
A Sequence-based Ontology Matching Approach
Alsayed Algergawy, Eike Schallehn and Gunter Saake1

Abstract. The recent growing of the Semantic Web requires the
need to cope with highly semantic heterogeneities among available
ontologies. Ontology matching techniques aim to tackle this prob-
lem by establishing correspondences between ontologies’ elements.
An intricate obstacle faces the ontology matching problem is its scal-
ability against large number and large-scale ontologies. To tackle
these challenges, in this paper, we propose a new matching frame-
work based on Prüfer sequences. The proposed approach is applica-
ble for matching a database of XML trees . Our approach is based
on the representation of XML ontologies as sequences of labels and
numbers by the Prüfer’s method that constructs a one-to-one corre-
spondence between schema ontologies and sequences. We capture
ontology tree semantic information in Label Prüfer Sequences (LPS)
and ontology tree structural information in Number Prüfer Sequences
(NPS). Then, we develop a new structural matching algorithm ex-
ploiting both LPS and NPS. Our Experimental results demonstrate
the performance benefits of the proposed approach.

1 Introduction
The Semantic Web (SW) is evolving towards an open, dynamic, dis-
tributed, and heterogenous environments. The core of the SW is on-
tology, which is used to represent our conceptualizations. The Se-
mantic Web puts the onus of ontology creation on the user by provid-
ing common ontology languages such as XML, RDF(S) and OWL.
However, ontologies defined by different applications usually de-
scribe their domains in different terminologies, even they cover the
same domain. In order to support ontology-based information inte-
gration, tools and mechanisms are needed to resolve the semantic
heterogeneity problem and align terms in different ontologies. On-
tology matching plays the central role in these approaches. Ontology
matching is the task of identifying correspondences among elements
of two ontologies [5, 20, 15].

Due to the complexity of ontology/schema matching, it was
mostly performed manually by a human expert. However, manual
reconciliation tends to be a slow and inefficient process especially in
large-scale and dynamic environments such as the Semantic Web.
Therefore, the need for automatic semantic schema matching has
become essential. Consequently, many ontology/schema matching
systems have been developed for automating the matching process,
such as Cupid [17], COMA [6], Similarity Flooding [18], LSD
[7], BTreeMatch [12], Spicy [2], GLUE [8, 9], OntoBuilder [21],
QOM [13], and S-Match [14]. Moreover, most of these approaches
have been developed and tested using small-scale schemas. The pri-
mary focus was on matching effectiveness. Unfortunately, the effec-
tiveness of automatic match techniques typically decreases for larger
schemas. In particular, matching the complete input schemas may
lead not only to long execution times, but also poor quality due to

1 Magdeburg University, Germany, email: {alshahat, eike, saake}@ovgu.de

the large search space. Therefore, the need for efficient and effective
algorithms has been arisen.

Recently, matching algorithms are introduced to focus on match-
ing large-scale and large number schemas and ontologies, i.e. con-
sidering the efficiency aspect of matching algorithms, such as
COMA++ [1, 11], QOM [13], Bellflower [23], and PORSCHE [22].
Most of these systems rely heavily on either rule-based approaches
or learner-based approaches. In the rule-based systems, schemas to
be matched are represented as schema trees or schema graphs which
in turn requires traversing these trees (or graphs) many times. On
the other hand, learning-based systems need much pre-effort to train
its learners. As a consequence, especially in large-scale schemas and
dynamic environments, matching performance declines radically.

Motivated by the above challenges and by the fact that the most
prominent feature for an XML schema is its hierarchical structure,
in this paper, we propose a novel approach for matching XML
schemas. In particular, we develop and implement the XPrüM sys-
tem, which consists mainly of two parts —schema preparation and
schema matching. Schemas to be matched are first parsed and rep-
resented internally using rooted ordered labeled trees, called schema
trees. Then, we construct a Prüfer sequence for each schema tree.
Prüfer sequences construct a one-to-one correspondence between
schema trees and sequences. We capture schema tree semantic infor-
mation in Label Prüfer Sequences (LPS) and schema tree structural
information in Number Prüfer Sequences (NPS). LPS is exploited by
a linguistic matcher to compute terminological similarities between
schemas elements.

Linguistic matching techniques may provide false positive
matches. Structural matching is used to correct such matches based
on structural contexts of schema elements. Structural matching relies
on the notion of node2 context. In this paper, we distinguish between
three types of node contexts depending on its location in the schema
tree. These types are child context, leaf context and ancestor con-
text. We exploit the number sequence representation of the schema
tree to extract node contexts for each tree node in an efficient way.
Then, for each node context, we apply its associated algorithm. For
example, the leaf context similarity between two nodes is measured
by extracting leaf context for each node as a gap vector. Then, we ap-
ply the cosine measure between two gap node vectors. Other context
similarity measures are determined similarly.

By representing schema trees as Prüfer Sequences we need to tra-
verse these trees only once to construct these sequences. Then, we
develop a novel structural matching algorithm which captures se-
mantic information existing in label sequences and structural infor-
mation embedded in number sequences.

The paper is organized as follows: Section 2 introduces basic con-
cepts and definitions. Section 3 describes our proposed approach.
Section 4 presents experimental results. Section 5 gives concluding

2 In this paper the terms node and element are interchangeable

(a) Ontology Tree OT1 (b) Ontology Tree OT2

Figure 1: Computer science department ontologies

remarks and our proposed future work.

2 Preliminaries
The semantics conveyed by ontologies can be as simple as a database
schema or as complex as the background knowledge in a knowledge
base. Our proposed approach is concerning only with the first case,
which gives the assumption that ontologies in this paper are repre-
sented as XML schemas.

XML schemas can be modeled as rooted, ordered, labeled trees
T = (N, E, Lab), called ontology trees. N is the set of tree nodes,
representing different XML schema components. E is the set of
edges, representing the relationships between schema components.
Lab is the set of node labels, representing properties of each node.
We categorize nodes into atomic nodes, which have no outgoing
edges and represent leaf nodes and complex nodes, which are the
internal nodes in the ontology tree.

2.1 Motivations
To the best of our knowledge no work for matching XML schemas
exists which is based on Prüer Sequences. Most of existing match-
ing systems rely heavily on matching schema trees/graphs. In addi-
tion, these systems perform poorly when dealing with large-scale on-
tologies. These shortcomings have motivated us to develop an XML
schema matching system based on Prüfer Sequences, called XPrüM.

Our proposed system is also a schema-based approach. However,
each schema tree is represented using two sequences which capture
both tree semantic information and tree structure. This leads to a
space efficient representation and an efficient time response when
compared to the state-of-the-art systems.

2.2 A Matching Example
To describe the operation of our approach, we use the example found
in [9]. It describes two XML ontologies, shown in Figure 1 (a and
b), that represent organization in universities from different countries
and have been widely used in the literature. The task is to discover
semantic correspondences between two schemas’ elements.

3 The Proposed Approach
In this section, we shall describe the core parts of the XPrüM system.
As shown in Fig.2, it has two main parts: ontology preparation and
ontology matching. First, ontologies are parsed using a SAX parser3

3 http://www.saxproject.org

Figure 2: Matching Process Phases

and represented internally as ontology trees. Then, using the Prüfer
sequence method, we extract both label sequences and number se-
quences. The ontology matching part discovers the set of matches
between two ontologies employing both sequences.

3.1 Prüfer Sequences Construction

We now describe the tree sequence representation method, which
provides a bijection between ordered, labeled trees and sequences.
This representation is inspired from classical Prüfer sequences [19]
and particularly from what is called Consolidated Prüfer Sequence
CPS proposed in [24].

CPS of an ontology tree OT consists of two sequences, Number
Prüfer Sequence NPS and Label Prüfer Sequence LPS. They are con-
structed by doing a post-order traversal that tags each node in the on-
tology tree with a unique traversal number. NPS is then constructed
iteratively by removing the node with the smallest traversal num-
ber and appending its parent node number to the already structured
partial sequence. LPS is constructed similarly but by taken the node
labels of deleted nodes instead of their parent node numbers. Both
NPS and LPS convey completely different but complementary in-
formation—NPS that is constructed from unique post-order traversal
numbers gives wealthy tree structure information and LPS gives the
labels for tree nodes. CPS representation thus provides a bijection be-
tween ordered, labeled trees and sequences. Therefore, CPS = (NPS,
LPS) uniquely represents a rooted, ordered, labeled tree, where each
entry in the CPS corresponds to an edge in the schema tree. For more
details see [24].

Example 1. Consider ontology trees OT1 and OT2 shown in Fig-
ure 3, each node is associated with its OID and its post order num-
ber. Table 1 illustrates CPS for OT1 and OT2. For example, CPS of
OT1 can be written as the NPS(OT1)= 11 11 5 5 8 8 8 10 10 11
-, and the LPS(OT1).name= UnderGrad Courses, Grad Courses,

Figure 3: Nodes OIDs and corresponding post-order numbers

, Name, Degree, Assistant Professor, Associate Professor, Professor,
Faculty, Staff, People, CS Dept US.

Table 1: CPS of Ontology Trees

Schema Tree ST1 Schema Tree ST2
NPS LPS NPS LPS

OID name type/data type OID name type/data type
11 n2 UnderGrad Courses element/string 11 n2 Courses element/string
11 n3 Grad Courses element/string 5 n6 FirstName element/string
5 n7 Name element/string 5 n7 LastName element/string
5 n8 Degree element/string 5 n8 Education element/string
8 n6 Assistant Professor element/- 8 n5 Lecturer element/-
8 n9 Associate Professor element/string 8 n9 SeniorLecturer element/string
8 n10 Professor element/string 8 n10 Professor element/string
10 n5 faculty element/- 10 n4 AcademicStaff element/-
10 n11 Staff element/string 10 n11 TecnicalStaff element/string
11 n4 People element/- 11 n3 Staff element/-
- n1 CS Dept US element/- - n1 CS Dept Aust element/-

3.1.1 CPS Properties

In the following, we list the structural properties behind CPS repre-
sentation of ontology trees. If we construct a CPS=(NPS, LPS) from
an ontology tree OT , we could classify these properties into:

• Unary Properties: for every node ni has a postorder number k,

1. atomic node: ni is an atomic node iff k 6∈ NPS

2. complex node: ni is a complex node iff k ∈ NPS

3. root node: ni is the root node (nroot) iff k = max(NPS),
where max is a function which returns the maximum number in
NPS.

• Binary Properties

1. edge relationship: each entry CPSi = (ki, LPSi) represents
an edge from the node whose post-order number is ki to a node
ni = LPSi.OID. This property shows both child and parent
relationships. This means that the node ni = LPSi.OID is an
immediate child for the node whose post-order number ki.

2. sibling relationship: ∀ two entries CPSi = (ki, LPSi) and
CPSj = (kj , LPSj), the two nodes ni = LPSi.OID and
nj = LPSj .OID are two sibling nodes iff ki = Kj .

3.2 Matching Algorithms
Ontology matching algorithms operate on the sequential represen-
tation of two ontology trees ST1 and ST2 and discover seman-
tic correspondences between them. Generally speaking, the process
of ontology matching is performed, as shown in Figure 2, in two
phases—element matchers and combiner & selector.

First, a degree of similarity is computed automatically for all
element pairs using the element matcher phase. Recent empirical

analysis shows that there is no single dominant element matcher
that performs best, regardless of the data model and application do-
main [10]. As a result, we should exploit different kinds of ele-
ment matchers. In our approach, we make use of name matcher;
to exploit elements’names, datatype matcher; to exploit elements’
types/datatypes, and structural matcher; to exploit elements’ struc-
tural contexts. After a degree of similarity is computed, how to com-
bine different similarities from different element matchers and select
top-K mappings are addressed in the second phase

3.2.1 Name Matcher

The aim of this phase is to obtain an initial matching between ele-
ments of two ontology trees based on the similarity of their names.
To compute linguistic similarity between two elements’names s1
and s2, we use the following three similarity measures. The first
one is simedit(s1, s2) = max(|s1|,|s2|)−editDistance(s1,s2)

max(|s1|,|s2|) where
editDistance(s1, s2) is the minimum number of character insertion
and deletion operations needed to transform one string to the other.
The second similarity measure is based on the number of different

trigrams in the two strings: simtri(s1, s2) =
2×|tri(s1)

⋂
tri(s2)|

|tri(s1)|+|tri(s2)|
where tri(s1) is the set of trigrams in s1. The third similarity
measure is based on Jaro-Winkler distance, which is given by
simjaro(s1, s2) = 1

3
× (m

|s1| + m
|s2| −

m−t
m

) where m is the num-
ber of matching characters and t is the number of transpositions. The
linguistic matching between two ontology tree nodes is computed as
the combination (weighted sum) of the above three similarity values.

3.2.2 Datatype Compatibility

We propose the use of datatype compatibility to improve initial
linguistic similarity. To this end, we make use of built-in XML
datatypes hierarchy 4 in order to compute datatype compatibility co-
efficients. Based on XML schema datatype hierarchy, we build a
datatype compatibility table as the one used in [17]. After computing
datatype compatibility coefficients we can adjust linguistic similar-
ity values. The result of the above process is an adjusted linguistic
similarity matrix.

3.2.3 Structural Matcher

Our structural matching algorithm is motivated by the fact that the
most prominent feature in an XML schema is its hierarchical struc-
ture. This matcher is based on the node context, which is reflected
by its ancestors and its descendants. The descendants of an element
include both its immediate children and the leaves of the subtrees
rooted at the element. The immediate children reflect its basic struc-
ture, while the leaves reflect the element’s content. In this paper, as
in [16, 3], we consider three kinds of node contexts depending on its
position in the ontology tree:

• The child context of a node ni is defined as the set of its immedi-
ate children nodes including attributes and subelements. The child
context of an atomic node is an empty set. Using the edge rela-
tionship property, we could identify immediate children of a com-
plex node and their count. The number of immediate children of
a non-leaf node from the NPS sequence is obtained by counting
its post-order traversal number in the sequence, and then we could
identify these children. For example, in Example 1, consider OT1,

4 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

the post-order number of node n4 is 10. This number repeats two
times. This means that it has two immediate children {n5, n11}.

• The leaf context of a node ni is defined as the set of leaf nodes of
subtrees rooted at node ni. We notice that nodes whose post-order
numbers do not appear in the NPS sequence are atomic nodes;
CPS’ atomic property. From this notice and from the child context
we could recursively obtain the leaf context for a certain node. For
example, in Example 1, consider OT1, nodes {n2, n3, n7, n8, n9,
n10, n11} are leaf nodes set. Node n6 has two children n7, n8,
which are leaves. Then they are the leaf context set of node n6.

• The ancestor context of a node ni is defined as the path extending
from the root node to the node ni. The ancestor of the root node
is an empty path. For a non-atomic node, we obtain the ances-
tor context by scanning the NPS sequence from left to right and
identifying the numbers which are greater than post-order number
of the node until the first occurrence of the root node. While scan-
ning from left to right, we ignore nodes whose post-order numbers
are less than post-order numbers of already scanned nodes. For a
leaf node, the ancestor context is the ancestor context of its parent
union the parent itself. For example, in Example 1, consider OT1,
the ancestor context of node n5 (non-atomic node) is the path n1/
n4/ n5. While the ancestor context of node n9 (atomic node) is the
path n1/n4/ n5/ n9.

Structural Context Similarity Algorithm Structural node con-
text defined above relies on the notion of path and set. In order to
compare two ancestor contexts, we essentially compare their corre-
sponding paths. On the other hand, in order to compare two child
contexts and/or leaf contexts, we need to compare their correspond-
ing sets. In the following we describe how to compute the three struc-
tural context measures:

1. Child Context Algorithm: To obtain the child context similarity
between two nodes, we compare the two child context sets for the
two nodes. To this end, we first extract the child context set for
each node. Second, we get the linguistic similarity between each
pair of children in the two sets. Third, we select the matching pairs
with maximum similarity values. And finally, we take the average
of best similarity values.

2. Leaf Context Algorithm: Before we delve into details of comput-
ing leaf context similarity, we shall first introduce the notion of
gap between two tree nodes.

Definition The gap between two nodes ni and nj in an ontol-
ogy tree OT is defined as the difference between their post-order
numbers.
To compute the leaf context similarity between two nodes, we
compare their leaf context sets. To this end, first, we extract the
leaf context set for each node. Second, we determine the gap be-
tween each node and its leaf context set. We call this vector the
gap vector. Third, we apply the cosine measure between two vec-
tors.

Example 2. For the two ontology trees shown in Example
1. The leaf context set of OT1.n1 is leaf set (n1)={n2, n3, n7,
n8, n9, n10, n11} and the leaf context set of OT2.n1 is leaf set
(n1)={n2, n6, n7, n8, n9, n10, n11}. The gap vector of ST1.n1

is v1 =gapvec(OT1.n1)={10,9,8,7,5,4,2} and the gap vector of
OT2.n1 is v2 =gapvec(OT2.n1)={10,9,8,7,5,4,2}. The cosine
measure CM of the two vectors gives CM(v1,v2) =1.0. Then the
leaf context similarity between nodes OT1.n1 and OT2.n1 is 1.0.

3. Ancestor Context Similarity: The ancestor context similarity cap-
tures the similarity between two nodes based on their ancestor
contexts. To compute the ancestor similarity between two nodes
ni and nj , first we extract each ancestor context from the CPS se-
quence, say path Pi for ni and path Pj for nj . Second, we compare
two paths. To compare two paths, we use three of four scores es-
tablished in [4] and reused in [3]. These scores are combined
to compute the similarity between two paths Pi and Pj psim as
follows:

psim(Pi, Pj) = LCSn(Pi, Pj)−γGAPS(Pi, Pj)−δLD(Pi, Pj)
(1)

where γ and δ are positive parameters ranging from 0 to 1 that
represent the comparative importance of each factor. The three
scores are: (1)LCSn(Pi, Pj) used to measure longest common
subsequences between two paths normalized by the length of the
first path, (2) GAPS(Pi, Pj) used to ensure that the occurrences
of two paths’nodes are close to each other, and (3)LD(Pi, Pj)
used to give higher values to source paths whose lengths is similar
to target paths.

Putting it all together: Our complete structural matching al-
gorithm is as follows: The algorithm accepts CPS(NPS, LPS) for
each schema tree and the linguistic similarity matrix as inputs and
produces a structural similarity matrix. For each node pairs, con-
text similarity is computed using child context, ancestor context,
and leaf context. The three context values are then combined.

4 Experimental Evaluation
To implement the solution we have installed above algorithms using
Java platform. We ran all our experiments on 2.4GHz Intel core2
processor with 2GB RAM running Windows XP. We shall describe
the data sets used through evaluation and our experimental results.

4.1 Data Sets
We experimented with the data sets shown in Table 2. These data sets
were obtained from5 6 7. We choose these data sets since they capture
different characteristics in the numbers of nodes (schema size), their
depth (the number of nodes nesting) and represent different applica-
tion domains, see Table 2.

Table 2: Data set details

Domain No. of ontologies/nodes Ontology size
University 44/550 < 1KB

XCBL 570/3500 < 10 KB
OAGIS 4000/36000 <100 KB
OAGIS 100/65000 >100 KB

4.2 Measures for Match Performance
The XPrüM system considers both performance aspects —matching
effectiveness and matching efficiency. However due to space limit
and according the paper outline, we consider matching efficiency in
more details. To this end, we use the response time as a function of
the number of schemas and the number of nodes to measure matching
efficiency.

5 http://www.cs.toronto.edu/db/clio/testSchemas.html
6 http://www.xcbl.com
7 http://www.oagi.org

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

Number of Schemas

Re
sp

on
se

 ti
m

e
in

 m
s

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Schemas

Re
sp

on
se

 ti
m

e
in

 m
s

(a) Response time of University ontologies (b) Response time of XCBL ontologies

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Number of nodes x 1000

Re
sp

on
se

 ti
m

e
in

 S
ec

.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

Number of nodes x 1000

Re
sp

on
se

 tim
e

in
Se

c.

(c) Res. time of OAGIS ontology’nodes 1 (d) Res. time of OAGIS ontology’nodes 2

Figure 4: Performance analysis of XPrüM system with real world on-
tologies

4.3 Experimental Results
XPrüM Quality: To show matching effectiveness of our system,

ontologies shown in Figure 1 have been used. XPrüM could discover
9 true positive matches among 11 and 2 false positive matches with
F-measure of 81%. Compared to COMA++ [1] which could discover
only 5 true positive matches and miss 6 false negative matches with
F-measure of 62%, our system demonstrates better quality.

XPrüM Efficiency: Figure 4 shows that XPrüM achieves high
scalability across all three domains. The system could identify and
discover correspondences across 44 schemas including 550 nodes
from the university domain in a time of 0.4 second, while the ap-
proach needs 1.8 seconds to match 570 schemas including approxi-
mately 3500 nodes from the XCBL domain. This demonstrates that
XPrüM is scalable with large number of schemas. To demonstrates
the system scalability with large-scale schemas, we performed two
set of experiments. The first one is tested with the OAGIS domain
whose schemas’sizes ranging between 10KB and 100KB. Figure
4(c) shows that the system needs 26 seconds to match 4000 schemas
containing 36000 nodes. The second set is performed also using the
OAGIS domain containing 100 schemas whose sizes are greater than
100KB. XPrüM needs more than 1000 seconds to match 65000
nodes as shown in Figure 4(d).

5 CONCLUSION
With the proliferation of the Semantic Web ontologies, the develop-
ment of automatic techniques for ontology matching will be crucial
to their success. In this paper, we have addressed an intricate problem
associated to the ontology matching problem—matching scalability.
To tackle this, we have proposed and implemented the XPrüM sys-
tem, a hybrid matching algorithm to automatically discover seman-
tic correspondences between XML schemas. The system starts with
transforming schemas into ontology trees and then constructs a con-
solidated Prüfer sequence CPS for each schema tree which construct
a one-to-one correspondence between schema trees and sequences.
We capture schema tree semantic information in Label Prüfer Se-
quences and schema tree structural information in Number Prüfer
Sequences.

Experimental results have shown that XPrüM has a high scalability
with respect to large number and large-scale schemas. Moreover, it

could preserve matching quality beside its scalability. XPrüM has
other features including: it is almost automatic; it does not make use
of any external dictionary; moreover, it is independent on data mode
and application domain of matched schemas.

In our ongoing work, we should consider the second aspect of
semantics conveyed by ontologies, i.e. modeling ontologies using
RDF(s) or OWL, to deal with background knowledge. This helps
us to apply the sequence-based approach on other applications and
domains such as image matching and the Web service discovery.

REFERENCES
[1] D. Aumueller, H.H. Do, S. Massmann, and E. Rahm, ‘Schema and on-

tology matching with COMA++’, in SIGMOD Conference, (2005).
[2] A. Bonifati, G. Mecca, A. Pappalardo, and S. Raunich, ‘The spicy

project: A new approach to data matching’, in SEBD. Turkey, (2006).
[3] A. Boukottaya and C. Vanoirbeek, ‘Schema matching for transforming

structured documents’, in DocEng’05, pp. 101–110, (2005).
[4] D. Carmel, N. Efraty, G. Landau, Yo. Maarek, and Y. Mass, ‘An ex-

tension of the vector space model for querying xml documents via xml
fragments’, SIGIR Forum, 36(2), (2002).

[5] L. Ding, P.Kolari, Z. Ding, S. Avancha, T. Finin, and A. Joshi, ‘Using
ontologies in the semantic web: A survey’, in TR-CS-05-07, (2005).

[6] H. H. Do and E. Rahm, ‘COMA- A system for flexible combination of
schema matching approaches’, in VLDB 2002, pp. 610–621, (2002).

[7] A. Doan, ‘Learning to map between structured representations of
datag’, in Ph.D Thesis. Washington University, (2002).

[8] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A.Halevy,
‘Learning to match ontologies on the semantic web’, Knowledge and
Information Systems, 12(4), 303–319, (2003).

[9] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, Ontology match-
ing: A machine learning approach, Handbook on Ontologies, Interna-
tional Handbooks on Information Systems, 2004.

[10] C. Domshlak, A. Gal, and H. Roitman, ‘Rank aggregation for automatic
schema matching’, IEEE on KDE, 19(4), 538–553, (April 2007).

[11] C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm, ‘Quickmig - automatic
schema matching for data migration projects’, in Proc. ACM CIKM07.
Portugal, (2007).

[12] F. Duchateau, Z. Bellahsene, and M. Roche, ‘An indexing structure for
automatic schema matching’, in SMDB Workshop. Turkey, (2007).

[13] M. Ehrig and S. Staab, ‘QOM - quick ontology mapping’, in Interna-
tional Semantic Web Conference 2004:, pp. 683–697, (2004).

[14] F. Giunchiglia, M. Yatskevich, and P. Shvaiko, ‘Semantic matching:
Algorithms and implementation’, Journal on Data Semantics, 9, 1–38,
(2007).

[15] Y. Kalfoglou and M. Schorlemme, ‘Ontology mapping: the state of the
art’, The Knowledge Engineering Review, 18(1), 1–31, (2003).

[16] M. L. Lee, L. Yang, W. Hsu, and X. Yang, ‘Xclust: Clustering XML
schemas for effective integration’, in CIKM’02, pp. 63–74, (2002).

[17] J. Madhavan, P. Bernstein, and E. Rahm, ‘Generic schema matching
with cupid’, in VLDB 2001, pp. 49–58. Roma, Italy, (2001).

[18] S. Melnik, H. Garcia-Molina, and E. Rahm, ‘Similarity flooding: A ver-
satile graph matching algorithm and its application to schema match-
ing’, in Proceedings of the 18th International Conference on Data En-
gineering (ICDE’02), (2002).

[19] H. Prufer, ‘Neuer beweis eines satzes uber permutationen’, Archiv für
Mathematik und Physik, 27, 142–144, (1918).

[20] E. Rahm and P. Bernstein, ‘A survey of approaches to automatic schema
matching’, VLDB Journal, 10(4), 334–350, (2001).

[21] H. Roitman and A. Gal, ‘Ontobuilder: Fully automatic extraction and
consolidation of ontologies from Web sources using sequence seman-
tics’, in EDBT 2006 Workshops, (2006).

[22] K. Saleem, Z. Bellahsene, and E. Hunt, ‘PORSCHE: Performance ori-
ented schema mediation’, Accepted for publication in Information Sys-
tems Journal, (2008).

[23] M. Smiljanic, XML Schema Matching Balancing Efficiency and Effec-
tiveness by means of Clustering, Ph.D. dissertation, Twente University,
2006.

[24] S. Tatikonda, S. Parthasarathy, and M. Goyder, ‘LCS-trim: Dynamic
programming meets XML indexing and querying’, in VLDB’07, pp.
63–74, (2007).

