open nets N; and N> with operating guidelines OGn, and OGN,
and the product operating guideline OGn, ® OGn,

Ezample (cont.) The net N in Fig. 1 contains a free choice conflict cluster
{p,t1,t2} and can be decomposed into the nets N; and N, depicted in Fig. 2.
The respective OGs characterize the strategies for the decomposed nets. To
determine the intersection of these strategy sets, the product OGn, ® OG,
needs to be constructed. As described earlier, it is the product of the underlying
automata, and each state is annotated with the conjunction of the respective
formulae. For example, the annotation of state [q1,r1] is the conjunction of the
formulae of q; (a) and ry (b). The resulting product OGn, ® OG, is equivalent
to OGy (cf. Fig. 1); that is, it characterizes the same set of strategies.

The advantage of the decompositional OG calculation is the reduced complex-
ity of the intermediate results. Though the OGs of the decomposed nets might
have more nodes, the state space of the decomposed nets is usually much smaller.
Furthermore, the product operator’s associativity allows to interleave the OG
calculation and the product construction.

4 Applications

Though the requirements of Theorem 2 (safeness, acyclicity) are very restrictive,
the decompositional approach to calculate an OG can still be used for industrial
specification languages. In the following, we evaluate which features of the
languages BPEL [5], BPMN [6], and UML2 [7] activity diagrams may be used to
while still meeting the requirements of Theorem 2.



BPEL For BPEL there exists a feature-complete Petri net semantics [8] which
allows to translate a BPEL process into safe open nets. The net is cyclic only if
activities for repetitive execution (while, repeatUntil, and sequential forEach)
or event handlers are used in the process. Several patterns contain conflicts of
which many are not free-choice. However, the following are:

— decisions modeled with the if activity (in case XPath errors are not modeled),
— transition conditions to set control links within a flow activity, and
— leaving the process’s positive control flow (throwing a the first fault).

Furthermore, conflicts can depend on each other. For example, whether or not to
skip an activity during dead path elimination is a non-free choice, yet dependent
on the setting of the respective control links, which in turn is a free choice
decision. Hence, when decomposing the net using such a “dominant” conflict,
several “dependent” decisions become deterministic.

BPMN Dijkman et al. [9] defined a Petri net semantics for a subset of BPMN.
The resulting Petri net is safe if the control flow does not contain a lack of
synchronization. This situation can arise if gateways are not nested properly (e.g.,
the control flow splits using an AND-gateway, but joins using an XOR-gateway).
Such models contain obvious design flaws.

The nets are acyclic if the control flow is acyclic and no activities with explicit
loop annotation are used. Again, many occurring conflicts are not free-choice,
especially when exception flow is modeled. However, decision gateways can be
translated into free choice conflicts.

UML-AD UML2 activity diagrams have a very close relationship to BPMN
and Petri nets. An activity diagram can be translated into an acyclic Petri net if
its control flow is acyclic. In case the diagram contains no lack of synchronization,
the translation results a safe Petri net. Additionally, the whole net (i.e., every
conflict cluster) is free choice if no pinsets are used.

Table 1. Language constructs for acyclic safe Petri nets and free choice conflicts.

language acyclic Petri net safe Petri net free choice conflicts

BPEL X while v always safe v if branches
X repeatUntil v/ transition conditions
X sequential forEach v/ throwing first fault
X event handlers X pick

BPMN X loop activities X lack of synchronization ¢ data-based gateways
v acyclic control flow v inclusive gateways

v/ timeout event gateway

UML-AD ¢ acyclic control flow X lack of synchronization ¢ all, if no pinsets are used

Table 1 summarizes the language constructs that are forbidden or that
guarantee acyclic and safe Petri nets, and that yield free choice conflicts. The
latter constructs can be used to discover free choice conflict clusters already



during the translation of a process described in BPEL, BPMN or UML-AD into
Petri nets. This allows for avoiding an a-posteriori discovery of free choice conflict
clusters.

We implemented the described decomposition approach in the compiler
BPEL20WFN [8] which translates a BPEL process into a set of decomposed
open nets. For these nets, the OGs can be calculated using the tool Fiona [10],
which also implements the calculation of product operating guidelines.’

5 Conclusion

We presented a decompositional approach that uses free-choice conflict clusters
to decompose a safe acyclic open net. The operating guidelines for the resulting
nets can be calculated independently and subsequently merged using the product
operator. Hence, the calculation can be seen as a divide-and-conquer approach
to calculate operating guidelines.

Both the calculation of the OGs for the decomposed nets and the product
operators are currently implemented to cope with arbitrary nets and OGs, resp.
In future work we plan to adjust these algorithms to exploit the simpler structure
of the intermediate constructs. In particular, we plan to study free choice open
net, because they can be decomposed into conflict free open nets for which the
OG construction should be less complex.

In addition, the requirements of Theorem 2 might be relaxed. For example,
the theorem still holds if every transition sequence marks the conflict cluster at
most once. This requirement can also be fulfilled by open nets which are cyclic
or non-safe.

References

1. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. Volume 4546 of LNCS., Springer (2007) 321-341
2. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. AMCT 1(3) (2005) 3543
3. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer (1985)
4. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM
2007. Volume 4714 of LNCS., Springer (2007) 271-287
5. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, 11 April 2007, OASIS (2007)
6. OMG: Business Process Modeling Notation (BPMN) Version 1.0. OMG Final
Adopted Specification, OMG (2006)
7. OMG: Unified Modeling Language (UML). Version 2.1.2, OMG (2007)
8. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In:
WS-FM 2007. Volume 4937 of LNCS., Springer (2008) 77-91
9. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business
process models in BPMN. Information & Software Technology (2008) (Accepted
for publication).
10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: BPM 2006. Volume 4102 of LNCS., Springer (2006) 17-32

! Both tools are available for download at http://service-technology.org/tools.



