Towards A Semi-Automated Model-Driven
Method for the Generation of Web-based
Applications from Use Cases

Ali Fatolahi!, Stéphane S. Somé!, and Timothy C. Lethbridge!

School of Information Technology and Engineering, University of Ottawa
{afato092, ssome, tcl}@site.uottawa.ca

Abstract. This paper presents a semi-automated method for the gener-
ation of web-based applications from high-level requirements expressed
as use cases in accordance with model-driven architecture (MDA). MDA
is a relatively new paradigm, which aims at providing a standard base-
line for model-driven development. The ultimate goal of MDA is to
(semi)automate the process of software development from requirements
to code using an interoperable set of standards. Being very popular, use
case modeling is a perfect choice for capturing requirements at the be-
ginning of an MDA-based process. We consider the use case model as a
baseline to generate other models including a state machine and a user in-
terface model, which are eventually transformed into a platform-specific
model used for code generation.

Keywords: MDA, Use Case, PIM, PSM, Web Application, Transfor-

mation

1 Introduction

MDA [1] is the OMG’s [2] solution to increase model reusability and design-time
interoperability. A very important feature of MDA is a facility to transform
models. Not only is it easier to build automatic model mappings in the MDA
context, but MDA could also be beneficial when the model transformation is done
manually. MDA provides a collection of popular standards beneath a common
philosophy to alleviate the process of quality software design and implementa-
tion. There has been a growing interest in MDA within the software community
in the recent years [3].

The MDA process starts with capturing requirements at a computation-
independent layer [3]. In our approach, use case descriptions are used for re-
quirements capture. Use cases are a popular technique for systems analysis and
design that are mainly expressed using informal or semi-formal textual descrip-
tions.

However, since writing textual descriptions is not as formal a task as drawing
UML [4] models and writing programming code, different guidelines have been
proposed to ease the process of writing use case descriptions and benefiting

from these documents (e.g. [5] and [6]). The fact that several approaches have
examined semi-automatic use-case based tools/techniques (e.g. [7], [8] and [9])
evidences that use cases as a technique for analysis would be more useful, if we
find some ways to connect them to lower-level design models or even to code.

In this paper, we extend our previous work [34] to present a method for the
semi-automated generation of design models related to web-based applications
from requirements. Requirements are expressed as use case descriptions along
with a domain model supporting the use cases. The whole model is used to
produce a state machine. A default user interface model created based on the
state machine is refined by the developer to form the desired user interface of
the application. Based on these models, the method generates a platform-specific
model, which is used to generate the code. The developer is our preferred name
for the user of our method.

In order to assess the feasibility of the approach we have implemented the
method using UCEd [10] and AndroMDA [11]. UCEd is used for use case mod-
eling and AndroMDA for code generation. In addition, we have developed an
application to generate the platform-specific model that bridges the output of
UCEd to the input of AndroMDA. However, the method and supporting tools
and techniques are supposed to be extensible to higher-level requirements and
adaptable with other tools. Because of our previous experience and familiarity
with UCEd and AndroMDA as elaborated in [7] and [34], we preferred to use
those tools for the current stage so that we could focus on the core ideas rather
than learning new tools.

The rest of this paper is organized as follows. In Section 2, technical back-
ground of this research are explained. Section 3 carries the elaboration of our
method and the applied tools and techniques along with a case study. Section 4
addresses related research and practice in past and how they are related to this
research. In Section 5, we, briefly provide a conclusion, discuss some research
issues and present our plan for future work.

2 Background

MDA is an effort by OMG, in order to standardize model driven software devel-
opment [15]. It could be seen as a framework, composed of four different layers of
modeling. The most top layer is the layer of Computation-Independent Models
(CIM). This layer represents models, which are valid in spite of the computa-
tional options. Then we have the layer of Platform-Independent Models (PIM).
PIM acts as a standpoint of systems/software design and architecture. However,
it does not contain any information about specific platforms. The third layer,
Platform-Specific Models (PSM) deals with the technological details of plat-
forms. Here, logical design models are expressed in terms of certain platforms.
In our research, we also use the method presented by Somé in [7], which is
done with the help of the UCEd. This method elaborates the necessities to sup-
port use-case based requirements engineering. This support is given throughout
domain objects, operation (pre and post)conditions and semi-natural language

Administrator
Rectangle

use case steps; for each of which, UCEd provides some automatic and/or semi-
automatic means. The output is a state machine that belongs to the category of
platform-independent models, since it sketches an overview of how the system
works without any design-related details.

In order to work with UCEd, one needs to first enter use case descriptions.
Having this description validated, she could go through a wizard in which UCEd
provides her with a series of different choices for domain objects. The result
is a validated domain model. This domain may be optionally supplied with
operations’ conditions that are used to build some form of operation contracts
[27]. State machine could be generated thereafter.

3 The Method

The solution we provide in here is a method, which is both model driven and
requirements based. The input is provided through use cases and the output is
the executable code generated in accordance with MDA. Different steps of the
method are either automatic or semi-automatic. The whole process is actually a
collection of mappings in accordance with XMI format necessities, MOF-based
metamodels and MDA transformation rules.

Figure 1 is a decomposition of the method into three main steps. In Figure 1,
steps A2 and A4 could be understood as the UCEd and AndroMDA processes.
Step A3 is the core of our method, which is described using more details in
Figure 2.

MOF-based Metamodeling

XML-based Documgnting
c Q Q
@ e —Ha -2
@ == o @ B @
20 T =N [=Nn}
g% 9| ¢ D
w @ =] L-FI g Eg
§ 2| F7g 8
= g g
Use Case
Model IM PSM
o Ct Platform-Independent PIM Platform-Specific S Executable
° Wodel by Model to Code
Domain PIM PSM Code
Objecls A A3 A
. g . Z | 5
2 O 8 8] Bles -
= o = s 8 S| BE8
3] == (S
=] = og
[@

Fig. 1. Three main steps to generate code from use cases

As Figure 2 shows, the main task of this process is to transform a PIM to
a PSM. This process includes three main steps. At first, a default UI model is
created according to the state machine found in the PIM. The developer is then
asked to refine this model to build her desired UI model. Finally the UI model,
along with other parts of the PIM, is used to generate a PSM. The manual
work happens in the first and last step, where the developer has to interact with

Administrator
Rectangle

the tools to generate the state machines as well as to refine the design-specific
models required for code generation. The middle step is the main contribution
of this paper.

MOF-based Metamodeling

XML-based Documenting
e}
o c| & 3
T g c @
5= 8% £Z| 8p
= T EE2n T ? Rl
S 835 Z3| g¢
@< ER @z| Fg
g
3
Y '
Platform-Independent | Building Default Default Ul . User Interface L Platform-Specific
Wodal Ul Model Modal Refining Ul Model Model Finalizing PSM Modal
A3 A32 A3
= =
25 B £
8 > ¢ 8
2 =
o o

Fig. 2. Transforming a PIM to a PSM

Having the whole method depicted, we are now able to go through the
details of the method, mappings and the techniques used to steer the pro-
cess. This is done using a working example, named Election Management Sys-
tem(EleManSys) taken from [35] throughout this paper. The EleManSys is a
system used for managing elections and their related polls. The EleManSys is
composed of several use cases required for performing operations by election of-
ficers, candidates, voters and journalists who may use the reports for analysis
purposes.

3.1 First Step: CIM to PIM

Use case descriptions and default domain objects are considered as the CIM in
our method. The objective of this step is to transform the CIM to the PIM.
The PIM includes the state machine, the user interface model and the refined
domain model. By refined domain model, we mean a domain model that is
enriched with the operations of objects, operation conditions and fundamental
attributes of objects.

The CIM could be already generated by another tool or alternatively built up
from scratch using UCEd. The generated UCEd model is actually an XML file
containing the use case model and domain objects. However, the state machine
model should be manually transferred into a text file for further use. Because
of the implementation limitations, the user interface model generation, which is
theoretically a part of this step, is done in the next step.

Table 1 lists a few use cases included in the CIM of EleManSys. This CIM is
transformed to the PIM afterward. Figure 3, shows a part of the PIM, which is

Administrator
Rectangle

a state machine that models the flow of the Open Poll use case. Since this use
case includes two other use cases, the state machine covers the included use case
as well.

Table 1. Use Cases of EleManSys

Name [Description

Pre-Condition: EleManSys is Up

1. Election Manager selects Open Poll
2. EleManSys shows the list of polls
Open Poll 3. Election Manager selects a poll
4. EleManSys opens poll

5. Include View Poll Results
Alternatives:

2.a. if polls list is empty

2.a.1. Include Add Poll

2.a.2. goto 4

Postcondition: poll is open

Pre-Condition: EleManSys is up

. Election Manager selects Add Poll

. EleManSys opens add poll view

. Election Manager enters Poll

. Election Manager confirms Add Poll

. EleManSys adds Poll to elections DB

. EleManSys shows add poll success message
Post-Condition: poll is added

Add Poll

S UL W N

Pre-Condition: Poll is Open

1. Election Manager selects View Poll Results
2. EleManSys shows poll results

3. Repeat every 2 min

3.1. EleManSys updates poll results
Post-Condition: poll results is updated

View Poll Results

Pre-Condition: Poll is Open

1. EleManSys prepares default vote

2. Voter selects candidate and seat

Vote 3. Voter selects Add Vote

4. EleManSys adds vote

5. EleManSys shows success message
Post-Condition: success message is shown

EleManSys has several other use cases that are not covered in this paper.
These use cases include:

— A use case for the reporters to keep track of incumbents for a seat, so that
they can report the incumbent’s possible loss or win.

— A use case to define eligible voters. Every voter can only vote in certain polls
for specific seats.

Administrator
Rectangle

— A use case to close a poll, which includes the View Poll Results use case.
— Other administration use cases to create, delete or update the information
regarding Elections, Polls, Seats, Candidates and Voters

EleManSys

is up Final Results

shown

Select open poll

Polls List
loaded

update
Poll
Results

Add Poll

2 Add Poll Poll
Polls List i it Success Poll Results
Window Description
Empty? open entered Message shown

shown

Polls List Select Poll

Fig. 3. The state machine generated by UCEd for the use case Open Poll

The state machine leads to the information regarding the domain objects and
their operations, the flow of events and the conditions that apply to every phase.
In order to generate the state machine using UCEd, one can take one of the two
following approaches: One is simply the basic state machine generated from the
use case flow. The more formal way; however, is to generate the state machine
based in the operation conditions. UCEd performs this type of state-machine
generation in the following way:

— During the domain extraction wizard, domain operations are extracted and
assigned to domain entities.

— The developer defines operation conditions so that different operations’ con-
ditions match their preceding and following operations.

— The state machine is generated starting from the first use case step following
each operation’s condition that matches the previous one or by the usual use
case flow of events.

3.2 Second Step: PIM to PSM

A PIM-to-PSM is a mapping from a platform-independent model of domain ob-
jects, state machines and user interface models to a platform-specific model. The

Administrator
Rectangle

true mapping should be done according to a selected profile. However, due to
implementation constraints, we have to pick up some profiles already created
to be used with a specific code generation framework, AndroMDA. The chosen
profile contains various definitions about Java as the programming language, An-
droMDA as code generation framework, ArgoUML as the modeling tool, Struts
[25] as the user interface framework and MySQL [26] as the database server.

The resultant application follows an MVC-based architecture with data ac-
cess mechanisms - so called services - at the lowest level. The flow of data between
different layers is facilitated using value objects. The behavior is controlled using
controller classes and operations. Related definitions are as follows:

— A State Machine Context is a controller class that is responsible for handling
and forwarding the operations regarding events occurring within the state
machine.

— A controller class is the class responsible for controlling general activities
within a use case. Controller can act as an entry point to dispatch messages
and operation requests to the right target. This is in accordance with a design
pattern with the same name. For more information regarding the controller
pattern, see [27].

— An action event is an event to be called when submitting a form from within
a web page. Action events usually include parameters which are the input
fields on the forms.

— A deferrable event is an event calling a controller operation. Deferrable events
are used to assign states with operations.

— A page parameter is any output that is either shown or used for other output
fields on the web page.

— A walue object is an object to carry the required information between domain
objects and the presentation or data access layer.

— FrontEndView is a state stereotype implying that the stereotyped state rep-
resents a web page.

— A signal event is the event that is usually carried by a transition incoming
to a front-end state, carrying the output fields to be shown.

— A call event is an event located on a transition outgoing from a front-end
state, carrying the input fields to be submitted along with the controller op-
eration to be called for performing the required action. For more information,
one may refer to [28].

The approach is not fully automatic; we need to interact with the developer
to obtain the appropriate value of required user parameters. In order to do this,
we first create a default UI model according to the provided PIM state machine.
This default UI model will be the base model to generate the PSM thereafter.

The method is adjusted to work with the OpenDocument format [29]. Open-
Document is an XML-based format to define documents containing text or
graphics. This means that the user interface model should be created in ac-
cordance with this format. Currently, we use OpenDraw [30] to draw the UI
model. The developer is required to create the Ul model following some rules:

Administrator
Rectangle

— Every non-empty slide is considered a presentation state (e.g. a web page)

— Drawing items could be grouped to represent a group of related outputs on
a page or more importantly an input action and its related items (e.g. a
submit button)

— A frame is a symbol of an action

— A triangle represents a dropdown input

— A rectangle represents a plane text input

— A cloud could be grouped with any input item to identify its data type

— A ring can be grouped with an action denoting the called operation associ-
ated with the action

— A cylinder could be grouped with any input item declaring its data source
containing the name of table and/or column

— If a group of outputs was combined with a cross, this would mean a table
view output

States are recognized as either presentation (front-end) or logic states. For each
presentation state, s;

— s;—1 is the state preceding s;
— ;41 is the state following s;
— t;—1,; is the transition from s;_; to s;
— t;,5—1 is the transition from s; to s;_1
— ;41 is the transition from s; to s;41
— ti41,; is the transition from s;y; to s;

Neither s;_; nor s;11 could be a presentation state. Currently we accept no
multiple transitions out of a state, which means there would be just one form
per web page.

Figure 4 shows the UI model of the state, Polls List Shown of EleManSys
(see Figure 3), where the User is asked to select a poll to open. The default
user interface model includes an empty slide for each step of the state machine
in Figure 3. The developer has then generated the user interface model for this
state machine assigning the model in Figure 4 to the step, Polls List Shown.
According to this figure, EleManSys shows a webpage containing an action form
submitting a poll selected from the list of polls coming from database table polls
to the operation, openPoll.

Suppose A as the set of actions submitted from s;. Each action is defined
as the tuple {a, F;, operation}. F; is the set of input fields and is defined as
{{F,r}A{f,r}T} in which

— F is a set of fields

— f is a single field

— r is the value object providing the input

— operation is the name of the operation this action calls.

Also, assume O as the set of outputs shown by s;. Each output is simply a set
of output fields, F,.

Back to the EleManSys example, we can see that for s2_0, A includes one
action that is defined as { Open Poll, {{poll, POLLS}, openPoll}, where

Administrator
Rectangle

Open poll

Fig. 4. Polls List Shown state: Ul Model

— ‘Open Poll’ is the action
— The set of input fields (F;), includes
e poll coming from database table POLLS
— And openPoll, the controller operation to be called

There are some mapping rules that apply regardless of the Ul model:

— A main use case is defined and stereotyped as FrontEndApplication to in-
dicate the entry point of application. The execution of other use cases will
originate from this use case. This main use case will be supported by a state
machine, which has:

e a FrontEndView state

e an outgoing transition for each use case; this will carry a signal event
named after the action event of the corresponding use case and will end
to a final state named after the corresponding use case.

e for use cases that have a pre-condition, a junction will be added to check
if the pre-condition is met? If not the flow simply returns to the main
state. This junction is preceded by another state. The transition from
the state to the junction will have a call event that runs a controller
operation to check the pre-condition.

— For every use case that has a state machine including at least one presenta-
tion states, a use case is created with the stereotypes, FrontEndUseCase

— There must be one controller class per use case

— There must be a service class per use case

Controller classes must be dependent on their objects’ service classes

Figure 5 shows the main state machine of EleManSys imported and refined using
ArgoUML.
Other mapping rules are as follows

— Every presentation state becomes a state stereotyped as FrontEndView
— For each member of A
e a becomes an action event on ¢ ;1 or t; ;11 whichever exists

Administrator
Rectangle

OpenPoll
CheckPoint

;S FramtEndyiens= ™y
E

leManSys
Homepage

Call

Open Pall isPollOpen

QOpen Poll

Fig. 5. The Main State Machine of EleManSys

e o becomes a deferrable event on ;41 calling operation
e operation becomes an operation of the controller class
e F; becomes the set of input parameters on both a and operation
— For every database table referred by members of F;, a domain object and a
value object are created
e There would be a dependency from every entity domain object to the
relevant value object
e Add an operation to the service class to retrieve the data from database
e Make a dependency from the service class
— For each member of O, F, becomes the set of parameters on a signal event
belonging to t;_; ; or t;4; ; whichever exists

The mapping rules have been also expressed using Query-View-Transformation
(QVT) [22] language to make sure the method can integrate with other MDA-
based models and methods.

Figure 6 shows a simplified version of the state machine generated for the
use case, Open Poll, which includes the View Results and Add Poll use cases
as well. The state machine was generated by the method and then imported
and refined using ArgoUML. Some details are shown for more clarification. For
example, Figure 6 shows that the transition after the first FrontEndView has a
signal event carrying the parameter, poll, which means the there would be an
entry named, poll on the corresponding web-page. Figure 7 depicts another part
of the PSM, which describes the service class model of the Open Poll use case.

3.3 Third Step: PSM to Code

This last step is done by the code generation tool. Currently, we generate a
PSM that could be edited by ArgoUML and read by AndroMDA. Developers
are given the chance to refine the generated model or simply generate and launch
the executable code.

Administrator
Rectangle

Wait 2 Call
minutes J isPollOpen() false

shawTable

Polls List loaded

<<FrontEndView>>

Show results

Call
isPollsListEmpty()

gopou(pou)
i Call
false = Polls List loaded Show
eRenballd final results

<<FrontEndView>>

true

<<FromEndView>> \ ~ (Ca" addPoII()
add new poll

Fig. 6. Open Poll State Machine

4 Related Work

A model-driven approach for the semi-automated generation of web-based ap-
plications using UWE [36] is introduced by Kraus et al [21]. This method goes
through requirements analysis, conceptual design, navigation design and presen-
tation design in order to build the application. Automated transformations can
be defined to transform models of content, presentation and navigation from
model to model and from model to code. The transformation process covers all
the levels from CIM to PSM. Examples of such transformations are defined in
the series of the UWE-related works.

Kraus et al’s approach is an adequate method to generate web-based appli-
cations that provides detailed mechanisms to define the application in a model-
driven way. The main difference to ours appears to be the purpose. As a part of
the group of UWE-based approaches, Karus et al’s effort is dedicated to prepar-
ing a framework based on which the developers can generate model-driven appli-
cations. For this purpose, they mention an example of transformations created
based on their method. Our approach is instead focused on (semi)automating
parts of the process; thus we cover a smaller scope in a rather automated man-
ner. We do not tend for others to build methods on top of ours; instead our
method could be seen as a sample method of what model-driven web engineer-
ing approaches such as UWE might be able to generate.

Another related work is presented by Wu et al [22]. This work describes a
method to generate a user interface code following MDA transformation and
the Model View Controller (MVC) pattern. The method spans the gap from
requirements to code for a user interface model by transforming boundary objects
resulting from a robustness analysis [23] to JSP pages [24]. In order to do this,
the authors provide a framework that starts with use case modeling and activity

Administrator
Rectangle

<<\alaObiects > < <Entiy>> <<Senise>>
S <<hanageable= > P oll Senice
Follvo

Foll

::Ijat L.ogg = date : Date
Ia:e. . Satrin <:‘ — — — | place : String <:_ ________ getaliP oll=0) : Poll/O[]
: . i y statuz: Sting openPolpollinfoSummany : OpenP ol OSummany : woid
statuz : String .
peliname : String

pollname : String

=4 Senices FPollController
MainService

populateP olEListipoll : Long) : woid
iEPoll0pen) : boolzan oapenPolpall: Long) @ woid

Fig. 7. Platform-Specific classes related to the Open Poll use case

diagram. Then they perform a robustness analysis to categorize the participating
objects. Finally, JSP pages are built according to the transformation rules and
UML models.

Unlike Wu et al’s work, our study covers the generation of code for the whole
software system not only the user interface part. Although, we select certain
platforms to implement our method, the method itself is theoretically platform-
independent. Finally, we have developed not only a method but also a practice
to show the feasibility of the method, which is not presented by Wu et al.

Brambilla et al. [17] introduce an approach to web development using We-
bRatio [18] as a tool and WebML [19] as a modeling language. The approach
guides the developer through a model-driven method to define a web-based ap-
plication in terms of the following:

— Data modeling

Hypertext modeling

Personalization to give different Users different viewpoints
— Presentation to add the look-and-feel

— Integrating business processes

— Integrating Web services

The resultant PSM will be automatically mapped to the executable code.

Brambilla et al’s approach is focused on the automation of the PSM-to-
Code transformation while providing a detailed mechanism for developing the
PSM. Our approach is instead centered on the PIM-to-PSM transformation and
leaves the code generation to other tools. WebRatio is a good alternative to the
AndroMDA-based platform we use at the moment.

In [31], authors suggest a model-drievn method for the generation of web-
based applications using OOHDM [20], which is a data centric and object ori-

Administrator
Rectangle

ented model for hypertext modeling. The method covers a software engineering
process from use cases to implementation. Use cases are modeled using interac-
tion diagrams. There is also a spot for navigational modeling using state charts
as well as conceptual modeling by class diagrams. The main difference of this
approach to ours is the lack of automation especially in terms of data access and
UI modeling.

Another approach based on OOHDM is published in [32]. This approach
results in two different PSMs: conceptual and navigational, which has the ad-
vantage of the choice of different independent technologies as for presentation
and logic. However, the approach only covers the navigational transformations.
Navigation is separated into that for fixed and dynamic pages. A semi-formalized
language is used to generate the PSM. The target platform is a servlet-based
web application. Besides not covering the conceptual parts of the application,
the main difference this approach shows to our method is the fact that the Ul
model have not been considered as a requirement. Generally speaking, authors
are not concerned with requirements in their method.

We may also mention [33], which is a conceptual framework for MDA-based
software development environments. The approach presented in their book is
neither rendered in practice nor formally; however since an ultimate goal of
our method could be the generation of an MDA-based environment, their work
provides a useful point of reference.

Some related works present similar features to ours but our approach remains
unique especially in terms of automating the PIM-to-PSM transformations and
considering Ul models as a requirement.

5 Conclusion

In this paper we presented the results of the research and development of a
method to address the issue of the generation of web-based applications from
requirements. This is done using several transformations over use cases, user
interface models, state machines, design models and code. The output of our
method is a PSM that could be used to generate executable application.

Although the intention is to implement a general-purpose method but our
conclusion shows that the method shows better compliance with data-centric
web applications that contain several database-related activities. As a result,
our future work is mostly devoted to automating the process of generating data
operations and mechanisms in short term. In the long term we will look at other
possibilities.

A Java application has been implemented to run the method using real ex-
amples. Besides the EleManSys example, our tool has so far been tried on several
other examples taken from actual case studies including the ones found in [11].
Other examples have been either planned or queued to test the method.

As future work, we also intend to cover more complicated cases. We are
especially interested in mixed problem classes, applications with database trans-
actions and multiple use cases and state machines within the same application.

Administrator
Rectangle

We also intend to evaluate the effectiveness of the method by having groups of
developers evaluate it in practice.

One critical feature to add to the method is the ability of the method to iden-
tify manageable entities. A manageable entity is required whenever the developer
needs to create, delete or update an entity; this is done by stereotyping the entity
as Manageable. Regular Entity stereotype can only support the database query
operations. An example is the Poll entity in Figure 7. Currently, we are working
on adding a tagged value to use case steps for this purpose.

The UI model used in this paper needs to be formally defined. To this end, we
will choose an existing abstract Ul model that could be used in an MDA-based
environment to define the UI model. One example is introduced by Koch [12].

Finally, in order to generalize the approach it is critical to employ an abstract
model that describes web-based applications. There are many models for this
purpose and the selection of a suitable candidate needs an in-depth study. So
far, we have found the model provided by Baresi et al [13], called W2000, a good
candidate as it adapts with both MDA and MVC.

References

1. Model-Driven Architecture, www.omg.org/mda

2. Object Management Group, www.omg.org

3. Meservy, T.O., Fenstermacher, K.D.: Transforming software development: an MDA

road map. IEEE Computer, 38 (9), 52-58 (2005)

Object Management Group UML, www.uml.org

Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Harlow (2001)

6. Chen, Y., Song, I.Y.: Guidelines for Developing Quality Use Case Descriptions.In:
IRMA International Conference, pp 564-567 (2007)

7. Somé, S. S.: Supporting use case based requirements engineering. Information and
Software Technology, 48 (1), pp. 43-58 (2006)

8. Behrens, H.: Requirements Analysis Using Statecharts and Generated Scenarios.
In: Doctoral Symposium at IEEE Joint Conference on Requirements Engineering
(2002)

9. Sutcliffe, A. G. Maiden, N. A. M., Minocha, S. Manuel, D.: Supporting Scenario-
Based Requirements Engineering. IEEE Transactions on Software Engineering, 24
(12), pp. 1072-1088 (1998)

10. Use Case Editor, www.site.uottawa.ca/Ssome/Use_Case_Editor_UCEd.html

11. AndroMDA, www.andromda.org

12. Koch, N. Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process PhD. Thesis, FAST Reihe
Software technik, UNI-DRUCK Verlag, December 2000.

13. Baresi, L. Colazzo, S. Mainetti, L. and Morasca, S. W2000: A Modeling Notation
for Complex Web Applications. In E. Mendes and N. Mosley (eds.) Web Engineering:
Theory and Practice of Metrics and Measurement for Web Development. Springer,
ISBN: 3-540-28196-7, 2006.

14. UML, Unified Modeling Language: Superstructure version 2.1.1 (non-change bar)
formal/2007-02-05 (Available from: www.omg.org/cgi-bin/doc?formal/07-02-05)
15. Stahl, T. and Volter, M, Bettin, J. Haase, A. and Helsen, S.: Model-driven soft-
ware development : technology, engineering, management /translated by Bettina

von Stockfleth. John Wiley, Chichester, England ; Hoboken, NJ (2006)

il

Administrator
Rectangle

16. QVT 1.0, www.omg.org/spec/QVT/1.0, May 2006.

17. Brambilla, M. Comai, S. Fraternali, P. and Matera, M. Designing Web Appli-
cations with WebML and WebRatio. In book: ”Web Engineering: Modelling and
Implementing Web Applications.” Gustavo Rossi, Oscar Pastor, Daniel Schwabe
and Luis Olsina. 2007

18. WebRatio, www.webratio.com

19. WebML, www.webml.org

20. The Object-Oriented Hypermedia Design Model (OOHDM), www.telemidia.puc-
rio.br/oohdm/oohdm.html

21. Kraus, A. Knapp, A. and Koch, N. Model-Driven Generation of Web Applications
in UWE. In Proc. MDWE 2007 - 3rd International Workshop on Model-Driven Web
Engineering, CEUR-WS, Vol 261, July 2007

22. Wu, J. H., Shin, S. S., Chien, J. L., Chao, W. S. and Hsieh, M. C.L, An Extended
MDA Method for User Interface Modeling and Transformation. In: The 15th Euro-
pean Conference on Information Systems. pp 1632-1641 (2007)

23. Rosenberg, D. and Stephens, M.: Use case driven object modeling with UML :
theory and practice, Apress Publishers (2007)

24. Java Server Pages Technology, java.sun.com/products/jsp

25. Struts, struts.apache.org

26. MySQL AB, dev.mysql.com

27. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. Prentice Hall PTR (2005)

28. AndroMDA BPM4Struts, galaxy.andromda.org/docs/andromda-bpm4struts-
cartridge/index.html

29. OASIS, www.oasis-open.org

30. Draw, /www.openoffice.org/product/draw.html

31. Rossi, and G. Schwabe, D. Model-Based Web Application Development. In Mendes
E. and Mosley N. (eds.) Web Engineering: Theory and Practice of Metrics and
Measurement for Web Development. Springer, ISBN: 3-540-28196-7, 2006.

32. Schmid, H. A. and Donnerhak, O.: The PIM to Servlet-Based PSM Transformation
with OOHDMDA, Workshop on Model-driven Web Engineering (MDWE 2005) July
26, 2005

33. Pastor O. and Molina J. C., Model-Driven Architecture in Practice: A Software
Production Environment Based on Conceptual Modeling, Springer (2007)

34. Fatolahi A., Somé S. S. and Lethbridge T. C. A Model-Driven Approach for the
Semi-Automated Generation of Web-based Applications from Requirements. Pro-
ceedings of 2008 International Conference on Software Engineering and Knowledge
Engineering. pp 619-624.

35. Lethbridge T. C., Laganire R., Object-oriented software engineering : practical
software development using UML and Java, London : McGraw-Hill, c2001

36. UWE UMUL-based Web Engineering, www.pst.informatik.uni-
muenchen.de/projekte/uwe/

Administrator
Rectangle

