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Abstract. This paper proposes a view on the relationships between explanation
and context. First, we install the background of our proposal. This background
comprises two parts: the consideration of explanations in knowledge-based
systems, and a preliminary observation of relationships between explanations
and context. We comment briefly previous works on explanations in order to
point out what is reusable. Second, we discuss a set of new types of explanation
in a context-based formalism called contextual graphs. We begin by presenting
the context-based formalism of representation and after an explanation typology
that can be established, thanks to Contextual Graphs.

1 Introduction

Any collaboration supposes that each participant understands how others make a
decision and follows the series of steps of their reasoning to reach the decision. In a
face-to-face collaboration, participants use a large part of contextual information to
translate, interpret and understand others’ utterances by using contextual cues like
mimics, voice modulation, movement of a hand, etc. Explanation generation relies
heavily on contextual cues [10] and thus would play now a role in e-collaboration
more important than in face-to-face collaboration.

Twenty years ago, Artificial Intelligence was considered as the science of
explanation [12]. However, there are few concrete results to reuse now from that time
(e.g. see [15]). There are several reasons for that. The first point concerns expert
systems (and knowledge-based systems after) themselves and their past failures [9]:
- There was an exclusion of the human expert providing the knowledge for

feeding the expert systems. The “interface” was the knowledge engineer asking
the expert “If you face this problem, which solution do you propose?” The
expert generally answered something like “Well, in the context A, I will use this
solution,” but the knowledge engineer retained the pair {problem, solution} and
forgot the initial triple {problem, context, solution} provided by the expert. The
reason was to generalize in order to cover a large class of similar problems when
the expert was giving a local solution in a specific context. Now, we know that a
system needs to acquire knowledge and its context of use.

- On the opposite side, the user was excluded from the noble part of the problem
solving because all the expert knowledge was supposed to be in the machine: the
machine was considered as the oracle and the user as a novice [10]. Thus,



explanations aimed to convince the user of the rationale used by the machine
without respect to what the user knew or wanted to know. Now, we know that
we need of a user-centered approach [5].

- Capturing the knowledge from the expert, it was supposed to put all the needed
knowledge in the machine, prior to the use of the system. However, one knows
that the exception is rather the norm in expert diagnosis. Thus, the system was
able to solve 80% of the most common problems, on which users did not need
explanations and nothing about the 20% that users did not understand. Now, we
know that systems must be able to acquire incrementally knowledge with its
context of use in order to address more specific problems.

- Systems were unable to generate relevant explanations because they did not
consider what the user’s question was really, in which context the question was
asked. The request for an explanation was analyzed on the basis of the available
information to the system. Now, we know that the system must understand the
user’s question and after build jointly with the user the answer.

Thus, the three key lessons learned are: (1) KM (i.e. knowledge management
normally) stands for management of the knowledge in its context; (2) any
collaboration needs a user-centered approach; and (3) an intelligent system must
incrementally acquire new knowledge and learns corresponding new practices. We
present in [3] and [7] a context-based formalism for explaining concretely the
differences often cited but never clearly identified between prescribed and effective
tasks [13], procedures and practices [4], logic of functioning and logic of use [16]).

Focusing on explanation generation, it appears that a context-based formalism for
representing knowledge and reasoning allows to introduce the end-user in the loop of
the system development and to generate new types of explanations. Moreover, such a
formalism allows a uniform representation of elements of knowledge, of reasoning
and of contexts.

Hereafter, the paper is organized in the following way. First, we install the
background of our proposal. This background comprises two parts: the consideration
of explanations in knowledge-based systems, and the relationships between
explanations and context. We comment briefly previous works on explanations in
order to point out what is reusable. Second, we discuss a set of new types of
explanation in a context-based formalism called contextual graphs. We begin by
presenting the context-based formalism of representation and continue after by a
presentation of an explanation typology that can be established, thanks to Contextual
Graphs.

2. Background

This section introduces briefly the evolution of the way in which explanations have
been considered in experts systems and after in knowledge-based systems. In a second
part, we show that it was clear that there is a relationships between explanation
generation and context, the lack of concrete works on context at that time (end of
80’s) has seriously limited the interest of explanations in knowledge systems.



2.1 Explanations in Expert Systems and Knowledge-Based Systems

The first research on explanations started with rule-based expert systems. Imitating a
human reasoning, the presentation of the trace of the expert system’s reasoning (i.e.
the sequence of fired rules) was supposed to be an explanation of the way in which
the expert system reaches a conclusion. Indeed, it was right, but explanations were
generated at the implementation level. The following step was the use of canned texts
where “Firing of Rule_23 allows to checking rule_7” was replaced by something like
“The available facts allow to identify the failure on equipment piece B3, and this
leads to check if it is a mechanical problem”. Explanations thus moved from the
implementation level to a representation level. However, the logic behind the chaining
of the rules (why rule_7 is chosen first for example) was hidden. An important reason
discovered lately is that a part of the control knowledge was put in the inference
engine implicitly by the knowledge engineer (by imposing the ordering of rule
checking for example). Thus, it was not possible to go another step above (i.e. a
modeling level after the implementation and representation levels).

Rapidly, it was clear that it was not possible to explain heuristics provided by
human experts without additional knowledge. It was then proposed to introduce a
domain model. It was the second generation of expert systems, called the knowledge-
based systems. This approach reached also its limits because it was difficult to know
in advance all the needed knowledge and also because it was not always possible to
have models of the domain. The user’s role was limited to be a data gatherer for the
system. A second observation was that the goal of explanations is not to make
identical user’s reasoning and the system reasoning, but only to make them
compatible: the user must understand the system reasoning in terms of his own mental
representation. For example, a driver and a garage mechanic can reason differently
and reach the same diagnosis on the state of the car. The situation is similar in
collaboration where specialists of different domains and different geographical areas
must interact in order to design a complex object. A third observation is that the
relevance of explanation generation depends essentially on the context use of the
topic to explain [10], [1].

Fig. 1. Line of reasoning versus line of explanation [1]

Even if expert systems are now abandoned, there are important results that we can
yet reuse, such as the base for new explanations proposed by Spieker [19] and the



qualities for relevant explanations established by Swartout and Moore [20]. Thus,
beyond the need to make context explicit, first in the reasoning to explain, and,
second, in the explanation generation, the most challenging finding is that lines of
reasoning and explanation must be distinguished. Figure 1 illustrates the evolution of
the research on explanation generation [1]. Figure 1.a gives the initial view on
explanation generation by a strict superposition of the lines of reasoning and
explanation (the firing of rule 23 allows to check Rule7). Figure 1.b represents the
first evolution corresponding to the introduction of domain knowledge, the knowledge
that is not necessary for reasoning but for explanation. This was the first separation of
the line of reasoning and the line of explanation. Figure 1.c shows that lines of
reasoning and of explanation interact, and providing an explanation may modify the
line of reasoning. Thus, the line of explanation was considered during the
development of the line of reasoning and not produced after the reasoning of the
system.

Thus the key problem for providing relevant explanations is to find a uniform
representation of elements of reasoning and of context.

2.2 Explanations and Contexts

A frequent confusion between representation and modeling of the knowledge and
reasoning implies that explanations are provided in a given representation formalism,
and their relevance depend on explanation expressiveness through this formalism. For
example, ordinary linear differential equation formalism will never allow to
express—and thus explaining—the self-oscillating behavior of a nonlinear system.
Thus, the choice of representation formalism is a key factor for generating relevant
explanations for the user and is of paramount importance in collaboration with
different users and several tasks.

A second condition is to account for, make explicit, and model the context in
which knowledge can be used and reasoning held. This concerns the needed
distinction between data, information and knowledge. For example, a temperature of
24°C (the datum) in winter in Paris (when temperature is normally around 0°C) is
considered to be hot (the “French information”) and cold (the “Brazilian
information”) in Rio de Janeiro (when temperature is rather around 35°C during
winter). Thus, the knowledge must be considered within its context of use for
providing relevant explanations, like to explain to a person living in Paris why a
temperature of 24°C could be considered as cold in some other countries.
Temperature = 24°C is a datum. A process of interpretation leads to an information
(hot or cold). Information is data with meaning built on the basis of the knowledge
that the person possesses. The knowledge is specific to a person and constitutes the
context in which a person evaluates (and eventually integrates) information pieces in
his mental representation. Indeed, this is more particularly the part of the knowledge
that the person finds more or less related to the information. It corresponds to a
mental representation that the person built from its experience for giving meaning to
the information and eventually integrates the information in the body of contextual
knowledge already available. It is when a needed information cannot be related totally
to the mental representation that an explanation is required for making explicit the



links between the information and the contextual knowledge of the person. We will
come back on this point on the following.

There is now a consensus around the following definition “context is what
constrains reasoning without intervening in it explicitly” [8], which applies also in e-
collaboration (although with more complex constraints) where reasoning is developed
collectively. Explanation generation is a means to develop a shared context among the
actors in order to have a better understanding of the others (and their own reasoning),
to reduce needs for communication and to speed up interaction.

From our previous works on context, several conclusions have been reached. First,
a context is always relative to something that we call the (current) focus of attention
of the actors. Second, with respect to this focus, context is composed of external
knowledge and contextual knowledge. The former has nothing to see with the current
focus (but could be mobilized later, once the focus moves), when the former can be
more or less related directly to the focus (at least by some actors). Third, actors
address the current focus by extracting a subset of contextual elements, assembling
and structuring them all together in a proceduralized context, which is a kind of
« chunk of contextual knowledge » (in the spirit of the “chunk of knowledge” of
Schank [17]). Fourth, the focus evolving, the status of the knowledge (external,
contextual, into the proceduralized context) evolves too. Thus, there is a dynamics of
context that plays an important role in the quality of explanations.

As the context exists with the knowledge, a context-based generation of
explanations does not require an additional effort because the explanatory knowledge
is integrated in the knowledge representation at the time of their acquisition and the
representation of the reasoning (see [4] on this aspect). However, this supposes to
have a context-based formalism allowing a uniform way to represent elements of
reasoning and of contexts.

3. Contextual Graphs and Explanation Typology

In Section 2 we show that it was necessary to develop a conceptual framework for
context modeling. In this section, we show now, first that the development of our
conceptual framework lead to the implementation of Contextual Graphs, which allows
a uniform representation of elements of reasoning and of contexts. Then, in such a
representation formalism, we come back on the types of explanation that are possible
to generated in contextual graphs because “explanatory knowledge” is a natural part
of the knowledge in knowledge systems.

A key point here is that contextual graphs is a representation formalism as
workflows, Petri nets, Bayesian nets, etc.  However, the main difference is that
Contextual Graphs is a user-centered formalism [5]: any user (e.g. a psychologist)
needs less than one minute to learn and use the software (freely available at
http://www.cxg.fr).



3.1 The Context-Based Formalism of Representation

A contextual graph represents the different ways to solve a problem. It is a directed
graph, acyclic with one input and one output and a general structure of spindle
(Brezillon, 2005). Figure 2 gives an example of contextual graph.

1: Is the site already known?
  Yes 1: Look for new stuff.
  No 2: What is the link target?

      Html page 2: Open the target in a new window.
  1: Activity-1

      PDF, doc or ps page
3: Is there an html version?
   Yes 3: Open the target in the new window.

4: Look for keywords on a colored background.
2: Activity-1

   No 5: Download the document.
4: Have I time now?
   Yes 6: Open the document.

7: Look for keywords.
3: Activity-1

    no 8: Store the document in "To read" folder.
9: Close the window.

ppt page 10: Open the target in a new window.
  5: Duration of the download?
    Short 6: Is it for a course?

  Yes  7: Can page content be retrieved?
Yes 11: Copy the slide.

12: Paste slide in my
document.
No 13: Note idea for later.

  No  14: Look for other stuff.
      15: Go to the next slide.

   Long 16: Close the window.

Fig. 2. “Information retrieval” (from [4])

A path in a contextual graph corresponds to a specific way (i.e. a practice) for the
problem solving represented by the contextual graph. It is composed of elements of
reasoning and of contexts, the latter being instantiated on the path followed (i.e. the



values of the contextual elements are required for selecting a branch, i.e. an element
of reasoning among several ones). Figure 3 provides the definition of the elements in
a contextual graph. A more complete presentation of this formalism and its
implementation can be found in [4].

1: Contextual element (circles)
    branch-1  2: Activity (ovals)
    branch-2  3: Temporal Branching (vertical lines)

                branch-1   4: Action
                branch-2  5: Action
                branch-3  6: Action

Fig. 3.  Elements of a contextual graph

Elements of a contextual graph are: actions, contextual elements, sub-graphs,
activities and temporal branchings.
− An action is the building block of contextual graphs. We call it an action but it

would be better to consider it as an elementary task. An action can appear on
several paths. This leads us to speak of instances of a given action, because an
action, which appears on several paths in a contextual graph, is considered
each time in a specific context.

− A contextual element is a couple of nodes, a contextual node and a
recombination node; A contextual node has one input and N branches [1, N]
corresponding to the N instantiations of the contextual element already
encountered. The recombination node is [N, 1] and shows that even if we know
the current instantiation of the contextual element, once the part of the practice
on the branch between the contextual and recombination nodes corresponding
to a given instantiation of the contextual element has been executed, it does not
matter to know this instantiation because we do not need to differentiate a state
of affairs any more with respect to this value. Then, the contextual element
leaves the proceduralized context and (globally) is considered to go back to the
contextual knowledge.

− A sub-graph is itself a contextual graph. This is a method to decompose a part
of the task in different way according to the context and the different methods
existing. In contextual graphs, sub-graphs are mainly used for obtaining
different displays of the contextual graph on the graphical interface by some
mechanisms of aggregation and expansion like in conceptual graphs [18].

− An activity is a particular sub-graph (and thus also a contextual graph by
itself) that is identified by actors because appearing on different paths and/or in
several contextual graphs. This recurring sub-structure is generally considered
as a complex action. An activity is similar to a scheme as considered in
cognitive ergonomics [13]. Each scheme organizes the activity around an
object and can call other schemes to complete specific sub-goals.



− A temporal branching expresses the fact (and reduces the complexity of the
representation) that several groups of actions must be accomplished but that
the order in which action groups must be considered is not important, or even
could be done in parallel, but all actions must be accomplished before
continuing. The temporal branching is for context what activities are for
actions (i.e. complex actions). This item expresses a problem of representation
at a lower granularity. For example, the activity "Make train empty of
travelers" in the SART application [14] accounts for the damaged train and the
helping train. There is no importance to empty of travelers first either the
damaged train or the helping train or both in parallel. This operation is at a too
low level with respect to the general task "Return back rapidly to a normal
service" and would have otherwise to be detailed in the three paths in parallel
leading to the same sequence of actions after.

Some mechanisms of aggregation and expansion provide different local views on a
contextual graph at different levels of detail by aggregating a sub-graph in an item (a
temporary activity) or expanding it. This representation is used for the recording of
the practices developed by users, which thus are responsible for some paths in the
contextual graph, or at least some parts of them.

3.2 An Explanation Typology Established from Contextual Graphs

We established a typology of explanations, based on previous works and exploiting
the capabilities of contextual graphs [2]. By adding a new practice, several contextual
information pieces are recorded automatically (date of creation, creator, the practice-
parent) and others are provided by the user himself like a definition and comments on
the item that is introduced. Such contextual information is exploited during the
explanation generation. Thus, the richness of contextual-graph formalism leads in the
expressiveness, first, of the knowledge and reasoning represented, and, second, of the
explanations addressing different users’ requirements. The main categories of
explanations identified in contextual graphs are:
- Visual explanations correspond to a graphical presentation of a set of complex

information generally associated with the evolution of an item, e.g. the
contextual graph itself, the decomposition of a given practice, the series of
changes introduced by a given user, regularities in contextual graphs, etc.

- Dynamic explanations. They correspond to the progress of the problem solving
during a simulation addressing questions as the “What if” question. With the
mechanisms of aggregation and expansion, a user can ask an explanation in two
different contexts and thus receives two explanations with different
presentations (e.g. with the details of what an activity is doing in one of the two
explanations). The dynamic nature of the explanation is also related to the fact
that items are not introduced chronologically in a contextual graph. For example,
in Figure 2, the contextual element 5 (Duration of the download?) was
introduced after the contextual element 6 (Is it for a course?). Initially, the user
was retrieving information on web pages, and one day he arrives on a Web site
particularly slow and observes that he did not wait more than a couple of
seconds. Then, the user decides to add the duration of the download as an



important contextual element. Finally, the proceduralized context along a
practice is an ordered series of instantiated contextual elements, and changing
the instantiation of one of them is changing of practice and thus changing of
explanation.

- User-based explanations. The user being responsible of some practice changes
in the contextual graph, the system uses this information to tailor its explanation
by detailing parts unknown of the user and sum up parts developed by the user.
Such an explanation allows the author of a practice to identify the contextual
elements that he had not taken into account initially and that has been introduced
by other users).

- Context-based explanations. The definition of the proceduralized context (an
ordered sequence of instantiated contextual elements) shows that a given item
(say the activity represented by an oval in Figure 2) appearing on different
branches of the contextual graph, appear in different contexts. This means that
any explanation of the activity cannot be the same on the three branches. We
exploit this finding in our driver-modeling application for representing “good”
and “bad” behaviors on the same contextual graph [6]. Thus a relevant
explanation relies heavily on the building of the proceduralized context, and
because the contextual graph can be incrementally enriched, explanations can be
richer also.

- Micro- and macro-explanations. Again, with the mechanisms of aggregation
and expansion, it is possible to generate an explanation at different levels of
detail. For such a complex item like an activity or a sub-graph, it is possible to
provide on them a micro-explanation from an internal viewpoint on the basis of
activity components. A macro-explanation from an external viewpoint is built
with respect to the location of the activity in the contextual graph like any item.
This allows to providing (at least) two different types of explanation on the
activity “Make your train empty of travelers” at the macro level of the subway-
line responsible and at the micro level of the train driver. Note that the subway-
line responsible may ask the micro-explanation in case of doubt on one
operation of the driver. This twofold explanation is linked to the notion of
activity, but can be used by any user with aggregation and expansion of local
sub-graphs of parts of the whole contextual graph.

- Real-time explanations. There are three types of such explanations. First, the
explanation is asked during a problem solving when the system fails to match
the user’s practice with its recorded practices. Then, the system needs to acquire
incrementally new knowledge and to learn the corresponding practice developed
by the user (generally due to specific values of contextual elements not taken
into account before). This is an explanation from the user to the machine.
Second, the user wished to follow the reasoning of a colleague having solved the
problem with a new practice (and then we are back to simulation). Three, the
system tries to anticipate the user’s reasoning from its contextual graph and
provides the user with suggestions and explanations when the user is operating.
These suggestion and explanation rely on the contextual elements that are
explicitly considered in the contextual graph. Note that it is because the system



fails to represent a user’s practice that the user explains to the system the new
practice by introducing new knowledge, knowledge that the system can reuse
after.

Moreover, these different types of explanation (and others that we are discovering
progressively) can be combined in different ways such as visual and dynamic
explanations.

4. Conclusion

Relevant explanations are a crucial factor in any collaboration between human actors,
especially when they interact by computer-mediated means. First, collaboration looses
some advantages of a face-to-face collaboration in which a number of contextual
elements are exchanged in parallel with the direct communication. Second,
collaboration can benefit of new ways to replace this “hidden exchanges” of
contextual cues between actors by the use of the computer-means themselves.

Explanation generation is very promising for collaboration because explanations
use and help to maintain a shared context among actors. We are now in a situation in
which computer-mediated interaction concerns human and software actors. Software
must be able to react in the best way for human actors. For example, for presenting a
complex set of data, a software piece could choose a visual explanation taking into
account the type of information that human actors are looking for. We show that
making context explicit allows the generation of relevant explanations. Conversely,
explanations are a way to make contextual knowledge explicit and points out the
relationships between context and the task at hand, and thus develop a real shared
context.

In this paper, we argue that a key factor for the success of relevant explanations is
to use a context-based formalism, like Contextual Graphs, that represent in a uniform
way all the richness of the knowledge and reasoning in the focus. A good option is to
consider context of use simultaneously with the knowledge. As a consequence, this
allows developing new types of explanation like visual explanations, dynamic
explanations, real-time explanations, etc. Indeed, we have developed a new typology
of explanations that include past works on explanations but goes largely beyond.
Moreover, these different types of explanations can be combined together to provide
richer explanations.

However, this is only the first step. A promising path is to explore intelligent
assistant systems. Indeed, computer-mediated means can keep and reuse a trace of
interaction between human actors. In real-time situations, the human actor cannot
loose time to answer questions of a machine because the actor is generally under time
pressure (e.g. an incident solving in a control room), but the machine can act in
parallel with actors in a kind of personal simulation replaying similar past situations,
and making suggestions when appropriate. In that sense, the machine may become an
excellent secretary, fixing alone all the simple problems of human actors, and
preparing a complete folder on complex situations letting actors make their decision.
Here, the machine generates explanations for humans.



Conversely, when the machine fails to address correctly a problem, the machine
may benefit of its interaction with the human actors to acquire incrementally the
missing knowledge and learn new practices. As a consequence, the machine will be
able to explain later its choices and decisions. Now, there is a software piece called
Contextual Graphs that is able to manage incremental acquisition and learning, and
begins to provide some elementary explanations.

As a general learned lesson, expressiveness of the knowledge and reasoning
models depends essentially of the representation formalism chosen for expressing
such models. This appears a key element of collaboration with multiple sources of
knowledge and different lines of reasoning intertwined in a group work. This is a
partial answer to our initial observation that collaboration would be better understood
if we consider jointly its two dimensions, the human dimension and the technology
dimension. Then, explanation generation would be revised in order to develop
“collective explanations” for all the (human) participants in the collaboration, that is
in each mental representation.
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