Employing a Java Expert System Shell for
Intelligent Support in Exploratory Activities

Charles Hunn

Biz Logic Solutions**
charleshunn@yahoo.ca

Abstract. This paper presents issues around the integration of a frame-
work for the development of interactive exploratory activities (DANTE)
and a rule engine and scripting environment (JESS). The paper ini-
tially presents these two systems and their use. We then discuss de-
sign decisions and implementation considerations providing an insight
for researchers and developers who are considering the integration of ex-
ploratory activities with expert systems such as JESS. Finally, the paper
presents further lines of research that could potentially provide cost-
effective development tools for intelligent exploratory environments.

Key words: authoring, exploratory activities, expert systems

1 Introduction

Exploratory and interactive activities are usually integrated within instructional
material to provide learners with the opportunity to develop through exploration
usually a qualitative or sometimes a deep procedural understanding of a concept.
The development of such exploratory environments or activities is quite time
consuming. In addition, the extent to which they achieve the expected learning
objectives relies on the effectiveness of the students’ exploratory behaviour [3]
and many studies (e.g., [4, 5] among others) have shown that there is a need for
additional support other than just the interaction with the environment itself.
It follows naturally then, that if such environments are to be at all effective
their design must incorporate considerable expert knowledge of pedagogy and
possibilities for intelligent support.

A drawback however, is that the more sophisticated the pedagogical model in
a system the greater the challenge of knowledge representation and engineering.
This problem is further compounded by the need to represent the actual subject
domain knowledge in the system as well. A consequence of the need for a high
level of embedded knowledge is that the development of an Intelligent Tutoring
System (ITS) is generally a very time consuming process. Analysis suggests that
it takes approximately 100-1000 hours of development time to produce 1 hour of

** Some of the work presented here is part of the author’s MSc [1] and his employment
at a Small Project Grant for the WaLLiS project [2], both at the University of
Edinburgh.

2 Charles Hunn

instruction from an ITS [6] . Moreover, developers often require specialist skills
or combinations of skills such as Al programming, expert knowledge of the sub-
ject domain, cognitive task analysis, etc. Whilst a few ITS’s are developed by
domain experts who have Al programming skills, many systems are developed
by teams of Al programmers, subject domain experts and cognitive scientists.
In such a situation time is inevitably expended in the communication of require-
ments, specifications and constraints. Thus, given the increasing demand for full
commercial-scale ITS and the large development time for such systems, there
is clearly a need for the ITS development process to be made faster, simpler
and more accessible to non-programmers (e.g. teachers who are interested in
developing their own content)

Although there have been several attempts to reduce the time to develop
exploratory and interactive activities, and despite the fact that several platforms
and frameworks (e.g., Flash, other frameworks that enable the authoring of Java
Applets etc.) can be used to develop exploratory activities, work on the ways to
support students while working with these activities has been quite limited until
recently. Some researchers have begun to address this issue but despite the fact
that there has been substantial progress in tools that support the authoring of
interactive exercises for procedural domains [7], there is little work on finding
ways to minimize the effort of the designer to develop tools or components of
systems that can reduce the complexity and difficulty of developing exploratory
let alone intelligent environments.

Motivated by the need to make the ITS development process faster, easier and
more accessible to non-programmers, [1] investigated the integration an exist-
ing framework for developing exploratory activities (DANTE [4]) with the Java
Expert System Shell (JESS) [8]. The overall aim behind the research reported
here was to establish a better representation of the pedagogical knowledge that
underlied the DANTE framework. The rationale for this approach was that a
more suitable knowledge representation might result in greater speed and ease of
system development. To achieve this, JESS was used to replace the pre-existing
feedback module in DANTE, originally coded in a procedural language.

This paper, after briefly presenting DANTE and JESS, discusses some of the
design decisions and considerations when integrating the two systems, providing
some insight for researchers and developers who are considering the integration
of Java applications with the computational power of JESS in particular and
expert systems in general.

2 Background

2.1 DANTE and its integration in a web-based ILE

The School of Mathematics of the University of Edinburgh has developed a web-
based Interactive Learning Environment called WaLLiS [2]. Tts role is to provide
instruction in mathematics to undergraduate science and engineering students.
The rationale for the development of the system is to address a lack of basic

Employing JESS for Intelligent Support in Exploratory Activities 3

maths skills seen in school-leavers entering higher education. Some important
features of WaLLIS are that it is easily-accessible, interactive, intelligent and
responsive to individual students needs [2].

At the heart of the ‘intelligence’ of WaLLiS is an adaptation of a feedback
mechanism originally developed in the Dynamic Authoring aNd Tutoring En-
vironment (DANTE) [4,9]; a prototype framework for developing interactive
exploratory activities for dynamic geometry environments (see an example in
Figure 1). The rest of the description focuses mostly on DANTE as it bears
more relevance to the work described here in relation to exploratory environ-
ments. WALLIS has been described in detail in [2, 10]

{55 oanTe
File Help Concepts
The following trisgles ate cungroent s each uther,

Use the sppropciate mstation to imibicate it by using the cmngraracy cudes fram ihe
ey sethin

6
|x

®
o
E

Well done. ABC is congruent 10 GHL You chose -~
' GH = AB

1H = B

3
How try to W ressons for JXL and DEF 10 be congruent
Rot

otate O e easier for you

Fig. 1. An exploratory activity designed in DANTE. It asks from students to identify
why two triangles are congruent and to indicate that using the tools of the system
(reproduced with permission from [4]).

DANTE is divided into two components: the feedback mechanism and the
components for the design of the interactive activities. The activities have to
follow a certain programming interface which allows the feedback mechanism to
monitor the learner’s interaction.

The activity designer, usually a programmer, must specify (in Java code, us-
ing the API provided by the DANTE framework) the goals and sub-goals of the
activity. For the exploratory activities, the goals are described in terms of what
configurations the various available objects should be in. The activity-specific
feedback text for the activity must also be added at this point and linked to

4 Charles Hunn

the appropriate goals. To simplify this process DANTE provides JavaBeans [11]
components such as toolbars, inputs, function and integral plotters, geometric
components and others. These state-aware components allow other parts of the
application to register with them to be notified of any changes to the compo-
nent state.. For example, the main canvas notifies any interested components
that is being dragged, clicked and so on. Similarly, textboxes announce whether
something is being typed in them, buttons whether they are clicked etc. In addi-
tion, following DANTE’s programming interface, one can build other state-aware
components or whole activities in other languages (eg. javascript, Flash) as long
as they provide a ‘wrapper’ to communicate with the feedback mechanism [9].
The core part of DANTE is its feedback mechanism which responds according
to rules that fire when the conditions, which the activity designer has set, are met.
The initial mechanism as implemented in [4] and [2] expects, for each activity,
a Java class that provides the specic rules, goals, actions and misconceptions
(buggy-rules) for this activity. The goals of the activity form a tree structure
(see 2) where goals are comprised of a number of subgoals each of which has
a number of conditions and misconceptions associated with it. The feedback
mechanism monitors the list of conditions for each subgoal, and if they are not
satisfied checks for buggy rules and setsthe corresponding actions in motion.

ACTIVITY FEEDBACK INFERENCE ACTIONS
COMPONENTS MECHANISM ENGINE HINTS

=

N

SubGoal i
/ buggy mle i1 Condition i1 \

[| buggy e j Condition ik [|

GOALS | | |

Fig. 2. Each subgoal has a number of misconceptions and completion conditions associ-
ated with it, which the feedback mechanism applies to the inference engine (reproduced
with permission from [9]).

Despite the aforementioned support from the framework, authoring is still
quite a time consuming process and requires not only an understanding of the
DANTE framework but also a substantial knowledge of Java.

2.2 Overview of JESS

The Java Expert System Shell (JESS) is an expert system shell and scripting
language written in Java. JESS was originally a clone of the popular CLIPS

Employing JESS for Intelligent Support in Exploratory Activities 5

(C Language Integrated Production System) expert system which was developed
by a team at NASA in 1987. However, JESS has since taken on distinct language
features that enhance its Java related capabilities. A consequence however is that
code cannot always be ported between JESS and CLIPS. For more details about
JESS the reader is referred to the JESS manual! and [8].

Perhaps the greatest advantage of JESS is that it can be easily integrated with
applications written in Java through an application programming interface that
is accessible from Java. This makes it particularly suitable for any application
of a web-based expert system due to the platform independence of the Java
language. As described in [8] because of its ”flexibility, JESS can be used in
command-line applications, GUI applications, servlets, and applets”, therefore
enhancing them with reasoning capabilities.

3 Integration of JESS and DANTE

As mentioned in Section 1, the main objective of this research was to re-implement
the existing Java feedback mechanism as an expert system using JESS and to
interface JESS with the existing architecture of DANTE. The details of this in-
tegration are available in [1]. Here we would like to present some of the most
important decisions made towards this objective which are applicable when in-
tegrating JESS (or to some extent other expert-systems) with educational ap-
plications and particularly exploratory activities.

3.1 Choosing an Application Architecture

A number of design options for the application architecture are possible each
employing a different balance of the JESS and Java languages [8]. According
to the developers of JESS this is the most important design decision when de-
veloping an application with the shell. At one extreme it is possible to write a
Java program entirely in the JESS language since JESS is capable of directly
accessing Java libraries. At the other extreme it is possible to develop entirely
in Java, creating the rules and other constructs required for an expert system
in JESS through the API. A typical application structure is something in the
middle of these two extremes outlined above with perhaps a Java application
that interacts with an expert system that was written in JESS script.

In the context of the present study the choice of application architecture was
constrained to just two possibilities, because the application is already largely
developed in Java. Thus the possibilities are: (1) mostly Java code which loads
JESS language scripts at runtime or (2) all Java code which manipulates JESS
entirely through its Java API. In deciding on this matter the following consid-
erations had to be taken into account:

e What is there to be gained from keeping the development entirely in one
language? (i.e. Java).

! The manual is available online: http://www. jessrules.com/

6 Charles Hunn

e Would it be better from the perspective of rule- authoring for the editing to
be done outside of the Java environment given that potential rule-authors
may be non-programmers?

e At the syntactical level which of the two programming approaches would be
easier to implement?

There do not seem to be any significant benefits of keeping the development
entirely in Java. Perhaps one argument is that the Integrated Development Envi-
ronments (IDE) which are available for the Java language are very sophisticated
compared to those for JESS. There are however editor modes for JESS that fulfil
many basic editor requirements.

From the perspective of rule-authoring, it could be more appropriate to have
the pedagogical knowledge encoded in rules in a JESS script. Apart from making
the code more modular and manageable, there is another conceivable benefit
of this decision; rule-authors will have a simpler development environment to
work in, assuming a little knowledge of the JESS syntax and the framework
provided by the work described here. The final factor considered in deciding
the application architecture was the differences, at the syntactical level, between
creating a JESS expert system in Java alone or Java with JESS. Apart from
ease of maintenance, simplicity and readability are also important considerations
when authoring, debugging and changing code. It was thought that the Java
implementation of the rule declaration increases the complexity of the rules
from both a syntactic and ‘elegance’ point of view as it not possible to show
the nesting of the rules and it requires extra supporting Java code (see [8] for
examples).

A further and significant advantage of developing rules in a separate JESS
script is that no compilation is required. This means potential activity-designers
would not need to re-compile anything, simplifying the authoring process and
the potential access they have to the rest of the software.

Thus, based on the evaluation of the three design considerations for system
architecture outlined above, we chose to implement the system with Java code
which loads JESS language scripts at runtime.

3.2 Enabling JESS to Reason with the state of Java components

One of the key advantages of JESS is that it is capable of reasoning with both
pure logical facts and also with facts based on Java objects. The DANTE compo-
nents were particularly suited for that as they follow the JavaBeans API, which
enables the authoring of rules in JESS that include conditions referring to the
state of Java objects.

An implementation decision that had to be taken was between ‘static’ and
‘dynamic’ updating of JESS with the actual values of the Java object. Static
updating only refreshes the JESS knowledge base whenever a reset command is
sent to JESS. With dynamic updating, any changes in the state of Java objects
are reflected immediately in the JESS knowledge base.

Employing JESS for Intelligent Support in Exploratory Activities 7

Although this may seem only a technical decision, it has significant peda-
gogic implications, particularly for exploratory activities. These often involve
experimentation with some graphical or other representational component in
the interface. In addition, the ‘correct’ state of a component may be within a
range of states rather than a specific one. In order to provide help therefore, any
intelligent tutor must be able to monitor continuously the changing values of the
interface component. The dynamic updating of the facts allows exactly that and
enables the authoring of rules (and hence the provision of appropriate feedback)
that capture critical states of the interface components. The alternative (static
updating) would require an explicit request from Java to JESS (e.g., through a
timer mechanism, or only when a student asks for help) which would constrain
the type of help that may be provided.

3.3 Fuzzy reasoning

Aside from the basic employment of JESS as a means of improved knowledge
representation we also represented some aspects of the feedback mechanism in
fuzzy logic. The FuzzyJESS toolkit API of JESS allows developers to easily cre-
ate fuzzy variables, fuzzy sets, fuzzy values and fuzzy rules. Options are provided
for specifying which fuzzy inference algorithm will be used to execute the rule. In
order to investigate the full potential of fuzzy logic FuzzyJESS was employed as
it adds to JESS a number of fuzzy logic functions, enabling a rich combination
of fuzzy and rule-based reasoning all in one system. This endows JESS with the
ability to have fuzzy facts in the knowledge base and in the antecedents and
conclusions of rules. This proved moderately suitable for representing several of
the concepts in the feedback mechanism, and increases the potential of authoring
rules based on knowledge elicitation from experts. The knowledge representation
therefore was an improvement on the JESS-only implementation as a variety of
linguistic terms (e.g., ‘slightly’, ‘medium’ or ‘large’) are available to describe
states of the variables. This gives potential activity-authors considerable more
power in their specification of values. However, as outlined in [12], there is a
range of difficulties associated with fuzzy reasoning in terms of the amount of
optimisation work required to make the inferencing process generate the required
behaviour. Moreover, as pointed out in [2], optimisation of an ITS is in any case
quite a significant task. Thus, the feasibility of introducing fuzzy logic into an
ITS must be determined by balancing out the benefits of better knowledge rep-
resentation against the possible disadvantage of increased time spent optimising
the system.

4 Discussion

The main aim of the research described here was to investigate how the imple-
mentation of a specific feedback mechanism of the pre-existing DANTE frame-
work in JESS, might extrapolate to the ease of general activity-authoring. Taking
into consideration the aforementioned issues, the JESS implementation appears

8 Charles Hunn

to satisfy our overall objectives although we recognize the need for thorough
evaluation of the chosen approaches. It remains to be seen in practice if employ-
ing JESS has the potential to reduce the time and complexity of authoring of
exploratory activities.

The last few years there are few educational environments that are making
their appearance and utilize JESS as the intelligent component of the system (e.g.
[7,13-15]). Developing a framework the integration of which not only provides
the system’s intelligence, but also simplifies the authoring of activities is quite
challenging. A number of factors indicate that JESS is suitable for such a task.
Whilst it is still a ‘programming language’ it is quite far removed from the
complex syntactical representations typical in many procedural programming
languages. From the observations made in a preliminary evaluation (see [1]) it
seems clear that JESS with the declarative way of representing the rules, along
with useful debugging features such as the ‘watch rules’ function to monitor rule
firing, would indeed be feasible for our goal. This standpoint is further supported
by the fact that the JESS rules scripts could even be dynamically reloaded into
a running authoring application.

The investigation carried out into the use of FuzzyJESS also has some im-
plications for activity-authoring. The representation of vague concepts using
linguistic variables has an intuitive appeal, especially when the potential rule-
authors may be non-programmers. However, consideration needs to be made of
the fact that there is a wealth of options for customising the fuzzy reasoning
process in FuzzyJESS. Moreover, to make the system behave in the desired way
may require some considerable time spent on fine-tuning the fuzzy inference pro-
cess. This factor could make the introduction of FuzzyJESS contradictory to the
goal of speeding up and simplifying the ITS development process.

Additionally, it is clear that JESS offers some obvious advantages over Java
in terms of knowledge representation, the present study along with others (e.g.
[13]) indicate that JESS does not impose any limitations on web-based ITS. In
addition to being easily integrated with other Java web-based applications, the
core engine of JESS is optimised for fast performance, which is a required feature
of an ITS since timely feedback is necessary.

Since effective authoring and debugging requires powerful tools, a line of re-
search that is worth investigating is the continuation of the work presented in
[16] which employed the Cognitive Tutor Authoring Tools (CTAT) [7] to author
exploratory activities for DANTE and WaLLiS. CTAT is a framework for rapid
development of Cognitive Tutors that supports all stages of the design and devel-
opment of a cognitive tutor and is written to work alongside with JESS. Its main
aim is the development of cognitive tutors that target procedural skills within
well-defined problem spaces. This introduces some challenges in relation to using
CTAT for developing exploratory activities, which are related to the discussion
in Section 3.2. In particular, as discussed in more detail in [17], the tools CTAT
provides are designed to deal with procedural steps that correspond to discrete
actions in the interface. This is antithetical to the continuously changing values
of the interface components in exploratory activities. As a consequence, this re-

Employing JESS for Intelligent Support in Exploratory Activities 9

stricts not only the possible types of feedback that can be designed with CTAT
but also the power of some of the tools in CTAT. However, recent developments
and additional tools, such as the ” Example-Tracing” tool that provides simple
tutors by demonstration [7, 18], or the ”Simulated Student” tool [19] and other
tools that support rule-authoring, controlled experiments and data analysis [18]
make CTAT worth revisiting and extending further to cope with exploratory
activities.

A natural follow-up to this research is the implementation of more activities
and more formal comparisons along the lines of the evaluations of other authoring
tools [20]. These evaluations should consider the efficiency of the expert system in
several educational settings and, equally important, the time spent in authoring
activities.

Acknowledgements. The author would like to thank Manolis Mavrikis for his
advice and help during the research reported here and the reviewers of previous
versions of this paper for their insightful and critical comments.

References

1. Hunn, C.: Employing a Java expert system shell for a web-based ITS. Master’s
thesis, The University of Edinburgh, School of Informatics; AT (2001)

2. Mavrikis, M., Maciocia, A.: Wallis: a web-based ILE for science and engineering
students studying mathematics. Workshop of Advanced Technologies for Math-
ematics Education in 11th International Conference on Artificial Intelligence in
Education, Sydney Australia (2003)

3. Bunt, A., Conati, C.: Probabilistic student modelling to improve exploratory be-
haviour. User Modeling and User-Adapted Interaction 13 (August 2003) 269-309

4. Mavrikis, M.: Towards more intelligent and educational Dynamic Geometry Envi-
ronments. Master’s thesis, The University of Edinburgh, Division of Informatics;
AT (2001)

5. Kirschner, P., Sweller, J., Clark, R.: Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-
based, experiential and inquiry-based teaching. Educational Psychologist 41(2)
(2006) 75-86

6. Murray, T.: Authoring intelligent tutoring systems: An analysis of the state of the
art. International journal of artificial intelligence in education 10 (1999) 98-129

7. Koedinger, K.R., Aleven, V., Heffernan, N.T.: Toward a rapid development en-
vironment for cognitive tutors. In: 12th Annual Conference on Behavior Rep-
resentation in Modeling and Simulation., Simulation Interoperability Standards
Organization (2003)

8. Freidman-Hill, E., ed.: Jess in Action. Manning Publications Co. (1995)

9. Mavrikis, M.: Improving the effectiveness of interactive open learning environ-
ments. In: 3rd Hellenic Conference on Artificial Intelligence (SETN) - proceedings
companion volume. (2004) 260-269

10. Mavrikis, M., Maciocia, A.: Wallis: a web-based ILE for science and engineering
students studying mathematics. three years on. Electronic Proceedings of WebALT
2006. First WebALT Conference and Exhibition. (2006)

11. Hamilton, G.: Javabeans specification. Sun Microsystems (1997)

10

12.

13.

14.

15.

16.

17.

18.

19.

20.

Charles Hunn

Jameson, A.: Numerical uncertainty management in user and student modelling:
An overview of systems and issues. User Modelling and User-adapted Interaction
5 (1996) 193-251

Crowley, R., Jukic, D., Medvedeva, O.: Slidetutor a model-tracing intelligent
tutoring system for teaching microscopic diagnosis. In: Proceedings of the 11th
International Conference on Artificial Intelligence in Education. (2003)

Melis, E., Andrs, E., Goguadze, G., Libbrecht, P., Pollet, M., Ullrich, C.: Ac-
tivemath: a generic and adaptive web-based learning environment. International
Journal of Artificial Intelligence in Education 12 (2001) 2001

Choksey, S.: Developing an affordable authoring tool for intelligent tutoring sys-
tems. Master’s thesis, Worcester Polytechnic Institute (2004)

Hunn, C., Mavrikis, M.: Improving knowledge representation, tutoring, and au-
thoring in a component-based ile. In: Intelligent Tutoring Systems. (2004) 827-829
Mavrikis, M., Hunn, C.: Interoperability issues in authoring interactive activities.
In: Artificial Intelligence in Education - Supporting Learning through Intelligent
and Socially Informed Technology. (2005) 869-871

Aleven, V., Sewall, J., McLaren, B., Koedinger, K.: Rapid authoring of intelligent
tutors for real-world and experimental use. In Kinshuk, R., Koper, P., Kommers, P.,
Kirschner, D., Sampson, G., Didderen, W., eds.: Proceedings of the 6th IEEE In-
ternational Conference on Advanced Learning Technologies (ICALT 2006). (2006)
847-851

Matsuda, N., Cohen, W., Sewall, J., Lacerda, G., Koedinger, K.: Evaluating a
simulated student using real students data for training and testing. In Conati, C.,
McCoy, K., Paliouras, G., eds.: Proceedings of the international conference on User
Modeling (LNAI 4511), Springer (2007) 107-116

Aleven, V., McLaren, B., Sewall, J., Koedinger, K.: The cognitive tutor author-
ing tools (ctat): Preliminary evaluation of efficiency gains. In Ikeda, M., Ashley,
K., Chan, T., eds.: Proceedings of the 8th International Conference on Intelligent
Tutoring Systems (ITS 2006), Springer Verlag (2006) 61-70

