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Abstract. Metamodels are designed to be used by machines and humans. For 
human users, the understandability of the metamodel is important. Experimen-
tal investigations of understandability in computer science have led to conflict-
ing results. To resolve such conflicts and gain insights into the nature of some 
phenomenon beyond singular experiments, meta-analysis can be applied, i.e., 
the statistical analysis of results obtained by other (primary) empirical studies. 
This paper shows the current obstacles for a meta-analysis of metamodel under-
standability: They consist in the heterogeneity of the individual experiments 
and deficient reporting. The paper provides a framework to increase the 
comparability of experiments on understandability. Such comparability enables 
future meta-analysis. 
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1   Motivation 

Designing and modifying metamodels are major topics of model-driven development. 
Metamodels must be understandable for both machine and human users. Following a 
definition of language understandability in cognitive psychology [1], the understand-
ability of a metamodel means the effort required to read and correctly interpret its 
constructs and their connections. Understandability is a prerequisite both for reading 
artifacts (like documents or source code) that have been created by a applying a 
metamodel (comprehension) and for creating such artifacts (specification). 

The ‘understandability’ of a metamodel for a machine shows up in error-free com-
pilation. For human users, metamodel understandability must be empirically inves-
tigated, usually by controlled experiments. The results of such experiments are con-
flicting (see Section 3).  

Conflicting empirical results can be statistically evaluated by meta-analysis (see 
Section 2). Meta-analysis could increase our knowledge about the nature of under-
standability – also to facilitate future metamodel design or modification. But, Section 
3 shows that meta-analysis on metamodel understandability is currently hindered by 
(1) the heterogeneity of the conducted experiments and (2) insufficient reporting of 
the experimental results. This paper provides a framework to achieve comparability of 
experiments on metamodel understandability (see Section 4), which is a prerequisite 
for meta-analysis. Appropriate reporting guidelines exist (e.g., [16], [19]). 
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2   Meta-Analysis 

Meta-Analysis is the statistical evaluation of numerical results that have been obtained 
by other (primary) studies [25], [13]. Hence, it is a kind of secondary research that 
aims at (1) finding evidence for some investigated phenomenon beyond individual 
studies (by calculating general descriptive statistics), (2) explaining conflicting results 
(by discovering new influencing variables), and (3) removing the bias potentially 
contained in ‘normal’ literature reviews of empirical studies [27]. 

Literature reviews often concentrate only on significant results that support the re-
viewer’s theoretical position. But, statistical significance can be misleading, because 
it is affected by sample size [9]: If the same experiment is conducted independently, a 
larger sample may yield a statistically significant result, while a smaller one does not. 
The ‘empirical truth’ can be revealed by effect size. Effect size expresses the magni-
tude of a result, independently of sample size [9]. Table 1 summarizes main effect 
size measures and defines what constitutes a small, medium or large effect.  

Table 1. Measuring Effect Size 

Effect Effect size measure Statistical test 
procedure  

Refe-
rence Small Medium Large 

[10]: d 0.2 0.5 0.8 

σ
μμd 21 −=     or    

dft
tr 2

2

t,es +
=  

t-test* 

[10]: r 0.1 0.3 0.5 

N
χω

2

=  
χ2-test [10] 0.1 0.3 0.5 

2

2
μ2

σ
σ

η =  
F-test (ANOVA) [10], 

[9] 
0.01 0.06 0.14 

N

z
r z,es =  

U-test or any 
other that yields 
a z-score♦ 

[28] 0.1 0.3 0.5 

μ1, μ2: Group means, σ: Standard deviation. σ2 (σμ
2): Total (Between group means) variance,  

t, χ2 (z): Test statistics (z: normal distribution), N: Total number of participants (N = Σni),  
df: Degrees of freedom (df = n-2; n: [constant] number of participants of each group) 

∗ Between-subjects design: σ of either group, within-subjects design: adjusted σ [9]. 
♦Requires N ≥ 25 to calculate the z-scores by assuming normal distribution [10]. 

Meta-analysis typically integrates the effect sizes of singular studies. The basic steps 
are as follows [27], [25]: 
1. Define the independent and the dependent variables of interest. 
2. Systematically collect the studies to be included in the meta-analysis. 
3. Estimate effect sizes for each study. 
4. Combine the individual effect sizes to calculate and test the central tendency (e.g., 

the mean or median) and dispersion (e.g., variance) of the overall effect. 

Various ways of combining effect sizes exist (see, e.g. [27]). The combined effect size 
quantifies the overall magnitude of some observed result, at least in the population of 
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the included studies. To yield useful results from meta-analysis, the included studies 
must satisfy the following requirements [25]: 
[RQ1] They must be of the same type (e.g., controlled experiments or case studies). 
[RQ2] They must test the same hypothesis. Since a statistical hypothesis assumes 

that the independent variable(s) will cause the changes in the dependent 
variable(s) [28], these variables should be identical or comparable.  

[RQ3] Often several measures for the same variable exist. Ideally, all included 
studies should use the same or comparable measures. 

[RQ4] The studies should report effect sizes or provide at least statistics according to 
Table 1 or raw data to calculate the effect sizes. 

The next section will show that current experiments on the understandability of 
metamodels do not satisfy these requirements. 

3   Meta-Analysis of Research on Metamodel Understandability  

This section sketches a failed attempt of meta-analysis – to prepare the ground for the 
framework in Section 4. The intended meta-analysis should find out whether certain 
(types of) metamodels have proven to be generally better understandable for human 
users. One of the earliest disputes relevant for this question took place in artificial 
intelligence by praising the merits of either predicate logic [12], which is usually 
written as text, or visual representations and diagrams [29]. This debate is excluded 
here from further investigation as it is based only on (quite suggestive) examples and, 
thus, differs in type from controlled experiments (see [RQ1] in Section2). 

Table 2 lists some experiments examining the understandability of (types of) meta-
models. The selection of the studies (deliberately) does not satisfy the requirements 
postulated in Section 2, as it is intended to point out the obstacles for meta-analysis: 

The experiments differ in their independent variables and, thus, in the hypotheses 
(Ha)1 investigated. Most independent variables are related to metamodels, but refer to 
abstract2 syntax ([3]: Ha: metamodels with more constructs easier to understand), 
concrete2 syntax ([8], [14]; Ha: graphical notation is easier to understand) or a mixture 
of both ([5], [6], [20], [22]). In the mixture case, the understandability of particular 
metamodels (the listed ‘levels’ in Table 2) is tested, whereas syntactically pure 
independent variables characterize types of metamodels. Besides the metamodel, also 
other factors influencing understandability are investigated, e.g., the complexity of the 
presented artifacts [14] and the knowledge of the participants [23]. 

The dependent variables are more homogeneous (correctness, time, perceived ease 
of use), but the particular measures vary. For example, correctness is quantified by the 
number of correct answers and by reviews. Additionally, diverse experimental 
designs have been used. Experimental design, i.e., the way participants are selected 
and assigned to experimental conditions [26], is discussed in Section 4.2 

None of the studies in Table 2 reported effect sizes. [3], [6], [8], [20] and [22] 
provide at least enough aggregated data to calculate the effect sizes ex post according 

                                                           
1 Ha denotes the alternative hypothesis, which is given in an aggregated and simplified form. 
2 Abstract (concrete) syntax mean the constructs and their allowed connections (notation). 
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to Table 1. The effects are small [6], medium [3] or large [6], [8], [20], [22]; see 
Table 2. But, because of the heterogeneous variables and hypotheses, a methodol-
ogically sound meta-analysis cannot be conducted.  

Meta-analysis of understandability would be facilitated by some guideline for the 
planning, conducting and reporting of the underlying experiments. The following 
groups of guidelines have been proposed: 
1. General guidelines on experimental research in software engineering (e.g., [4], 

[19]) with ‘best practices’ for planning, conducting, evaluating and reporting any 
kind of experiment. They do not help researchers in selecting variables and 
experimental designs to investigate understandability.  

2. Guidelines on reporting the results of experiments e.g., [19], [16]. Though the 
latter ones have recently been criticized [18], they provide a solid foundation for 
the prospective availability of data needed to calculate effect sizes. 

3. Guidelines for experiments in the field of conceptual modeling, e.g. 23], [2], [11] 
or management information systems (MIS) research [15]: These guidelines cover 
specific aspects of metamodel understandability (e.g., the role of domain know-
ledge) [23], remain vague sets of hints without well-founded recommendations of 
variables or experimental designs [2] or aim at classifying existing experimental 
studies [11]. As a consequence, the classification guideline [11] concentrates on 
variables that have been used in experiments on metamodel understandability, but 
neglects potential variables known from cognitive psychology, which is the major 
field for scientific investigations of understandability. Meta-analytic comparability, 
however, requires the consideration of all known factors affecting some phenom-
enon. Experimental design is only discussed in the MIS research framework [15]. 
Because of focusing on the usage of MIS, ‘metamodel’ is not considered as an 
independent variable. Corresponding modifications of the framework have been 
proposed [6], but remain at the surface. Additionally, the MIS research framework 
differs in terminology and methodology form empirical software engineering. 

To sum it up, owing to heterogeneous experiments and deficient reporting of the 
experimental results, meta-analysis of metamodel understandability is currently not 
possible. Appropriate reporting guidelines exist. The next section proposes a frame-
work that is to increase the comparability of experiments on metamodel understand-
ability, which is a prerequisite for meta-analysis. 

4    A Framework for Comparable Experiments on Metamodel  
      Understandability  

4.1   Affecting Factors 

An experiment is a scientific investigation in which one or more independent 
variables (IV) are systematically manipulated to observe their effects on one or more 
dependent variables (DV) [28]. The outcome of an experiment depends on the 
affecting factors [11]. This term comprises both independent variables whose (causal) 
relationship to the dependent variables is examined and other factors (extraneous 
variables, EV) that confound the causal results [28]. Whether some affecting factor 
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Table 2. Experiments on the Understandability of Metamodels 

Ref. Independent Variables 
(Levels) 

Tasks  
(Number) 

Dependent  
Variables 

Experim. 
Design 

N 
(T) 

Statistical  
Procedure 

Results Effect 

[5] Data model  
(EER, RDM) 

Spec  
(1 case) 

CO (review), 
PEU 

2 groups, 
matched in 
experience 

42 
(M) 

t-test of means EER leads to higher correctness; no 
difference in perceived ease of use 

not 
applicable 

[6] Conceptual data model 
(EER, KOOM) 

Spec 
(1 case) 

CO (review) 2 groups 38 
(−) 

matched-pairs t-
test for means 

Mostly no differences in 
correctness; higher correctness of 
EER only for some facets  

d = 0.04 to 
d = 2.12 

[8] Graphical query  
languages 

Comp (32), 
Spec (14) 

CO (review) 1 group 27 
(U) 

χ2-test on 
distribution 

Graphical queries are easy to 
comprehend, not easy to specify  

ω = 0.61 

[14] Datebase representation 
(graphical, textual), 
complexity  

Spec (20)  CO (review), 
ST, PEU 

2 x 2 
factorial 

36 
(M) 

ANOVA Graphical representations are faster, 
lead to higher correctness and 
higher perceived ease of use. 

not 
applicable 

[20] Conceptual data models 
(EER, SOM, ORM, 
OMT) 

Spec 
(2 cases) 

CO (review), 
MT, PEU 

4 groups 100 
(−) 

Duncan test Increased correctness and faster 
solutions for EER and OMT   

η2 = 0.14 

[22] Conceptual models 
(DSD, ERM, OOM) 

Comp (30) CO (answers), 
ST 

3 groups 121 
(M) 

ANOVA, cor-
relation analysis 

Highest correctness for OOM; faster 
for OOM, followed by DSD, ERM  

η2 = 0.15 

[3] Conceptual data models 
(varying  construct 
number) 

Comp (40) a) CO (answers), 
b) inverse of 
time, c) learn-
ability  

2 groups 64 
(M) 

t-test of means 
difference  

Models with more constructs lead to 
more accurate conceptualization, 
increase the time to process a 
schema, are faster to learn 

r = 0.41 

[23] Conceptual data models 
(ER, EER), knowledge 

Comp (36) CO (answers and 
review) 

2 x 2 
factorial  

81 
(U) 

paired t-test of 
means 

IS knowledge affects problem 
solving; domain knowledge is 
helpful in solving demanding tasks 

not 
applicable 

Abbreviations: CO: Correctness, Comp: Comprehension, DSD: Data Structure Diagram, EER: Extended Entity-Relationship Model, (K)OOM: 
(Kroenkes) Object Oriented Model, MT: Modeling Time, N: Total number of participants, PEU: Perceived ease of use, SOM: Semantic Object Model, 
Spec: Specification, ST: solution Time, ORM: Object Role Model, OMT: Object Modeling Technique, RDM: Relational Data Model, T: Type of 
participants
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constitutes an independent or an extraneous variable is, to some extent, a matter of the 
researcher’s decision (contingent on the research question, the availability of 
participants, costs etc.). This decision requires knowledge on (at most) all the factors 
that affect the outcomes of an experiment. For experiments on understandability in 
computer science, this knowledge is provided by Fig. 1. 

Affecting factors for experiments

Understandability
(Potential independent variables)

General
(Extraneous variables)

Modeling ParticipantsTask Conduct Experimenter

Metamodel Content

Abstract
Syntax

Concrete
Syntax

DemographicsKnowledgeType Size

Comprehension Specification

Surface Level Problem Solving

Syntactic Semantic

Tool

 

Fig. 1: Affecting factors in experiments on metamodel understandability. 

It can be distinguished between factors that affect the outcome of any experiment 
(general affecting factors) and factors with a known influence on understandability; 
see Fig. 1. In the field of behavioral sciences (to which cognitive psychology be-
longs), the following general affecting factors are acknowledged: 

• The conduct of the experiment, comprising: 
• The experimental situation, namely the location (noise, room temperature), the 

time of day and the equipment (failures, calibration) [9]. 
• Position effects: Performance depends on the timely distance of a task from the 

start of the experiment (e.g., fatigue, getting bored, learning) [21].  
• Carry-over effect: The performance achieved in some task depends on whether 

or not some other task has been done before [28]. 
• The experimenter: His/her ability to instruct participants; his/her bias (expecting a 

particular outcome can distort the experimenter’s behavior or data gathering) [26].  

These general affecting factors are not causally related to the dependent variables, but 
distort the experimental results and, thus, are extraneous variables. In contrast, in 
investigating metamodel understandability, the following affecting factors – related to 
modeling, participants and task - are potential independent variables (see Fig. 1): 

Both the metamodel’s abstract syntax (e.g., the number [3] or type [7] of con-
structs) and its concrete syntax (graphical vs. textual notation; e.g., [14]) affect under-
standability. Metamodels cannot be tested in isolation, but only by applying them to 
some content. The content should be ‘informationally equivalent’ [23], i.e., it must be 
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possible to model this content by any of the investigated metamodels, and the content 
should be comparably difficult. Finally, the tool used to create or present models (e.g., 
its navigation or dynamic layout capabilities) influences understandability. 

Among the affecting factors, participants play an intermediate role: Their demo-
graphic characteristics (e.g., age, gender) affect any experiment [1] and, thus, also 
understandability. For example, the participants’ age is treated as an independent 
variable in MIS research [15]. Knowledge comprises experience and skills related to 
domain and metamodel as well as general mental abilities. Domain knowledge dis-
torts results on metamodel understandability as it enables inferences [23]. Metamodel 
knowledge is usually provided in preparing the participants for the experiment.  

Tasks in experiments on understandability can be characterized by their type and 
size. As Table 2 indicates, the task types used are comprehension or specification 
(defined in Section 1), which agree to the dependent variables cognitive psychology 
suggests (see Section 4.3). Comprehension tasks can be subdivided into surface-level 
understanding and problem-solving tasks [17]. In problem-solving tasks, participants 
are requested to determine whether and how certain information can be retrieved from 
an artifact created by applying the metamodel. In contrast, syntactic surface level 
understanding tasks refer to the constructs of the metamodel and their relationships 
(e.g., ‘How many attributes describe the entity type ORDER?’), whereas semantic 
tasks assess the understanding of the contents described (e.g., ‘Every employee has 
(a) a unique employee number, (b) more than one employee number.’) [17]. An 
influence of the size of some task, e.g., the complexity of the database described by 
some metamodel, is generally assumed, but it was only marginally significant in [14].  

Depending on the decision of the researcher, a potential independent variable is 
either systematically manipulated or becomes an extraneous variable. Extraneous 
variables decrease the internal validity of experiments, i.e., the degree to which the 
variation of the dependent variables can be attributed to the independent variables 
(rather than to some other factor) [28]. Consequently, extraneous variables must be 
controlled, which is main constituent of experimental design (see Section 4.2).  

4.2 Experimental Design 

An experimental design can be regarded as a general plan for (types of) experiments 
that joins independent variables and control techniques for extraneous variables. The 
main control techniques are removing, constancy and randomization [26], [28]; they 
should be applied in the following order: 
1. Remove the extraneous variable (EV), especially if it is related to the experimental 

situation (e.g., use a quite room). 
2. If the EV cannot be removed, its influence on the dependent variable is known and 

the sample is small, keep the EV constant. Constancy guarantees that all conditions 
are identical except for the manipulation of the independent variable, but reduces 
the external validity of the experiment, i.e., its generalizability [26]. 

3. If sample size does not matter and the influence of some irremovable EV on the 
dependent variable is not surely known (e.g., gender), must be neutralized (e.g., 
position or carry-over effects) or should be equated (e.g., age, knowledge), 
randomize the EV. Randomization increases the external validity of experiments. 
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Table 3. Summary of Experimental Designs  

Design Between-subjects Within-subjects Block (Matched)  Factorial  

No. of IV 
(levels) 

1 (n) 1 (n) 1 (n) m > 1  (n) 

Groups n 1 n m × n 

Pro: 
 

No carry-over effects • Simple 
• Small samples  
• Constancy of 

individual 
characteristics 

• Precise 
• No carry-over 

effects 
• Individual dif-

ferences balanced 

Interactions  
between IV 
can be examined 

Contra: • Unequal groups 
possible  

• Large samples  

• Carry-over effects 
• Experimenter bias 

• Effort 
• Matching factor 

must exist 

• Large samples  
• Difficult to in-

terpret for m > 3 

EV 
Control 

Randomization Constancy Constancy and  
Randomization 

Randomization 

Statistical test procedures  

Metric 
DV 

♦: independent t  
∗: F-test, ANOVA 

♦: paired t-test of means 
∗: MANOVA  

MANOVA 

Ordinal 
DV 

♦: Mann-Whitney U 
∗: Kruskal-Wallis H 

♦: Wilcoxon signed rank test (matched) 
∗: Friedman’s χ2 

- 

Nominal 
DV 

♦/∗: χ2 contingency 
test  

♦: Sign test, McNemar’s test of change 
∗: Cochran’s Q-test 

- 

Sample 
Size ♣ 

1-t: ni = 20 [50] 
2-t: ni = 25 [60] 

1-t: N = 11 [23] 
2-t: N = 15 [35] 

see between- 
subjects 

2-t only, m = 3: 
ni =  20 [50] 

♣ To detect a large [a medium] effect (see Table 1) with (1 - β) = 0.8 and α = 0.05. 

The experimental design to be chosen depends on (1) the number of independent 
variables and (2) the control technique. Table 3 summarizes typical experimental 
designs and their (dis-) advantages (for details, see [9], [26], [28]). Experimental 
design and the dependent variables determine the statistical test procedures for 
evaluation (see Table 3). For each statistical procedure, an effect size measure exists 
(see Table 1). The sample size required to detect a small, medium or large effect for a 
given experimental design and statistical test procedure can be calculated by power 
analysis (e.g., [9], [10]); the resulting recommendations are given in Table 3. 

4.3   Affected Factors 

The dependent variable is the one on which the effect of the independent variable is 
measured. Behaviorism, the origin of experimental research in psychology, requires 
the dependent variable to refer to observable behavior [1]. Thus, ‘perceived ease of 
use’ (even though applied, see Table 2) is not an acceptable dependent variable. 
Instead, the following measures of behavior are common [26]:  
1. Frequency, e.g., the number of correct answers or solved problems. 
2. Selection, e.g., which of several answers is chosen. 
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3. Response latency (or response time), which is concerned with how long it takes for 
a behavior to be emitted, e.g., how quickly a participant reacts.  

4. Response duration, i.e., the length of time some behavior occurs (e.g., how long a 
participant deals with a task).  

5. Amplitude, measuring the strength of response.  
The dependent variables in experiments on metamodel understandability (see Table 2) 
use these measures as follows: Solution time refers to response latency and modeling 
time to response duration. If correctness is verified by multiple-choice questions (e.g., 
[17]), it is based on the measure ‘selection’, whereas numbers of correct answers are a 
measure of frequency.  

Thus, the dependent variables in experiments on understandability in computer 
science are well-grounded in cognitive psychology. Completeness could be achieved 
by measuring amplitude, which, however, is mainly common in neuroscience [1], and 
by using selection of some metamodel from a list in specification tasks.  

5 Conclusion 

Missing comparability of the integrated studies is a major reservation about meta-
analysis [27]. But, comparability of heterogeneous experiments can be achieved by 
methodologically equalizing differences among experiments [13] – provided that the 
differences are known. In other words, sound meta-analysis is possible if all variables 
and (for EV) their control techniques are reported. The taxonomies provided by the 
framework (see Section 4) help researchers to compile such lists; further advances can 
be achieved by web-publishing them (and the related experimental studies) as well as 
by tool support for the experiments on understandability. A simple open-source tool 
called notate already exists (http://sourceforge.net/projects/notate). It has been 
successfully applied in experiments on understandability [24] and can be extended to 
cover the complete framework of Section 4. 

In contrast to the narrow view of MIS research, extensibility and flexibility are 
major requirements for a framework to investigate understandability in computer 
science, since the nature of language understanding in general still is an open research 
question in cognitive psychology [1]. Workshops are an appropriate place to 
exchange experience in this field and to advance the framework proposed here. 
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