
Fiona
A Tool to Analyze Interacting Open Nets

Peter Massuthe and Daniela Weinberg

Humboldt–Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

{massuthe,weinberg}@informatik.hu-berlin.de

Abstract. Fiona is a tool that has been designed to check behavioral
correctness of a service and to analyze the interaction of services in ser-
vice oriented architectures, for instance. It implements very efficient data
structures and algorithms, which have partly been adapted from LoLA.
Fiona has been proven to be applicable in practice by service design-
ers, service publishers, and service brokers. This tool paper describes the
functionality of Fiona and provides an insight into its architecture.

1 Introduction

In this paper we present Fiona (available at http://www.service-technology.
org/fiona), a tool to analyze the interaction of services. Its features cover the
check of controllability and the construction of an operating guideline of a service
as well as other derived notions. Controllability [1, 2] is a minimal correctness
criterion of a service stating the existence of a behaviorally compatible partner
for the service. An operating guideline (OG) [3, 4] of a service is an operational
characterization of all behaviorally compatible partners of this service.

As a formal model for services we use open nets [5, 4], a special class of Petri
nets that extend classical Petri nets by an interface for communication with
other open nets. This idea is based on the module concept for Petri nets which
was first proposed by Kindler [6].

The development of Fiona started in 2006 as a reimplementation of a tool
called Wombat (available at http://www.informatik.hu-berlin.de/top/
wombat). Wombat was designed to constructively decide controllability of an
open net (called workflow module in Wombat). The main reasons for a reimple-
mentation were (1) a completely new theoretical foundation for deciding con-
trollability, (2) a desired focus on efficiency rather than mere effectiveness, (3)
the newly developed concept of an operating guideline, and, thus, (4) the need
for a separation of computing compatible interactions from reduction rules to
ensure efficiency of the algorithms.

Currently, Fiona is developed distributedly by the groups of Wolfgang Reisig
(Humboldt-Universität zu Berlin) and Karsten Wolf (University of Rostock, Ger-
many). It is written in C++ and released as free software under the terms of the



GNU General Public License. Fiona’s distribution is based on the GNU auto-
tools, which provide the possibility to run Fiona on most operating systems.1

The functionality of Fiona comprises (among others) the following features:

Controllability. Controllability of an open net N is decided by synthesizing
a partner of N (as an automaton called interaction graph (IG) [2]). If no
partner can be synthesized (i.e. the IG is empty), then N is un-controllable.

Operating guideline. An operating guideline (OG) [4] is a finite characteriza-
tion of all behaviorally compatible partners by annotating a single partner
(as automaton) with Boolean formulae in order to derive all other partners.

Matching. Given an open net M and an operating guideline OGN of an open
net N , Fiona decides whether M is behaviorally compatible to N by match-
ing M with OGN . Matching is more efficient than composing the two nets
and model checking the composition (as proposed by other approaches, like
the public view approach).

Partner synthesis. Given an open net N , Fiona computes a behaviorally
compatible partner open net M (if possible). The synthesis can be trig-
gered to construct a small M (with respect to communication) or a partner
M which exhaustively communicates with N .

Substitutability. Given two open nets N and N ′, Fiona can compare their
sets of compatible partners using the corresponding OGs OGN and OGN ′ . If
OGN ′ comprises OGN , then N can be substituted by N ′ without rejecting
any compatible partner. Different notions of substitutability are described
in [7]. The corresponding decision procedures are implemented in Fiona.

Adapter generation. Given two open nets M and N which are not behav-
iorally compatible, we can consider their composition as an open net and
ask Fiona to synthesize a partner. If such a partner exists, it constitutes an
adapter A, mediating between M and N and making the composition of M ,
N , and A well-behaving by construction. For more details see [8].

Fiona is a stand-alone tool, designed to be used as a background service of
existing service modeling tools. Therefore, Fiona has no graphical interface—
the analysis task as well as the input file(s) are given to Fiona via command line
options. Fiona then computes and reports the result and, if needed, generates
the output file(s).

2 Context

Fiona can be used within the new computing paradigms of service-oriented com-
puting (SOC) and service-oriented architectures (SOA) (see [9] for an overview),
as well as other areas of intra- and interorganizational business process model-
ing and analysis [10]. Therein, a service represents a self-contained software unit
that offers an encapsulated functionality via a well-defined interface. Services
are used as building blocks to implement complex, highly dynamic, and flexible
1 It compiles on MS Windowsr (with Cygwin), Unix (Solaris), Linux, and Macr OS.



business processes. SOAs introduce a service broker to organize the challenges of
service discovery, i.e. the publishing and management of available services and
the introduction of procedures to enable a client to find and use such a service.

Controllability is a minimal requirement for the correctness of a service and
is particularly relevant for service designers. Operating guidelines are suited to
support service discovery and can be used to decide substitutability of services
or to generate adapters for incompatible services [8]. Thus, Fiona is intended
to be used by service designers, by service providers, and by service brokers.

3 How to Use Fiona

Fiona accepts two different types of files as its input. The open net file for-
mat (.net) has been adapted from the LoLA [11] file format. It is fairly easy
to read and to comprehend. So, it is possible to model an open net manu-
ally. Additionally, there exists a compiler BPEL2oWFN (available at http:
//service-technology.org/bpel2owfn) that implements a feature-complete
open net semantics [12] for WS-BPEL and automatically generates an open net
file for a given WS-BPEL process. Further, Fiona is able to read a textual
representation of an operating guideline stored in a special file format (.og).

In the following we describe the main use cases of Fiona.

Controllability. Given an open net as a .net file, Fiona decides controllability
by constructing an IG. The corresponding command is:

> fiona -t ig nets/example.net

After computing the IG, Fiona reports whether the net is controllable or
not. Furthermore, a graphic file showing the IG is generated by invoking
GraphViz Dot (available at http://www.graphviz.org).

Operating guideline. Given an open net as a .net file, Fiona constructs the
OG of the net using the following command.

> fiona -t og nets/example.net

Fiona reports whether N is controllable or not and a graphic file showing
the OG is generated. Further, a file called example.net.og is generated that
represents the OG of the net textually.

Matching. If a .net file and an .og file is given, Fiona can decide whether the
given net is behaviorally compatible to the net that the given OG corresponds
to. The following command is used for invoking the matching algorithm.

> fiona -t match nets/client.net ogs/service.net.og

Fiona will report whether the net matches with the given OG or not. In
case the matching fails, Fiona reports where the failure manifests in.

Partner synthesis. By passing a .net file to Fiona it is possible to construct
a partner of that net. Fiona can construct two different types of partners:
a very small one or a partner that exhaustively communicates with the net.



> fiona -t smallpartner nets/example.net
> fiona -t mostpermissivepartner nets/example.net

In both cases Fiona will create an open net example-partner.net that rep-
resents the partner. This is done with the help of the tool Petrify (available
at http://www.lsi.upc.es/~jordicf/petrify/distrib/home.html).

Fiona provides some more analysis and construction features. A list of all
features is available by invoking Fiona with the parameter –help. Using the
parameter -d 1, ..., -d 5 it is possible to retrieve detailed information of com-
putation progress and debug information. Furthermore, the IG and OG graphics
can be enriched to show more details of the graphs. Additionally, there exists
a message bound parameter (-m) that refers to the k-limited communication [4]
of open nets. The message bound limits the number of tokens that an interface
place can carry simultaneously. The default is -m 1, i.e. interface places are safe.

4 Implementation Details

In the following we describe the main architecture of Fiona to construct an IG
and an OG, which are the two basic features of Fiona and provide the basis of
most other functionalities of Fiona.

In either case, an automaton called communication graph (CG) is constructed
first, from which both IG and OG will be derived. The CG consists of nodes and
events. The events reflect possible sending or receiving actions of a partner P of
the considered net N . Each node q of the CG contains the set of markings of N ,
which can be reached by consuming and producing the messages along any path
from the initial node of the CG to q. That set of markings is called knowledge
at q (k(q), for short) [4], representing the hypothesis of P about the state of N .

Representation of markings. The markings of N are stored in a data struc-
ture which was adapted from LoLA. The more markings it stores, the more
the structure converges into a decision tree. It has proven to be very space
efficient while allowing to decide the containment of a marking in linear time.

Knowledge calculation. The knowledge k(q0) of the root node q0 of the CG
consists of all markings reachable from the initial marking m0 of N . For cal-
culating the knowledge of q 6= q0, k(q) is initially filled with those markings
derived from the predecessor nodes’ knowledges that represent the occur-
rence of the event(s) leading to q. Then, Fiona computes the markings m′

that are reachable from an m ∈ k(q) and adds these m′ to k(q). The com-
putation of the reachability graph is done as in LoLA. For instance, instead
of backtracking, we fire a transition backwards.
The calculation of k(q) can be enhanced by using stubborn sets. Here, only
representative markings are stored in k(q) (Fiona parameter -R) which may
significantly reduce the space required for storing the CG.

Node classification. Each node is classified as either red or blue. The blue
nodes constitute the IG/OG later on, whereas a red node represents a state



of the partner P that is behaviorally incompatible with the open net N . Such
nodes must be avoided and are not part of the IG/OG. Initially, every node
q is blue. Then, we analyze k(q) for non-final deadlocks and check for each
such deadlock whether it is resolvable by an event of P . If some deadlock
is not resolved, q is set to red. If k(q) contains a marking that violates the
message bound, q is set to red, too. By backtracking, the red color of q is
propagated to its predecessors. To speed up the computation, red nodes are
not deleted but stored to avoid a repeated computation of such a node.

Annotating a node. For each node q a Boolean annotation φ(q) (in conjunc-
tive normal form) is stored. The annotation of q is uniquely defined by k(q):
each deadlock d ∈ k(q) is represented by a clause c where each literal of c
represents an event that resolves d. The annotation is part of the OG later
on, but is also used to drive the order in which the successor nodes are
computed (IG and OG).
φ(q) can also be used as an early classification of q: each literal x corresponds
to an event leading from q to a node q′ in the CG. If q′ is red, then x is set
to false. If thereby φ(q) becomes unsatisfiable, q becomes red immediately.

Successor node computation. For each blue node q we perform each event
that occurs in φ(q), i.e. each event resolving at least one deadlock. For being
able to apply the early classification as often as possible, we sort the clauses
of φ(q) by its length and follow events of short clauses first.
In case of IG computation, we only consider a subset of the possible events:
several reduction rules [2] for the CG are proven to preserve controllability.

The data structure of the CG is the basis of deciding controllability and for
constructing an OG. The OG provides the basis of the matching algorithm. The
IG/OG is used to construct a partner (small/most permissive) for a given net.

Controllability. The IG contains the blue nodes of the CG which was com-
puted by applying all reduction rules. The annotations and knowledge values
of the nodes are discarded. The open net N is controllable if and only if the
root node of the CG is blue. Fiona reports this decision (and statistical
numbers of the IG and CG sizes) on the command line; a graphical repre-
sentation of the IG is generated.

Operating guideline. The OG consists of the blue nodes of the CG, too, this
time computed without reductions. Again, the knowledges are discarded,
but the annotations remain. In the graphical representation of the OG the
annotation of a node q is shown inside of q. Fiona generates a graphical and
a textual representation of the OG and stores both in separate files.

Matching. The matching algorithm is a check whether (1) the given net M
is simulated by the given operating guideline OGN and (2) M satisfies all
annotations of OGN . Therefore, Fiona performs a coordinated depth-first
search through the state space of M and OGN and evaluates each formula
φ(q) by interpreting the currently enabled transitions of M as an assignment
for φ(q). Eventually, Fiona will report the matching result. In case that M
does not match, Fiona will report the marking of M and the node of OGN

where the simulation or the annotation is violated.



Partner synthesis. Fiona can synthesize two types of partners for a given
open net N . A small partner is constructed based on the IG of N , or a most-
permissive partner is computed out of the OG of N . Either graph provides
the basis of the input of the tool Petrify, which creates the corresponding
open net M . M is behaviorally compatible with N by construction.

5 Conclusion

We have presented the tool Fiona that is designed to be used by service de-
signers, service brokers, and service publishers. Some of its data structures and
algorithms have been adapted from LoLA. Further, we have put great effort on
the theoretical basis of our algorithms in order to make the computations effi-
cient with respect to time and memory consumption. Our case studies show that
Fiona is indeed suitable to be used in practice [4, 2].

Fiona has been integrated into the ProM framework, a process mining tool
kit with plug-able architecture (available at http://prom.sourceforge.net/).

References

1. Schmidt, K.: Controllability of Open Workflow Nets. In: EMISA 2005. LNI, Bonner
Köllen Verlag (2005) 236–249

2. Weinberg, D.: Efficient controllability analysis of open nets. In: WS-FM 2008.
LNCS, Springer-Verlag (2008) accepted.

3. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. In: QSIC 2005, Melbourne, Australia,
IEEE Computer Society Press (2005) 452–457

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In: ICATPN 2007. Volume 4546 of LNCS., Springer-Verlag (2007) 321–341

5. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3) (2005) 35–43

6. Kindler, E.: A compositional partial order semantics for Petri net components. In:
ICATPN 1997. Volume 1248 of LNCS., Springer-Verlag (1997) 235–252

7. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of Services
with Operating Guidelines. Technical Report 222, Humboldt-Universität zu Berlin,
Germany (2008) accepted for a journal.

8. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Technical Report CS-02-08, Universität
Rostock, Germany (2008) submitted to a conference.

9. Papazoglou, M.: Web Services: Principles and Technology. Pearson - Prentice Hall,
Essex (2007)

10. Aalst, W.M.P.v.d., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Contracts:
Agreeing and Implementing Interorganizational Processes. Technical Report 213,
Humboldt-Universität zu Berlin, Germany (2007) submitted to a journal.

11. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN 2000. Volume 1825 of
LNCS., Springer-Verlag (2000) 465–474

12. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In:
WS-FM 2007. Volume 4937 of LNCS., Brisbane, Australia, Springer-Verlag (2008)
77–91


