
Precompiling ALC TBoxes and Query Answering
Ulrich Furbach and Claudia Obermaier 1

Abstract. Knowledge compilation is a common technique for
propositional logic knowledge bases. The idea is to transform a given
knowledge base into a special normal form ([11],[6]), for which
queries can be answered efficiently. This precompilation step is very
expensive but it only has to be performed once. We propose to ap-
ply this technique to knowledge bases defined in DescriptionLog-
ics. For this, we introduce a structure called linkless graph, forALC
concepts. Further we present an algorithm, based on path dissolution,
which can be used for this precompilation step. We discuss aneffi-
cient satisfiability test as well as a subsumption test for precompiled
concept descriptions. Finally we show how to extend this approach
in order to precompile Tboxes and to use the precompiled Tboxes for
efficient Tbox reasoning.

1 Introduction

Knowledge compilation is a technique for dealing with computa-
tional intractability of propositional reasoning. It has been used in
various AI systems for compiling knowledge bases offline into sys-
tems, that can be queried more efficiently after this precompilation.
An overview about techniques for propositional knowledge bases is
given in [7]; more recently [6] discusses, how knowledge compila-
tion techniques can be seen as DPLL-procedures. One of the most
prominent successful applications of knowledge compilation is cer-
tainly in the context of belief networks ([5]). In this context the pre-
compilation step, although it is very expensive, pays off because it
only has to be performed once to the network, which is not chang-
ing too frequently. In the context of Description Logics, knowledge
compilation has firstly been investigated in [1], whereFL concept
descriptions are approximated byFL−concept descriptions.

In this paper we propose to apply a similar technique to knowledge
bases defined in Description Logics. There are several techniques for
Description Logics which are related to our approach. An overview
on precompilation techniques for description logics such as struc-
tural subsumption, normalization and absorption is given in [8]. To
perform a subsumption check on two concepts, structural subsump-
tion algorithms ([2]) transform both concepts into a normalform
and compare the structure of these normal forms. However these al-
gorithms typically have problems with more expressive Description
Logics. Especially general negation, which is an importantfeature in
the application of Description Logics, is a problem for those algo-
rithms. The technique of structural subsumption algorithms is used
in CLASSIC [12], GRAIL [13] and LOOM [9]. In contrast to struc-
tural subsumption algorithms our approach is able to handlegeneral
negation without problems.

Normalization ([3]) is another preprocessing technique for De-
scription Logics, which eliminates redundant operators inorder to
determine contradictory as well as tautological parts of a concept. In

1 University of Koblenz-Landau Germany, email: obermaie@uni-koblenz.de

many cases this technique is able to simplify subsumption and satis-
fiability problems.

Absorption ([14]) is a technique which tries to eliminate general
inclusion axioms from a knowledge base. Both absorption andnor-
malization have the aim of increasing the performance of tableau
based reasoning procedures. In contrast to that, our approach extends
the use of preprocessing. We suggest to transform the concept into a
normal form called linkless graph which allows an efficient consis-
tency test. For this consistency test a tableau procedure isnot neces-
sary anymore. Some subsumption queries can also be solved without
a tableau algorithm. We will discuss that in Section 4.

In this paper we will consider the Description LogicALC [2] and
we adopt the concept of linkless formulae, as it was introduced in
[10, 11]. The following section shortly introduces the ideaof our pre-
compilation. In Section 2 we describe linkless concept descriptions
and give a transformation ofALC concept descriptions into linkless
ones. This transformation is extended to precompileALC Tboxes in
Section 3. Further in Section 4 we discuss an efficient consistency
test for precompiled concept descriptions.

2 Precompilation ofALC Concept Descriptions

The precompilation technique we use for anALC conceptC consists
of two steps. In the first stepC is transformed into a normal form by
removing so calledlinks occurring inC. The notion of a link has
first been introduced for propositional logic ([10]). Intuitively links
are contradictory parts of a concepts which therefore can beremoved
preserving equivalence.

In the second step of the precompilation process we considerrole
restrictions. Given for exampleC = ∃R.B⊓∀R.D. According to the
semantic ofALC it follows from x ∈ CI that there is an individual
y with (x, y) ∈ RI and y ∈ (B ⊓ D)I . The conceptB ⊓ D is
precompiled in the second step of the precompilation. The second
step is repeated recursively until all concept descriptions of reachable
individuals are precompiled.

In the following we assume that concept descriptions inALC are
given in NNF, i.e., negation occurs only in front of concept names.
Further the termconcept literaldenotes either a concept name or a
negated concept name.

Definition 1 For a given conceptC, the set of its paths is defined as
follows:

paths(⊥) = ∅

paths(⊤) = {∅}

paths(C) = {{C}}, if C is a literal

paths(C1 ⊓ C2) = {X ∪ Y |X ∈ paths(C1) and Y ∈ paths(C2)}

paths(C1 ⊔ C2) = paths(C1) ∪ paths(C2)

The concept descriptionC = ¬A⊓(A⊔B)⊓∀R.(E⊓F) has the
two pathsp1 = {¬A, A,∀R.(E ⊓F)} andp2 = {¬A, B,∀R.(E ⊓
F)}. We typically usep to refer to both the path and the conjunction
of the elements of the path when the meaning is evident from the
context.

In propositional logic a link means that the formula has a contra-
dictory part. Furthermore if all paths of a formula contain alink, the
formula is unsatisfiable. In Description Logics other concepts apart
from complementary concept literals are able to form a contradic-
tion. It is possible to construct an inconsistent concept description
by using role restrictions. For example the concept∃R.C ⊓ ∀R.¬C
is inconsistent since it a) claims that there has to be an individual
which is reachable via the roleR and belongs to the conceptC and
b) claims that all individuals which are reachable via the role R have
to belong to the concept¬C. This clearly is not possible. We could
say that the concept contains a link in the description of a reachable
individual. Therefore in Description Logics it is not sufficient to con-
sider links constructed by concept literals. We will take a closer look
at role restrictions in Section 2.2.

Definition 2 For a given conceptC a link is a set of two complemen-
tary concept literals occurring in a path ofC. The positive (negative)
part of a link denotes its positive (negative) concept literal.

Note that we regard⊥ and⊤ as a complementary pair of concept
literals. Obviously a pathp is inconsistent, iff it contains a link
or alternatively{∃R.A,∀R.B1, . . . , ∀R.Bn} ⊆ p and all paths in
A ⊓ B1 ⊓ . . . ⊓ Bn are inconsistent. Note that a set of consistent
paths uniquely determines a class of semantically equivalent concept
descriptions. Further given a concept descriptionC with a consis-
tent pathp, it is obvious that the interpretation ofp is a model ofC.
And the other way around each modelI of C is also a model of a
consistent path ofC.

Now we are able to define the term linkless.

Definition 3 A conceptC is calledlinkless, if C is in NNF and there
is no path inC which contains a link.

This special structure of linkless concepts allows us to consider each
conjunct of a conjunction separately. Therefore satisfiability can be
decided in linear time and it is possible to enumerate modelsvery
efficiently.

Note that a linkless concept description can still be inconsistent.
Take∀R.B ⊓ ∃R.¬B as an example. This example makes clear that
it is not sufficient to remove links from a concept description. We also
have to consider role restrictions. But first we learn how to remove
links from a given concept description.

2.1 Removing Links

In this section a method to transform anALC concept into an equiv-
alent linklessALC concept is introduced. In propositional logic one
possibility to remove links from a formula is to use path dissolution
([10]). The idea of this algorithm is to eliminate paths containing a
link. This technique will be used in our context as well.

Definition 4 Let G be a concept description andA be a concept
literal. Thepath extensionof A in G, denoted byCPE(A,G), is a
conceptG′ containing exactly those paths inG which containA. The
path complementof A in G, denoted byCPC(A,G), is the concept
G′ containing exactly those paths inG which do not containA.

Note that Definition 4 does not mention how to construct
CPE(A,G) andCPC(A,G). The naive way would be to construct
the disjunction of all respective paths inG. However there are more
elaborate methods ([10]), producing a far more compact results.

Lemma 5 For a conceptG and a set of literalsA, where all ele-
ments ofA occur inG, the following holds:

G ≡ CPE(A,G) ⊔ CPC(A,G)

We want to constructCPE(D, G) and CPC(D, G) for G =
(D ⊔ ∀R.E) ⊓ (C ⊔ ∀R.B). G has the paths:c1 = {D, C}, c2 =
{D, ∀R.B}, c3 = {∀R.E, C} andc4 = {∀R.E,∀R.B}. This leads
to CPE(D, G) = D ⊓ (C ⊔ ∀R.B) andCPC(D, G) = ∀R.E ⊓
(C ⊔ ∀R.B).

In the followingC denotes the complement of a conceptC, which
is given in NNF and can be calculated simply by transforming¬C
in NNF. Our next aim is to remove a link from a concept description.
Therefore we define a dissolution step for a link{L, L} through a
concept expressionG = G1 ⊓G2 (such that{L, L} is neither a link
for G1 nor G2). Note that each pathp throughG1 ⊓ G2 can be split
into the pathsp1 andp2, wherep1 is a path throughG1 andp2 is a
path throughG2.

Definition 6 Given a concept descriptionG = G1 ⊓G2 which con-
tains the link{L, L}. Further {L, L} is neither a link forG1 nor
G2. W.l.o.g.L occurs inG1 andL occurs inG2. The dissolvent of
G and{L, L} denoted byDiss({L, L}, G), is

Diss({L, L}, G) =(CPE(L,G1) ⊓ CPC(L, G2))⊔

(CPC(L, G1) ⊓ CPC(L, G2))⊔

(CPC(L, G1) ⊓ CPE(L, G2))

Note thatDiss({L, L}, G) removes exactly those paths fromG
which contain the link{L, L}. Since these paths are inconsistent,
Diss({L, L}, G) is equivalent toG. This is stated in the next lemma
where we use the standard set-theoretic semantics forALC. The in-
terpretation of a conceptC denoted byCI is a subset of the domain
and can be understood as the set of individuals belonging to the con-
ceptC in the interpretationI .

Lemma 7 LetG be a concept description and{L, L} be a link inG
such thatDiss({L, L}, G) is defined. Then for allx in the domain
holds:x ∈ GI iff x ∈ Diss({L, L}, G)I .

By equivalence transformations and with the help of Lemma 5 the
following lemma follows.

Proposition 8 Let{L, L} andG be defined as in Definition 6. Then
the following holds:

Diss({L, L}, G) ≡(G1 ⊓ CPC(L, G2))⊔

(CPC(L, G1) ⊓ CPE(L, G2))

Diss({L, L}, G) ≡(CPE(L,G1) ⊓ CPC(L, G2))⊔

(CPC(L, G1) ⊓ G2)

Now it is easy to see how to remove links: Suppose a con-
cept descriptionC in NNF is given and it contains a link
{L, L}. Then there must be conjunctively combined subconcepts
G1 and G2 of C where the positive partL of the link occurs
in G1 and the negative partL occurs in G2. In the first step
we constructCPE(L, G1), CPC(L, G1), CPE(L, G2) as well as

CPC(L, G2). By replacingG1⊓G2 in C byDiss({L, L}, G1⊓G2)
we are able to remove the link.

Next we give an algorithm to remove all links in the way it is
described above. In the following definitionG[G1/G2] denotes the
concept one obtains by substituting all occurrences ofG1 in G by
G2.

Algorithm 9 LetG be a concept description.

linkless(G)
def
= G, if G is linkless.

linkless(G)
def
= linkless(G[H /Diss({L, L}, H)]),

whereH is a subconcept ofG and{L, L} is a link
in H, such thatDiss({L, L}, H) is defined.

Theorem 10 Let G be a concept description. Thenlinkless(G) is
equivalent toG and is linkless.

Note that in the worst case this transformation leads to an expo-
nential blowup of the concept description.

2.2 Handling Role Restrictions

In the previous section we learned how to remove all links form a
given concept. Now we turn to the second step of the precompilation
and consider role restrictions.

Definition 11 Let C be a linkless concept,p be a path inC
with ∃R.A ∈ p and A,B1, . . . , Bn be concepts. Further let
{∀R.B1, . . . , ∀R.Bn} ⊆ p be the (possibly empty) set of all uni-
versal role restrictions w.r.t.R in p. Then the conceptC′ ≡ A ⊓
B1 ⊓ . . . ⊓ Bn is calledR-reachablefrom C. Further the concept
C′′ ≡ B1 ⊓ . . . ⊓ Bn is calledpotentiallyR-reachablefromC. p is
called a path used to reachC′ (potentially reach C”) fromC.

Note that it is possible that a concept descriptionC′ is (potentially)
reachable from a concept descriptionC via several paths. A con-
cept descriptionC′ is called (potentially) reachable from a linkless
concept descriptionC, if it is (potentially) R-reachable fromC for
some roleR. Furtheruniversally (potentially) reachableis the tran-
sitive reflexive closure of the relation(potentially) reachable. Given
a conceptC and a conceptC′ which is reachable fromC. Since the
conceptC′ is equivalent to the conceptlinkless(C′), we call both
C′ andlinkless(C′) reachable fromC.

For example the following linkless concept description:
C = (∃R.(D ⊔ E)⊔A)⊓ ∀R.¬D ⊓ ∀R.E ⊓B which has the two
different pathsp1 = {∃R.(D ⊔ E),∀R.¬D,∀R.E, B} andp2 =
{A,∀R.¬D,∀R.E, B}. The conceptC′ ≡ (D ⊔ E) ⊓ ¬D ⊓ E is
reachable fromC via pathp1 using{∃R.(D⊔E),∀R.¬D, ∀R.E}.
HoweverC′ is not linkless.

In the second step of the precompilation we precompile, i.e re-
move all links from, all universally (potentially) reachable concepts.
Further it is necessary to precompile all potentially universally reach-
able concepts as soon as we want to answer queries. For example
the concept∀R.¬D ⊓ ∀R.¬E does not have any reachable con-
cept descriptions since no existential role restriction w.r.t. the role
R is present. However asking a query to this concept can intro-
duce the missing existential role restriction and can make aconcept
description reachable. For example asking the subsumptionquery
∀R.¬D ⊓ ∀R.¬E ⊑ ∀R.(¬D ⊓ ¬E) leads to checking the con-
sistency of∀R.¬D ⊓ ∀R.¬E ⊓∃R.(D ⊔E). So the transformation
of the subsumption query to a consistency test introduced the missing

existential role restriction and therefore makes a conceptdescription
reachable. Therefore those concepts have to be precompiledas well.

Since the concepts which are (potentially) reachable from another
concept via a pathp only depends on the role restrictions in occur-
ring in p, we regard all paths containing the same role restrictions as
equivalent. The result of the precompilation of a conceptC can be
represented by a rooted directed graph(N, E) i.e a directed graph
with exactly one source. The graph consists of two differenttypes of
nodes: path nodesPN and concept nodesCN . SoN = CN ∪ PN .
Whereas each path node inPN is a set of paths inC and each
node in theCN is a linkless concept description. The set of edges
is E ⊂ (CN × PN) ∪ (PN × CN). A concept nodeCi has a suc-
cessor node for each set of equivalent paths inCi and further there
is an edge from each path node to the concept nodes of (potentially)
reachable concepts. These edges are labeled by a set of universally
quantified role restrictions or by a set containing universally quan-
tified role restrictions and one existential role restriction. This label
indicates the role restrictions used to (potentially) reach a concept.

Definition 12 The linkless graph of a conceptC is defined as fol-
lows:

• If C does not contain any role restrictions, the precompilation
of C is a rooted directed graph consisting of the one node
linkless(C) with one successor which is the set of paths ofC.

• If C contains role restrictions, the precompilation ofC is a rooted
directed graph with rootlinkless(C) and for each setPi of equiv-
alent paths inC there is a subsequent path node. There is an edge
form a path nodePi to the linkless graph of concept nodeC′, if
C′ is (potentially) reachable fromC via one of the paths inPi.
This edge is labeled by the set of role restrictions used to reachC′

fromC.

Since the depth of the linkless graph of a given conceptC corre-
sponds to the depth of nested role restrictions inC, the linkless graph
is always finite. Further in case of the precompilation of a single con-
cept description, the linkless graph is a rooted dag.

Consider for example the following concept with its four paths:

C ≡ (B ⊓ ¬E) ⊔ ((B ⊔ ¬A ⊔ (∃R.A ⊓ A)) ⊓ ∃R.E ⊓ ∀R.F)

p1 = {B,¬E} p2 = {B,∃R.E,∀R.F}
p3 = {¬A,∃R.E,∀R.F} p4 = {∃R.A, A,∃R.E,∀R.F}

There are three sets of equivalent paths:{p1}, {p2, p3} and{p4}.
The root of the linkless graph isC. For each set of equivalent paths,
there is a successor path node. In the next step, reachable concepts are
considered: for instance the conceptE ⊓F is reachable via the paths
in the second set of paths using the role restrictions{∃R.E,∀R.F}.
Therefore there is an edge from the second path node to the concept
node E ⊓ F with label(〈{p2, p3}, E ⊓ F 〉) = {∃R.E,∀R.F}.
In the same way, the precompilation of all (potentially) reachable
concepts are combined with the path nodes. The result is the graph
depicted in Fig. 1.

3 Precompilation of General Tboxes

When answering queries with respect to a general Tbox it is nec-
essary to restrict reasoning such that only models of this Tbox
are considered. As described in [2] we transform the given Tbox
T = {C1 ⊑ D1, . . . , Cn ⊑ Dn} into a meta constraintM with

M = (¬C1 ⊔ D1) ⊓ . . . ⊓ (¬Cn ⊔ Dn)

(B ⊓ ¬E) ⊔ ((B ⊔ ¬A ⊔ (∃R.A ⊓ A)) ⊓ ∃R.E ⊓ ∀R.F)

{{B, ¬E}}
{{B, ∃R.E, ∀R.F},
{¬A, ∃R.E, ∀R.F}}

E ⊓ F F

{{∃R.A, A, ∃R.E∀R.F}}

A ⊓ F

{{A, F}}{{F}}{{E, F}}

{∃R.E,
∀R.F}

{∃R.E,
∀R.F}

{∀R.F} {∀R.F}
{∃R.A
∀R.F}

Figure 1. Example for a linkless graph

The idea of the linkless graph can be directly extended to represent
precompiled Tboxes. We just construct the linkless graph for M.
Further, instead of just considering the concept nodes, each concept
nodeC must also fulfillM. So whenever there is a (potentially)
reachable conceptC′, we precompileC′ ⊓ M instead of justC′.
In the case of precompiling a single concept description, the result
is a linkless dag. In contrast to that the precompilation of aTbox in
general contains cycles and therefore leads to a linkless graph.

4 Properties of Precompiled Concept / Tboxes

Now we will consider some properties of a linkless graph in order to
show that it is worthwhile to precompile a given concept description
or a given Tbox into a linkless graph. We start by giving an efficient
consistency check.

4.1 Consistency

Theorem 13 LetC be a concept description and(N, E) its linkless
graph with the root nodeH . Then holds:C is inconsistent iffH =
⊥ or for eachP with 〈H,P 〉 ∈ E there is a conceptC′ which is
reachable fromC via one of the paths inP and the subgraph with
root linkless(C′) is inconsistent.

In the following we also use the terminconsistentfor a linkless graph
of an inconsistent concept. By adding a labelsat to each concept
node in the linkless graph, it can be ensured that no subgraphhas to
be checked more then once. At the beginning thesat label is set to the
valueunknown . Whenever during the consistency check a subgraph
with root nodeC′ is found to be (consistent) inconsistent, we set
its sat label to (true) false. Only if it has the valueunknown it is
necessary to perform a consistency check for this subgraph.Note that
the use of thesat label does not only increase the efficiency of the
consistency check. It furthermore prevents getting caughtin cycles
of the graph.

The consistency check described in Theorem 13 can be used to
check the consistency of a precompiled Tbox as well. Howeverit is
important to use thesat label mentioned above, in order to ensure
termination.

So to show that a precompiled concept is inconsistent, we have to
compare all universally reachable concept description to⊥. Each of
these checks can be done in constant time. Therefore the whole con-
sistency check takes time linear to the number of universally reach-
able concepts.

As mentioned above, when precompiling a Tbox, the respective
metaconstraint has to be added to every universally reachable con-
cept. In the worst case there can be exponentially many universally
reachable concepts. Givenr different roles each withn existential
role restrictions,m universal role restrictions which are all nested
with depthd, in the worst case the number of universally reachable
concepts isr ·m·2n ·d. However in real world ontologies the number
of universally reachable worlds is smaller. Furthermore precompiling
a Tbox never increases the number of reachable concepts, contrari-
wise it usually decreases the number of reachable concepts.For ex-
ample for the amino-acid1 ontology r = 5, d = 1, m = 3 and
n = 5. So in the worst case, there are 480 universally reachable
worlds. But in reality, before the precompilation there are170 and
after the precompilation 154 reachable concepts.

4.2 Using the Linkless Graph to Answer Queries

Given the precompilation of a concept description, it is possible to
answer certain subsumption queries very efficiently. In [4]an opera-
tor called conditioning is used as a technique to answer queries for a
precompiled knowledge base. The idea of the conditioning operator
is to considerC ⊓α for a concept literalα and to simplifyC accord-
ing doα. Given for exampleC = (B⊔E)⊓D andα = ¬B, C ⊓α
can be simplified toE ⊓ D.

Definition 14 Let C be a linkless concept description andα =
C1 ⊓ . . . ⊓ Cn with Ci a concept literal. ThenC conditioned by
α, denoted byC|α, is the concept description obtained by replacing
each occurrence ofCi in C by ⊤ and each occurrence ofCi by ⊥
and simplifying the conjunction according to the followingsimplifi-
cations:
⊤⊓ C = C ⊤⊔ C = ⊤ ⊥ ⊓ C = ⊥
⊥⊔ C = C ∃R.⊥ = ⊥ ∀R.⊤ = ⊤

It is clear that the conditioning operation is linear in the size of the
concept descriptionC. From the wayC|α is constructed, it follows
thatC|α⊓α is equivalent toC⊓α and obviouslyC|α⊓α is linkless.

Definition 15 Each concept literal is aconditioning literal. For each
conditioning literalB, ∃R.B and∀R.B are conditioning literals.

Given a concept and a set of conditioning literals, in order to use
conditioning for precompiled concepts we have to know how condi-
tioning changes the set of paths in a concept description.

Definition 16 LetP be a set of paths andα a set of concept literals.
ThenP̂ denotes the set of paths obtained formP by

1. removing all elements ofα from paths inP ,
2. removing all paths fromP , which contain an element whose com-

plement is inα and
3. removing all pathsp1 from the remaining paths, ifp2 ⊂ p1 for

somep2 ∈ P .

Proposition 17 LetC be a linkless concept description,P be the set
of all paths inC andα a set of conditioning literals. Then the set of
minimal paths ofC|α is equal toP̂ .

Next we want to use conditioning on linkless graphs. We give an
algorithm for the conditioning operator for an arbitrary node of a
linkless graph.

1 http://www.co-ode.org/ontologies/amino-acid/2006/05/18/amino-acid.owl

Algorithm 18 Let (N, E) be a linkless graph,C ∈ N be a con-
cept node andα a conditioning literal. ThenC conditioned byα
w.r.t. (N, E) denoted byC|nodeα is the linkless graph obtained from
(N, E) as follows:

• If α is a concept literal, then substituteC|α ⊓ α for C. Further
for eachP with 〈C, P 〉 ∈ E substituteP̂ for P and addα to all
paths inP̂ . If P̂ = ∅, remove its node and all its in- and outgoing
edges.

• If α = QR.B with Q ∈ {∃,∀} andB a conditioning literal, then
substituteC ⊓QR.B for C and for eachP with 〈C, P 〉 ∈ E add
QR.B to all paths inP . Further

– For all P whose paths do not contain a role restriction w.r.t.R:
Create the linkless graph forB 1, add an edge fromP to its
root and label the edge with{QR.B}.

– For all P whose paths contain role restrictions w.r.t.R:

∗ For all P whose paths do not contain a universal role restric-
tion w.r.t. R: Create the linkless graph forB, add an edge
fromP to its root and label the edge with{QR.B}.

∗ If Q = ∀: add QR.B to the labels of all edges〈P, C′〉 ∈ E
whose label contains a role restriction w.r.t.R and calculate
C′|nodeB.

∗ If Q = ∃: for all edges〈P, C′〉 ∈ E whose label contains
only universal role restrictions w.r.t.R, copy the subgraph
w.r.t. C′ producing a new subgraph w.r.t. nodeC′′. Create
an edge fromP to C′′, label it withlabel(〈P, C′〉)∪{∃R.B}
and calculateC′′|nodeB.

During the calculation ofC|nodeα the depth of nested role restric-
tions inα decreases, hence the calculation always terminates. In fact,
if the role restrictions are nested with maximal depthd, the condition-
ing only affects concept nodes which are reachable withd steps from
the root node. Further the conditioning changes path nodes an labels
of edges. So the complexity of the conditioning operator is linear to
the number of concepts which are (potentially) universallyreachable
from the root node withd steps.

The conditioning operator for nodes can easily be extended to han-
dle sets of conditioning literals.

Lemma 19 Let C be concept description,H the root node of its
linkless graph andα a set of conditioning literals. ThenC|α is con-
sistent iffH |nodeα is consistent.

Theorem 20 Given a conceptC, its linkless graph with rootH and
a subsumption queryC ⊑ D. If D is a concept literal, thenC ⊑ D
holds, iffH |node¬D is inconsistent.

Theorem 20 follows directly from Lemma 19, sinceC ⊑ D is equiv-
alent toC ⊓ ¬D. We can use conditioning to combineC and¬D.
According to Lemma 19C|¬D is consistent iffH |node¬D is con-
sistent. So we can constructH |node¬D and test its consistency. If
H |node¬D is inconsistent, the subsumption queryC ⊑ D holds.
Theorem 20 can be easily extended for subsumption queries with a
conceptD, which is a in NNF and is constructed only using the con-
nectives disjunction and negation.

Let’s now consider the conceptC whose linkless graph is pre-
sented in Fig. 1. If we want to answer the queryC ⊑ B ⊔
∃R.E ⊔ ∃R.A we have to condition the root of the linkless graph

1 Due to the structure ofB, its linkless graph has a linear structure an can be
constructed in time linear to the depth of nested role restrictions inB.

with {¬B, ∀R.¬E,∀R.¬A}. With the help of the consistency check
mentioned above, we find out that the resulting graph is inconsistent.
Therefore the subsumption query holds.

The linkless graph of a given TboxT can be easily used to do
Tbox reasoning. LetA andB be concepts both given in NNF and
furtherA is constructed only using the connectives conjunction and
negation andB is constructed only using the connectives disjunction
and negation. If we want to check whether a subsumptionA ⊑T B
holds, we have to check the consistency ofT ⊓ A ⊓ ¬B. Assum-
ing that we have the linkless graph ofT , we only have to condition
the root of the graph with the set of conjuncts inA ⊓ ¬B. We per-
form a consistency check for the resulting graph and if the graph is
inconsistent, the subsumption holds.

Since in Tbox reasoning many queries are asked to the same Tbox,
it is worthwhile to precompile the Tbox into a linkless graph. After
that precompilation step, we can answer subsumption queries with
the above mentioned structure very efficiently.

5 Future Work / Conclusion

In the next step, we want to investigate how to extend our approach
to more expressive Description Logics for exampleSHOIN , which
is very important in the context of semantic web. Further it would
be interesting to consider the satisfiability of concept descriptions
which are almost linkless. In this context almost linkless means that
the concept description is linkless outside of a certain scope.

Projection is a very helpful technique when different TBoxes have
to be combined. Therefore we will investigate how to projectlinkless
concept descriptions on a set of literals. Since linkless concept de-
scriptions are closely related to a normal form which allowsefficient
projection, it is very likely that our normal form has this property too.

REFERENCES
[1] B. Selman and H. Kautz, ‘Knowledge Compilation and Theory Ap-

proximation’,J. ACM, 43(2), 193–224, (1996).
[2] F. Baader et al., eds.The Description Logic Handbook. Cambridge

University Press, 2003.
[3] P. Balsiger and A. Heuerding, ‘Comparison of Theorem Provers for

Modal Logics - Introduction and Summary.’, inTABLEAUX, volume
1397 ofLNCS, pp. 25–26. Springer, (1998).

[4] A. Darwiche, ‘Decomposable Negation Normal Form’,Journal of the
ACM, 48(4), (2001).

[5] A. Darwiche, ‘A Logical Approach to Factoring Belief Networks’, in
Proceedings of KR, pp. 409–420, (2002).

[6] A. Darwiche and J. Huang, ‘DPLL with a Trace: From SAT to Knowl-
edge Compilation’, inProceedings of IJCAI 05, (2005).

[7] A. Darwiche and P. Marquis, ‘A Knowlege Compilation Map’, Journal
of Artificial Intelligence Research, 17, 229–264, (2002).

[8] I. Horrocks, ‘Implementation and Optimization Techniques.’, In Baader
et al. [2], pp. 306–346.

[9] Robert M. MacGregor, ‘Inside the LOOM Description Classifier.’,
SIGART Bulletin, 2(3), 88–92, (1991).

[10] N. Murray and E. Rosenthal, ‘Dissolution: Making PathsVanish’, J.
ACM, 40(3), 504–535, (1993).

[11] N. Murray and E. Rosenthal, ‘Tableaux, Path Dissolution, and Decom-
posable Negation Normal Form for Knowledge Compilation’, in Pro-
ceedings of TABLEAUX 2003, volume 1397 ofLNCS. Springer, (2003).

[12] P. Patel-Schneider, D. McGuinness, and A. Borgida, ‘The CLASSIC
Knowledge Representation System: Guiding Principles and Implemen-
tation Rationale.’,SIGART Bulletin, 2(3), 108–113, (1991).

[13] A. Rector, S. Bechhofer, C. Goble, I. Horrocks, W. A. Nowlan, and
W. D. Solomon, ‘The GRAIL concept modelling language for med-
ical terminology.’,Artificial Intelligence in Medicine, 9(2), 139–171,
(1997).

[14] D. Tsarkov and I. Horrocks, ‘Description Logic Reasoner: System De-
scription.’, inIJCAR, eds., U. Furbach and N. Shankar, volume 4130 of
Lecture Notes in Computer Science, pp. 292–297. Springer, (2006).

