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Abstract. In this paper we describe research that applies educational data-
visualization and data mining techniques in an Adaptive Exploratory eLearning 
Environment called the Adaptive eLearning Platform. Using a novel 
visualization tool called the Solution Trace Graph, we were able to visualize 
student interactions and thus gain insights that led to the refinement of the 
intelligently adapted remediation in the system. An important observation we 
make concerns the employment of a software design methodology which we 
refer to as Virtual Apparatus Framework (VAF). By using VAF to develop 
eLearning content, the process of developing intelligently adapted remediation 
in an exploratory learning scenario, and subsequently the analysis of students’ 
behaviour, is greatly enhanced and simplified.  
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Introduction 

Exploratory Learning Environments (ELE) have recently emerged as an alternative 
to controlled and step-guided educational systems. ELE typically emphasise learning 
by interaction and exploration of the environment via its interface.  

In Exploratory Learning Environments, the discovery and self guided nature of the 
activity plays a role in increasing students’ motivation, which may contribute towards 
learning [1].  

ELE are suitable for educational activities that involve simulations, where learners 
can experiment with different aspects and parameters of a given phenomenon to 
observe the effects these changes have on outcomes of the simulation. These types of 
environments can often feature goal-free learning, which has been empirically 
demonstrated by Sweller and colleagues to lead to improved learning [2]. 
Unconstrained exploration of a large problem-space may overwhelm learners in terms 
of number of choices (see [2]) therefore, we suggest that effective learning in ELE 
can be achieved using guided exploration. 
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In ELE, keeping track of learners’ interaction for the purpose of analysis of 
student’s behaviour is difficult, as typically, these environments provide a rich user 
interface for the student to explore. Monitoring students’ interactions and logging 
their activity yields a high-bandwidth data set – a large set of attribute-values, per 
each interaction. Making sense of this data, in order to improve the activity is a 
difficult task and is subject to research efforts by many [3]. 

This paper focuses on the Adaptive eLearning Platform (AeLP) - a distributed 
software architecture for the development and deployment of Adaptive eLearning 
content. It has been argued by a number of researchers working on Adaptive 
eLearning technologies that distributed, component-based architecture is the way to 
introduce these technologies into the mainstream [4-6].  

The motivation behind the Adaptive eLearning Platform is a desire to create an 
Intelligent Virtual Exploratory Learning Environment. Research to date [7, 8] 
suggests that students benefit from an interactive learning environment in which they 
can have some control over their learning experience. Teachers also benefit from the 
ability to track the students’ progress during a learning activity.  

Virtual Apparatus Framework for Designing and Developing 

eLearning Activities 

Virtual apparatus framework for educational content development was described as 
a content development paradigm that can promote reusability of Learning Objects 
(LO) and reduce the effort required in developing educational content [9, 10]. With 
Virtual Apparatus Framework we can approach the eLearning content development 
process in the same way we approach developing (real world) teaching laboratory 
activities. In the design of a lab activity the teacher is responsible for setting up the 
experiment table and composing the experiment notes. The apparatus is built by third 
party companies. VAF employs a similar separation of concerns: separation of 
content and presentation. The development of the presentational software components 
(called Virtual Apparatus) is delegated to the software engineers while the educational 
(content) aspects of the activities are authored by the teacher. VAF adheres to the 
Model View Control (MVC) design pattern in software engineering. In MVC, data, its 
presentation and actions are all kept separate [11]. Essentially, VAF is an attempt to 
increase separation of concerns in educational software engineering. It’s similar to 
other design patterns that support componentization of the educational building 
blocks that have been suggested in the past [12].  

One important software engineering implication that stems from the choice of VAF 
as a design pattern is that the Virtual Apparatus is developed such that its properties, 
and its subcomponents’ properties, can be SET and GET by an external application 
through an Application Programming Interface (API). With VA’s API in place, 
authoring educational activities can be thought of as analogous to real lab content 
authoring. In the real world, teachers set up an experiment and compose notes 
explaining to students how to interact with the apparatus in order to achieve some 
educational goal. During lab activity, demonstrators (intelligently) give students 
remediation based on their problems and the state their apparatus is in. Similarly, 
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developing content in VAF, we import VA into a virtual “experiment table” and 
compose notes that instruct students through the activity. The Adaptive eLearning 
Platform addresses how we define the correct answer or more specifically, how we 
define the correct state the Virtual Apparatus should be brought to? And how do we 
intelligently remediate students based on their problems?  

The Adaptive eLearning Platform  

The AeLP was originally designed to complement the laboratory component for 
first year physics courses at the University of New South Wales (UNSW), by 
providing virtual experiments and laboratory-like activities. Since 2004, first year 
physics teaching at UNSW was reformed to incorporate “Exploratorial” sessions 
which are described in [13]. Exploratorials aim to integrate observations, experiments, 
calculations and theory, to offer the insight of a lecture and the student-led analysis of 
a tutorial and the hands-on measurement of a lab. 

Adaptation (in computer science) is an overly broad term that characterises any 
software systems that can change some features based on some User Model. In 
eLearning, adaptation is the subject of much research and development. Some 
researchers are concerned with adaptive navigational support of education 
hypermedia [14]. Other groups focus on adapting sequences of higher granularity 
content such as lessons, syllabi and courses (e.g.[15]). The AeLP’s adaptivity focuses 
on adapted remediation within an interaction task and adapted sequencing of low 
granularity content such as a questions (for further discussion see [9]). 

Authoring Adaptive Tutorials 

Authoring an Adaptive Tutorial (AT) using the AeLP Author, consists of importing 
prefabricated Virtual Apparatus into the system, setting it to some initial state (via its 
API), and then composing notes that’ll direct the students through their interaction in 
the environment. For each VA imported, we compose a set of questions that require 
interaction and exploration of different forms from students (e.g. “set the apparatus to 
such condition to maximize parameter x”). Using the AeLP Author, the teacher 
defines the correct state the apparatus should be brought to (again, in terms of its 
API), and possible error states. Those states are called trap-states and are defined by 
conjunctions and disjunctions of conditions. To each trap-state, a remediation 
(feedback, textual or not) is attached. The problem’s state-space is defined as the set 
of all possible states the VA can get into. 

Conditions are defined as triples of [targetName, operator, value]. For example a 
condition might be: 

VA.angleControl.value = 0 

Where the targetName is “VA.angleControl.value”, the operator is ‘=’ and the 
value is ‘0’. 
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The available targetNames for defining conditions come from the VA’s API. When 
a VA is imported into the platform the platform creates an Object Model interface to 
the VA’s properties that it can access [Figure 1]. 

The underlying assumption behind developing content using this paradigm is that 
any question can be modelled as a task to bring some system from an initial state, 
defined by some initial conditions, to some other correct state, defined by another set 
of conditions, by interacting with it. A more formal definition for a question can be: 

Let question Q, be defined as the process by which a state 
machine M is manipulated by student S to change its internal 
state from initial state I to correct state C. A transition between 
I and C must exist. 

When we develop the content this way, questions can be considered mini expert 
systems. Rules in the AeLP are fired when the VA is in a particular state defined by 
its set of conditions. Antecedents are defined as states the VA can get into: points or 
regions in the state-space of the system. The state-space is vast if not infinite (e.g. a 
state can be defined by a rule such that the student landed in a particular, other state, 
twice). The question is then: how do you define all the possible states you want to 
remediate? Using the AeLP author the teacher actually only needs to define some 
states, those that support his hypothesis regarding what mistakes the students will 
make, and what type of remediation is needed.  

 
In our experience, VAF was found to be useful for the development of virtual 

experiments and interaction based activities that are based on simulations and are thus 
exploratory in nature. 

Evaluation at the University of New South Wales 

The Adaptive eLearning Platform is currently being deployed across three schools 
at UNSW: Physics, Mechanical Engineering and Computer Science. The AeLP’s 
adaptive content serves 600 students a year. For example, in the School of Physics, 
we developed an AT for teaching first year physics students the concept of Faraday’s 
Law [Figure 1]. The students were given a virtual coil rotating in magnetic field, a 
virtual oscilloscope and were required to complete various tasks, such as maximizing 
the magnetic flux, or calculating the electromotive force generated by the rotation of 
the coil. 

Data-Mining the AeLP Logs 

The Adaptive Tutorial’s logs saved in the system contain massive amounts of 
information. We store a complete snapshot of the entire system per each student’s 
interaction. Each snapshot contains values of all the inspectable properties in Virtual 
Apparatus and other runtime information. In this way we keep a complete log of what 
students have done. 

There are several motivations for our data analysis: 
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1. We want to know how students interacted with the VA; in what ways they 
manipulated the VA’s states  

2. We want to know if our hypotheses about expected user problems fit 
student’s behaviour 

3. We’d like to get feedback on how effective our adapted predefined 
remediation was 

4. In case our remediation was not effective, we would like to be able to 
drilldown and understand why 

5. We would like to investigate what students’ misconceptions and mistakes we 
did not anticipate when authoring the Adaptive Tutorial  

6. We want to be able to pick up abnormalities in the system’s behaviour, and 
possibly identify problems we did not anticipate in the authoring phase 

7. We would like to be able to classify students based on their performance and 
add this information to their student model 

With these motivations in mind, we designed and developed the Adaptive Tutorial 

Analyser [Figure 2] component of the AeLP. 

Data-Visualization Strategy 

As the students attempt to solve a task, they manipulate the UI controls of the VA 
thus changing its state. During the authoring phase, we define trap-states on a 
question’s available state-space. These represent the states we think the students 
might erroneously bring the VA into. We are thus interested in understanding the way 
students navigate through this state-space in order to arrive at the correct state. 
Essentially we can think of the process a student takes in order to solve the task as a 
trace through the problem’s state-space. Our first attempt with the Adaptive Tutorial 

 

Figure.1. A Virtual Apparatus Setup (left) and its corresponding API (right) in the 
AeLP Author. Using the API the teacher defines the init, correct and error trap-states.  
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Analyser was to try and visualize this process. For this purpose, we developed the 
Solution Trace Graph [Figure 2]. The Solution Trace Graph (STG) shows student 
progression per question as a transition between the question’s states. A student’s 
solution trace can be visualized as a “multicolumn” graph, where each column 
contains all question trap-states as nodes. There are as many columns in the STG as 
the total number of attempts the student needed in order to get to the correct state. An 
edge in the graph is a transition between two states. The graph’s horizontal direction 
represents progression in time measured as discreet solution attempts.  

To investigate multiple students’ behaviour, we superimpose their solution traces 
on one STG. The number of columns in the STG is now the maximum number of 
attempts it took any student to arrive at the correct state. In a superimposed STG, an 
edge’s weight is defined as the number of students that have passed between two trap-
states between the same attempt numbers (e.g. moving between state A to B on the 
second solution attempt) Edge Weights are noted by a label on the edge line, and are 
also colour coded. 

Inspecting the data in such a manner gives an immediate visual intuition about 
students’ behaviour during the Adaptive Tutorial.  

Assessing the Effectiveness of Adaptive Remediation 

In the STG, the teacher can see a breakdown of how many students arrive at each 
state (weights on incoming edges to a state-node) and, based on the remediation given 
in this state, how many students moved to the correct state (outgoing edge leading to 
‘correct’ state). Of particular interest are edges that connect the same states across 
different columns. Such transitions imply either that the remediation given to the 
students was ineffective - because the student “landed” on the same error state - or 
that the error state was too general and students landed there given a broad set of 
circumstances. Once we identify that our remediation was not effective, the next step 
is to drilldown and to inspect what it is that the student has done, that we did not 
anticipate. In essence, we want to know why our remediation wasn’t successful in 
assisting students and we do that by inspecting what they have done after the 
remediation was given. To enable this, we need a way to look at all the relevant edges 
coming out of the desired state, and understand what is common between them, i.e. 
what was the behaviour we missed when creating the adaptive remediation? 

This is achieved by two means: teacher driven and data driven analysis. The 
teacher driven approach enables the teacher to investigate patterns in students’ 
behaviour. The data driven approach uses various data-mining algorithms in order to 
pick patterns in the data, but will not be discussed in this paper. 

To enable teacher insight into the data, we organize the snapshot data in an easily 
inspectable DataGrid [Figure 2]. Clicking on an edge, the STG populates the snapshot 
DataGrid with the information corresponding to the interactions that resulted in the 
transition between the edge’s states.  

Each column in the DataGrid represents a dimension in the state-space (an 
inspectable property of the VA or the runtime environment). Columns can be sorted 
by clicking on their header. It is, therefore, easy to notice values of certain properties 
that are recurring. In the example shown in Figure 2 we noticed that 3 students made 
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the mistake of omitting the exponent part of the solution (instead of entering 1.13e-3 
they entered 1.13). Although technically a mistake, we think this type of error should 
be remediated in an adaptive way, and possibly incur a small score penalty. Using the 
AeLP author an extra error trap-state can be created based on the condition: 

questionPanel.userInput == “1.13”  

and the adapted remediation can be for e.g.: 

“Almost correct, have you got the significant figures 
right?” 

In this sense, the process of developing an Adaptive Tutorial is through a continual 
refinement of the rule-base. In this way we are avoiding the expert system 
“knowledge acquisition bottleneck” problem. 
 

 

Specifying an Overly General Trap-State 

An important feature that the STG allows us to investigate is the edges that lead to 
the ‘defaultWrong’ trap-state. The defaultWrong trap-state is basically there to give 
generic feedback to students if they have done something that we did not anticipate. 
This state does not have any condition attached to it, and therefore its (empty) rule 

 

Figure. 2. The Solution Trace Graph shows superimposed solution traces for a sub 
group of students. Starting from the left, 13 students ‘landed’ in the ‘wrongSelected’ 
state. After being given the adaptive remediation, 4 students were able to get to the 
‘correct’ state whilst 8 students continued to ‘wrongSelected’. This suggests that the 
remediation might need to be revised. The DataGrid is populated with the snapshot 
information representing the state the Virtual Apparatus was in when the student 
attempted a solution. The grid allows for quick inspection of mistake patterns. In this 
case we see students entered “1.13” instead of “1.13e-3”. 
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fires when all the other custom trap-states are not applicable. A sufficiently adaptive 
activity should have no edges leading to the defaultWrong trap-state because all 
possible errors were adaptively remediated for. However, in reality we sometimes 
count on the defaultWrong remediation where the question/task at hand does not 
involve manipulation of the apparatus (e.g. questions such as: multiple choice, free 
input, true false) and we can count on the per-attempt custom feedback feature to 
progressively expose students to the answer. In open tasks of either guided or 
exploratory nature, the edges that lead to the defaultWrong are investigated in order to 
understand what type of mistakes the students have made, and how we can adaptively 
remediate for them. 

Pattern Recognition 

Recognizing what behaviour patterns are emerging in the data is the process by 
which the teacher identifies what kind of mistakes the students are making. 

One interesting pattern that the STG can easily reveal is state transitions that are 
predictors of other state transitions. The STG can show us, for instance, that 90% of 
students who landed in a trap-state A, continued, after being remediated to trap-state 
B. A visual way to explore this is to project the entire STG to just two columns. 

Data-mining could also be applied to discover these patterns automatically, 
possibly as conditional probabilities in a Bayes Net or association rules. 

Identifying Bugs and Abnormalities 

As the horizontal dimension of the STG represents solution attempts, a long STG 
means students were unsuccessful in getting to the correct state after a large number 
of attempts. Investigating interactions leading to long STG’s, we occasionally found 
that these resulted from bugs in the Virtual Apparatus, or the User’s system. Such 
feedback is really useful with production environments. 

Future work 

Through our experience developing the STG, some interesting possibilities became 
immediately apparent: 
• Replaying Student’s Activities: The DataGrid contains snapshot information. 

Using this information we can recreate the system’s state. In effect, we can replay 
the student’s activity. Teachers using our system expressed the desire to “just click 
and be able to replay the activity the way the students did it”, thus better enabling 
understanding what has happened. Extending the Adaptive Tutorial Analyser by 
developing the Activity player is a short-term goal of our R&D team. 

• Live Monitoring: in order to support supervised, live learning scenarios, we are 
investigating a Live-STG that is continuously updated with real-time data.  
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• Labelling sequences: an interesting consequence of visually analysing data using 
the STG is that it is possible to identify sub groups of users who behave in a 
similar manner and label them for the purpose of user and group modelling. This 
possibility will be investigated in the future. 

• Collaboration – We are developing live-collaboration support into the AeLP so that 
students can work on a VA simultaneously in groups of up to 5 students. Data 
mining the group work is a challenge we are currently working on.  

Conclusion 

This paper presents a novel approach to support adaptivity in an exploratory 
learning environment – the Solution Trace Graph (STG) - a tool that visualizes 
student’s behaviour and provides visual feedback about the effectiveness of adaptive 
remediation.  

The STG models student behaviour in an exploratory environment, as a solution 
trace between predefined trap-states. We found when using the STG to analyse 
interaction data in the Adaptive eLearning Platform, teachers could clearly gain 
valuable information about how students interacted with the exploratory environment 
in a visual format, therefore, get feedback regarding the quality of their Adaptive 
Tutorials. More importantly, by identifying what errors were not accounted for in the 
adaptive remediation, and adding further trap-states into the Adaptive Tutorial, the 
process of refining the educational activity becomes iterative and gradual. This 
greatly eases the deployment of adaptive content as it facilitates the analysis and 
refinement process. In this way, the AeLP addresses what is known as the 
“knowledge acquisition bottleneck” problem of developing expert systems. Moreover, 
based on the analysis of past performance, educational content can more easily be 
developed to meet student’s needs. The personalised feedback of an individual 
teacher can also be simulated. 

We note that one precondition to all of this functionality is our definition of 
eLearning activities as transitions between question states. The strength of this 
paradigm stems from the fact that this definition is extremely flexible and can be 
applied to most eLearning activities. 

In this sense authoring an adaptive activity can be an incremental process that is 
both teacher driven and data driven. Using the STG, the AeLP helps teachers enhance 
their teaching practice, allowing them to develop content that can be customised to 
students’ needs. 
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